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Abstract Ancillary Services (AS) in electric power industry are critical to support the 
transmission of energy from generators to load demands while maintaining reliable 
operation of transmission systems in accordance with good utility practice. The 
ancillary services are procured by the independent system operator (ISO) through a 
process called the market clearing process which can be modeled by the partial 
equilibrium from the ends of ISO. There are two capacity optimization problems for 
both Market participants (MP) and Independent System Operator (ISO). For a market 
participant, the firm needs to determine the capacity allocation plan for various AS to 
pursue operating revenue under various uncertainties which can never be accurately 
estimated. We thereby employ a heuristic named “resource reservation” to suggest 
two types of bids, the regular and the must-win for a market participant to pursue 
higher expected revenue and satisfactory performance in terms of revenue under the 
worst case scenario. Meanwhile, the ISO, needs to determine the total amount of 
capacity required to guarantee the overall reliability of the transmission system. Our 
numerical experiment is based on our industrial partner’ operational data and the 
simulation result suggests that our proposed methods would greatly outperform the 
deterministic methods in terms of the profitability for a market participant and the 
ISO’s entire system’s reliability. 
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Abstract Ancillary Services (AS) in electric power industry are critical to support
the transmission of energy from generators to load demands while maintaining reli-
able operation of transmission systems in accordance with good utility practice. The
ancillary services are procured by the independent system operator (ISO) through
a process called the market clearing process which can be modeled by the partial
equilibrium from the ends of ISO. There are two capacity optimization problems for
both Market participants (MP) and Independent System Operator (ISO). For a mar-
ket participant, the firm needs to determine the capacity allocation plan for various
AS to pursue operating revenue under various uncertainties which can never be ac-
curately estimated. We thereby employ a heuristic named “resource reservation” to
suggest two types of bids, the regular and the must-win for a market participant to
pursue higher expected revenue and satisfactory performance in terms of revenue un-
der the worst case scenario. Meanwhile, the ISO, needs to determine the total amount
of capacity required to guarantee the overall reliability of the transmission system.
Our numerical experiment is based on our industrial partner’ operational data and the
simulation result suggests that our proposed methods would greatly outperform the
deterministic methods in terms of the profitability for a market participant and the
ISO’s entire system’s reliability.
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1 Introduction

1.1 Ancillary services market for the power system reliability

In the electricity industry, ancillary service is critical to support the transmission of
generated energy to loads, while maintaining reliable operation of the Transmission
Service Providers (TSPs) in the transmission system. Ancillary services (AS) are
commonly recognized in the industry as a collection of secondary services offered
to ensure the reliability and availability of energy. According to the Federal Energy
Regulatory Commission (FERC), the ancillary Services are defined as “services nec-
essary to support the transmission of electric power from seller to purchaser given
the obligations of control areas and transmitting utilities within those control areas to
maintain reliable operations of the interconnected transmission system” in its Notice
of Proposed Rulemaking (NOPR) (see [5]).

Ancillary services have been an important topic since 1995 when the FERC is-
sued a major rule on open-access nondiscriminatory transmission service. Ancillary
services are now openly traded at a financial settlement market for efficient acqui-
sition and pricing. More importantly, the ancillary services market is beneficial to
the power system for the following reasons: (1) the market provides transparent eco-
nomic signals to govern the provision of these services; (2) the market reconciles
operating practices with market incentives so that participating parties are compen-
sated for providing reliability; (3) ancillary services market would also reduce cost
to meet reliability requirements; and (4) correctly pricing energy and ancillary ser-
vice under shortage conditions is important for resource adequacy in an Energy-only
market [12]. Hence, ancillary services have quickly become irreplaceable functions
to ensure the reliability and availability of energy to consumers.

1.2 Ancillary services acquired

The procurement of ancillary services is either cost-based or market-based. The cost-
based procurement is to purchase services offered at pre-determined regulated costs
and the market-based procurement is to purchase the services provided at market
rates, granted by state or federal authorities. There are four ancillary services: regula-
tion reserve (denoted in short as “regulation” in this paper), spinning reserve (“spin-
ning”), non-spinning reserve (“non-spinning”), and replacement reserve (“replace-
ment”), which are procured through market clearing processes. Before introducing
the market clearing process, we briefly introduce these four major ancillary services.

Regulation is the use of online generation of well-configured units that can change
output quickly to track the minimal fluctuations, e.g. 1–5 seconds in customer loads
and unintended fluctuations (see [6]). Regulation helps maintain interconnection fre-
quency, minimize differences between actual and scheduled power flows between
control areas, and match generation to load within the control area.

Spinning is the use of online generating equipment which is synchronized to the
grid to increase output responding immediately to changes in power balance, so that
it can be fully available within ten minutes to correct for generation/load imbalances
caused by generation or transmission outages (see [6]).
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Non-spinning can be synchronized and ramped to a specified output level within
30 minutes and operates at a specified output level for at least one hour. Non-spinning
reserve may also be provided from unloaded capacity which meets the 30-minute
response requirements, and is reserved exclusively to be used for this service.

Replacement is the service by which the ISO needs to make sure it has enough
online capacity for a well-functioning balancing market on an hourly basis (see [14]
for details).

Other ancillary services We must remark that there are two other services, voltage
support and black start. These services are not required through a market clearing
process, and therefore, are excluded from the scope of this paper.

1.3 Market clearing process

Ancillary services are procured by the market clearing process which determines
quantities and prices of ancillary services where the quantity supplied equals to quan-
tity demanded. In the past, ISO used to procure ancillary services in the sequential
market in which ancillary services market bids by certain supplier include the overall
available capacity for ancillary services, bid prices and fixed capacities by service
types. This system has been proved less efficient, when closely related services, such
as regulation and spinning are procured in separate markets, and in such cases ineffi-
ciencies can occur (see [2]). Some cases are observed, where higher valued ancillary
services are priced lower (see [1] and [8]). Some ISO, e.g. the Electric Reliability
Council of Texas (ERCOT), has changed the ancillary markets to avoid this unwanted
consequence.

The current experience is called simultaneous co-optimization, which determines
energy and ancillary service schedules at the same time, based on an evaluation of all
the trade-offs involved in resource scheduling. There are several benefits for imple-
menting the co-optimization. First, the co-optimization will minimize total cost of en-
ergy and ancillary services; ensure that all energy and ancillary services requirements
are satisfied; consider trade-offs between a unit producing energy or providing ancil-
lary services; and a market participant will have incentive to submit offers that reflect
their actual marginal costs. We use Example 1.3 to illustrate the co-optimization.

Example 1 (Example for the co-optimization market) Consider that a public agency
needs power and ancillary service. Today, he needs 50 MW electricity and 5 MW
ancillary services. There are two market participants, A and B with the following
capacities and prices respectively. If he purchases them in a sequential order of

MP Capacity (MW) Electricity ($/MW) Ancillary service ($/MW)

A 40 $1 $2

B 20 $3 $6

electricity then ancillary service, the total cost is

$1 × 40 + $3 × 10 + $6 × 5 = $100 (1)
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If he purchases them in a co-optimization market, then the total cost becomes

$1 × 35 + $3 × 15 + $2 × 5 = $90 (2)

Thus, the co-optimization market will reduce the overall cost of the public agency.

The prices of ancillary services determined by the market are called market clear-
ing price (MCP) and we will use this term throughout this paper. It is also called
equilibrium price in other literature. Suppliers who bid to provide ancillary services
must bear various technical operating characteristics. Each bid consists of a capacity
price ($/MW) and quantity (MW). The amount of awards of each ancillary service
increases with their capacity price. All markets are cleared and suppliers are given
the MCP and how much the capacity is accepted (see [17] and references therein).
For each ancillary service type, the MCP is the value when demand meets aggregated
system-wide offer of a specific ancillary service type. Since there are hundreds of
suppliers and the MCPs are determined by all the bids submitted, individual bid will
not significantly change the service type MCP. The MCP is systemically discussed in
the literature (see [4, 15, 16] and references therein).

For the ancillary services market, the MCP is determined by the partial equilibrium
(PE), which is a type of economic equilibrium, where the clearance on the market of
some specific goods is obtained independently from prices and quantities demanded
and supplied in other markets. In the ancillary services market, the ancillary services’
demand and supply curves are well isolated from other alternatives. The reason is
obvious that there is no much alternative available to replace the ancillary services,
although, markets do not operate in a vacuum. Factors other than prices and capaci-
ties interact in complex ways to affect the procurements of the ancillary services. The
political and cultural systems, electricity distribution, and innovative techniques place
the contribution of the equilibrium analysis in a broader context. In particular, in a
world of uncertainty and conflicting interests, analysis does not automatically trans-
late into decision making. The insights derived from the partial equilibrium must be
integrated with these broader considerations. The emphasis is on developing an ap-
proach to understanding and assessing the problems and using the analysis as an aid
to decision making.

We present the PE analysis as the follow. Under the abundant conditions, the sup-
ply curve sets the price and the demand curve determines the amount of ancillary
service supplied (see Fig. 1 left) where the term OR requirement means the necessary
capacity of operating reserves. Likewise, under the scarcity conditions, the demand
curve sets the price and the supply curve determines the amount supplied (see Fig. 1
right). Our partner, ERCOT, has the operating data to confirm the existences of sup-
ply curves. For example, the supply curves for the non-spinning service on 12:00
am–1:00am, November 10, 2010 are presented to illustrate both abundant (left) and
scarcity (right) conditions respectively in Fig. 2. Solving PE model at the ISO level
would address the market clearing price, and might provide some results on the dis-
tribution of the prices. However, we will not use the PE model for individual market
participant’s ancillary services capacity allocation decision because the MCP is de-
termined at the ancillary services market where the individual market participant’s
allocation decision is less likely to impact the market clearing process significantly.
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Fig. 1 Partial equilibrium under abundant (left) and scarcity (right) conditions

Fig. 2 ERCOT’s sample supply curves

All awarded offers would be paid at MCP, due to the commonly adapted paid-
by-clearing mechanism. Under this system, the price of ancillary service is equal to
the opportunity cost of non-operating generators (see [2]). This mechanism is formu-
lated by federal regulations, in order to regulate the ancillary services market and to
encourage suppliers to lower down their generators’ variable cost. Given an energy
price and the suppliers’ variable cost, the opportunity of not operating the generator
becomes the cost of ancillary services. Thus, suppliers with a low variable cost will
have a lower cost of ancillary services. In a competitive market environment, there
is no reason to place greater bid price because all the winning bids would be paid at
MCP regardless the bid price previously placed. When a bid price greater than the
cost is placed, the supplier has to take the risk of losing the contract. To avoid these
risks, a market participant usually place bids at their generators’ opportunity costs.

1.4 Optimization models for the market clearing process

There are two optimization problems for both market participants and ISO. For a mar-
ket participant, the firm usually has a fixed amount of generator capacity for ancillary
services. The firm needs to determine the capacity allocation plan to pursue better
profit prior to the market clearing process. Thus, this is formulated as resource alloca-
tion problem under uncertainty by stochastic programming with recourse. However,
stochastic programming model with recourse requires the possession of the distri-
butional information which is usually, unfortunately, unavailable or inaccurate at the
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best. Although there are seasonal trends from the historical data, it is extremely diffi-
cult to estimate such demands accurately. We thereby propose a heuristic named “re-
source reservation” to pursue higher expected revenue and satisfactory performance
in terms of revenue under the worst case scenario. Meanwhile, the ISO needs to
determine the total amount of ancillary services to ensure satisfactory system relia-
bility at a certain probabilistic level. Thus, the model for ISO is formulated as chance
constrained optimization. Both problems have different objectives. The market par-
ticipant capacity allocation plan is aimed to maximize the firm profitability and the
ISO total ancillary services amount is to pursue better system reliability.

The current practices on these optimization problems are rather deterministic. For
the market participant’s capacity allocation plan, the firm will simply allocate all the
capacities to the ancillary service with the most promising projected prices. Similarly,
the ISO estimates the required total ancillary service amounts from historical data
with seasonal adjustments. Both solutions totally ignore the randomnesses during the
MCP and they are heavily relying on the projections, which could be incomplete,
erroneous, or wrong. Under the less satisfactory projections, the resulting optimal
solution would be more likely to be problematic. As a solution, some optimization
techniques which attempt to tackle the various uncertainties have been developed
since the 1950s (see [13] and references therein). In many cases, the stochastic op-
timization models have shown the advantage over the deterministic models both nu-
merically and theoretically.

The obstacle on the way of deploying stochastic models is primarily computa-
tional concerns. Comparing with the simple and computationally efficient determin-
istic models, the stochastic models, however, seem to be complicated in formulation,
and demand more time and computational expenses. In this paper, we model both
problems with strong uncertainties as convex optimization problems and thus, we
employ computationally efficient solvers to obtain optimal solution within a timely
manner. We organize the remaining part of the paper as follows. We propose the
stochastic models for the market participant’s capacity allocation planning problem
in Sect. 2 with our novel “resource reservation” method. We propose the ISO’s to-
tal ancillary services amount problem in Sect. 3 and solve it by an approximation
scheme. We show the merit of proposed stochastic models by the real operational
data from ERCOT in Sect. 4 and the results suggest that our proposed method would
yield better revenue for a market participant and more reliability for ISO. We con-
clude our research in Sect. 5.

2 MP’s ancillary service capacity allocation planning problem

The purpose of proposed models is to determine bid quantities for multiple ancil-
lary services from a capacity-limited supplier, who is a price-taker. The bid prices
for these services are determined by the opportunity cost of not operating generator,
and thus the bid prices are largely fixed. When the supplier wins the bid, the service
will yield revenue at MCP. If we know market clearing prices for each ancillary ser-
vice type, it is trivial that the MCP will allocate all the capacity to the most highly
paid services. In reality, neither MCPs nor their distributional information have been
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Fig. 3 March 2010 market clearing price at ERCOT

Fig. 4 April 2010 market clearing price at ERCOT

available until the auction is closed. Thus, before formulating the model by stochastic
programming, we need to address the issue that how to properly model the market
clearing price in Sect. 2.1.

2.1 Market clearing price modeling

In order to quantitatively model the market clearing price, we acquire real-world data
from ERCOT. ERCOT market first opened in July 2001. In September 2005, ERCOT
modified the procuring process to simultaneously procure all the ancillary services
in the day-ahead manner, with the objective to minimize the total ancillary services
procurement costs.

We notice that the MCPs are constantly changing in both numerical values and
distributions. In Fig. 3, we present the MCP’s histogram, quantile comparison plot
against normal and χ2 distributions. We repeat the plotting in Fig. 4 on ERCOT’s
April MCP data. It can be observed that the histograms are substantially different. We
also tried other commonly used distributions such as exponential and Weibull with
the similar conclusion that the MCPs are constantly changing in terms of numeri-
cal values and best-fit distributions and none of known distributions can be properly
assumed as model inputs.

Table 1 shows hourly summary statistics of price dispersion characteristics for the
ancillary services’ MCP. We use the following abbreviations: SD—Standard devia-
tion; RT—Real-time market; DA—Day-ahead market; and CoV—Coefficient of Vari-
ation. Both variations and ranges reflect the strong uncertainty involved. The MCP
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Table 1 Hourly MCP summary statistics for September, 2010

Max Average Minimum SD CoV

Regulation-DA $45.38 $11.04 $2.75 $5.13 46.50%

Spinning-DA $24.97 $2.96 $0.38 $3.28 110.52%

Non-spinning-DA $9.00 $1.08 $0.38 $0.86 79.94%

Regulation-RT $125.78 $12.51 $2.34 $12.46 99.65%

Spinning-RT $87.45 $2.26 $0.18 $6.37 281.31%

Non-spinning-RT $48.41 $1.02 $0.18 $2.54 249.28%

Fig. 5 Day ahead market MCP differences

differences on the real time market and the day ahead market are strongly uncertain
as well. We illustrate the operational data for the regulation service MCP differences
in Fig. 5.

Clearly, all the above evidences suggest that we will inevitably encounter immense
difficulty when estimating the general distributional information for the MCP on both
the day-ahead and the real-time markets. Thus, assessing the distribution of random
variables in the ancillary services capacity allocation becomes a lofty goal but diffi-
cult to achieve. Under this circumstance, we realize that the jump diffusion techniques
may be suitable to build optimization models for the ancillary services capacity al-
location. Nevertheless, the current practice at the ISOs are primarily based on the
linear/nonlinear optimization and PE analysis, and we would like to study the jump
diffusion based optimization as our future topics. Based on the above observation,
we conclude that MCPs are constantly changing from time to time and should not be
assumed any specific distribution.
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2.2 Stochastic programming formulation

Consider a market participant providing n ancillary services from m generators by
distinct locations with a fixed capacity c := [c1, . . . , cm]′. Since the market clear-
ing prices are constantly changing and highly unpredictable, the market partici-
pant usually place K pre-determined bid prices pijk , i = 1, . . . , n, j = 1, . . . ,m,
k = 1, . . . ,K . The decision variables are the amount of capacities allocated to an-
cillary services at distinct locations with distinct bid prices, xijk . The demands on
these ancillary services are random variables ζijk . Thus, the ancillary service capac-
ity allocation is

max
x

n∑

i=1

m∑

j=1

K∑

k=1

pijkxijk

subject to
n∑

i=1

K∑

k=1

xijk ≤ cj , i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . ,K (3)

xijk ≤ ζijk (4)

which can be equivalently re-formulated as a nonlinear optimization:

φ(c) := max
x

{
n∑

i=1

m∑

j=1

K∑

k=1

pijkE
[
min(xijk, ζijk)

] :
n∑

i=1

K∑

k=1

xijk ≤ cj , j = 1, . . . ,m

}

(5)
and φ(·) : R

m → R is the optimal function.
The model (5) will provide a bidding capacity allocation plan for ancillary ser-

vices before the MCPs are revealed. The solution is the fixed amount of capacity
to multiple services and implementing this solution directly will be sub-optimal,
because the result will “backfire” the revenue. The ancillary service market is an
unanimously paid (so called “paid by clearing”) market. In this market, all winning
offers are paid at MCP. This has become a regulation code by North American Elec-
tric Reliability Corporation (NERC). For instance, when finalized MCP is between
bid prices pij (κ−1) and pijκ , the allocation, xijk , will be unsold and the capacity of∑n

i=1
∑m

j=1
∑κ−1

k=1 xijk will be procured at MCP. The optimal solution is to allocate
as much capacity as possible to the ancillary service with the greatest MCP. Never-
theless, implementing the solution from (5) may lead to lower revenue.

We need to apply a post optimization treatment, named nesting, which suggests
that the ancillary services with higher MCP will have higher priority in acquiring
the fixed generator capacity. Under the current ERCOT market clearing process, the
market participants can integrate the nesting operation into their capacity allocation.
We illustrate this mechanism by the following example. Consider a supplier, which
provides three ancillary services, i.e. regulation, spinning, and non-spinning with to-
tal capacity of 100 MW. Regulation, spinning, and non-spinning services’ nominal
MCPs are ($25,$20,$15) and the optimal solution of model (15) is (30,40,30) MW
respectively. Without nesting, the supplier will place bids for three services as the
following,
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• Regulation bid, 30 MW at $10 per MW.
• Spinning bid, 40 MW at $10 per MW.
• Non-spinning bid, 30 MW at $10 per MW.

When implementing the above algorithm, the supplier will place three flexible bids.

• Regulation bid, 30–100 MW at $10 per MW.
• Spinning bid, 40–70 MW at $10 per MW.
• Non-spinning bid, up to 30 MW at $10 per MW.

When the realized MCPs are $25,$20,$15, nesting will not affect the revenue gen-
erated by both methods. However, when the realized MCPs are $15,$25,$18, the
revenue when nesting is excluded will be

$15 × 30 + $25 × 40 + $18 × 30 = 1990

and the revenue with nesting becomes

$15 × 30 + $25 × 70 + $18 × 0 = 2200 > 1990

In Sect. 4, we show that the nesting mechanism will outperform the non-nesting
method by the real-world data based simulations.

This model is a typical stochastic programming which can be handily solved as
long as the distributional information of ζ is available. However, the estimation of
ζ could be very rough if it is not worse. The underlying distribution of model (5)
would be substantially different in reality and consequently, the obtained solution
becomes problematic. Thus, this problem becomes stochastic programming with sta-
bility issues and it is usually a difficult problem. Thanks to the “paid by clearing” of
the market clearing process, it is possible for us to develop a heuristic to place bids
without ζ ’s distribution information.

2.3 Resource reservation heuristic

We will present a method “resource reservation” (RR) as a practical heuristic for
the stability issue of the resource allocation problem. Since this method can also be
applied to other resource allocation problems and we need to cite theoretical results
from past literature to justify this heuristic, we adopt the standard formulation of
stochastic programming as follows:

min f0(x) + E
[
g(x, ξ)

]

subject to Ax ≤ b (6)

for the sake of simplifying notation. For the above model, the random variable x

is on (�, F ,P) where P is the underlying, but rough estimation of distributional
information of ξ . A ∈ R

m×n, and functions g : R
n × � → R, f0(x) : R

n → R are
convex with respect to x. We are interested in the model performance under the real
distribution of ξ is another measure, Q. For the problem in this paper, we can assume
that f0(x), g(x, ξ) are defined on a compact set and all the constraints Ax ≤ b are
deterministic and nonempty. Let us define
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1. ν(P) := inf{f0(x) + E[g(x, ξ)] : Ax ≤ b}.
2. X∗

ε (P) := {Ax ≤ b : f0(x) + E[g(x, ξ)] ≤ ν(P) + ε}.
3. X∗(P) := X∗

0(P) = {Ax ≤ b : f0(x) + E[g(x, ξ)] = ν(P)}
where ε > 0.

The stability of stochastic programming, in general, is rather difficult. The current
research is about the continuity of the objective function and the Lipschitz property
on the optimal value function. For the discussion of continuity, the distance has to
be selected such that it allows to estimate differences of objective and constraint
function values, and it is optimum adapted to the model. In the literature, a distances
with ζ -structure that are given uniform distances of expectations:

dF (P,Q) := sup
f ∈F

∣∣EP

[
f (ξ)

] − EQ

[
f (ξ)

]∣∣ (7)

In practice, one possible useful quantitative stability result is with respect to weak
convergence of probability measures.

Theorem 1 Let the set {x : Ax ≤ b} be non-empty. Let a sequence of probability
measures {Pn} is weakly convergent to Q and

lim
n→∞dF (Pn,Q) = 0 (8)

Then the sequence ν(Pn) converges to ν(P) and

lim
n→∞ sup

x∈X∗(Pn)

[
inf

y∈X∗(Q)

{‖x − y‖}
]

= 0 (9)

Proof The proof is in [11]. �

The above theorem plays a central role in justifying the stochastic programming
part of our heuristic. Essentially, the resource reservation can be summarized into
to points: first, we need to adaptively incorporate available information to revise the
previous rough estimations on the distributional information of ξ . Thus, we need to
revisit previously placed bids. Second, we need to control the worst case performance.
Since our estimation is never accurate, there is a chance that our plan may lead to poor
performance in terms of the total revenue. Therefore, we propose to reserve a certain
amount of capacities to ensure the market participant’s satisfactory performance in
terms of revenue.

Consider P1 the first estimation on ξ for model (6). As more information revealed,
the estimation on ξ becomes more meaningful. Thus, we assume that the sequence of
underlying probability measures {Pn} which are the estimations of ξ with continuous
“learning”, converges weakly to the real distribution Q. By Theorem 1, the sequence
of optimal values {ν(Pn)} will converges to ν(Q), i.e.,

Pn →w P and ν(Pn) → ν(Q) (10)

and

lim
n→∞ sup

x∈X∗(Pn)

[
inf

y∈X∗(Q)

{‖x − y‖}
]

= 0 (11)
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as n → ∞. Usually, the model (5) under P1 is solved several days earlier and the
bidding plan will be revisited multiple times prior to the formal placement to incor-
porate available information as much as possible. Although the estimation of ξ has
been updated towards the true distribution, the uncertainty during the daily market
is still considerably significant. On the other hand, when bids are placed at ancillary
services market, the market participant can not further revise them. Thus, the placed
bids should also control the performance in terms of revenue under the worst case
scenarios.

To control the performance in terms of revenue under the worst case, a robust op-
timization (RO) model is suitable because RO method does not without assuming ξ ’s
distributional information. In some articles, RO model is described as a quantitative
approach to control loss under the worst scenario and a RO model might seem overly
conservative because of the term, the worst scenario. We need to elaborate that worst
scenario does not mean the parameters are all “bad” as they could be. RO models
take into account an uncertainty set, which reflects the fact that the extremely worst
values will not simultaneously occur.

Rather than modeling the demands on pre-determined bid prices, we model the
MCP as unknown-but-bounded random variables, i.e. pij > 0 such that pij ∈ [p∗

ij −

pij ,p

∗
ij + 
pij ] where p∗

ij is the nominal or promising MCP of the ith ancillary
service at j th location and 
pij > 0 is the range of corresponding price range. We
assume p∗

ij are distinct and we define p := [p11; . . . ;pij ; . . . ;pmn] be a mn × 1
dimensional MCP vector. The realized MCP is modeled as

pij = p∗
ij + uij
pij , i = 1, . . . , n, j = 1, . . . ,m, where ‖u‖ ≤ θ (12)

where u := [u11; . . . ;uij ; . . . ;umn] and ‖·‖ is the norm of u. Using �2 norm, the set
for possible MCPs is an ellipsoid,

U θ =
{

p

∣∣∣∣
n∑

i=1

m∑

j=1

(pij − p∗
ij )

2

θ2
p2
ij

≤ 1

}
(13)

The ancillary capacity allocation problem is

max
[yij ;]

{
n∑

i=1

m∑

j=1

pij yij :
n∑

i=1

yij ≤ cj , j = 1, . . . ,m,p ∈ U θ

}
(14)

Theorem 2 Model (14) with general ellipsoidal uncertainty set can be converted into
a conic quadratic program (15) for some θ ≥ 0.

min

{
θ

√√√√
n∑

i=1

m∑

j=1


p2
ij y

2
ij −

n∑

i=1

m∑

j=1

p∗
ij yij

∣∣∣∣
n∑

i=1

yij ≤ cj , j = 1, . . . ,m

}
(15)

Proof We can re-write the model (14) into

min
y

{
t

∣∣∣∣ −
n∑

i=1

m∑

j=1

pij yij ≤ t,

n∑

i=1

yij ≤ cj , j = 1, . . . ,m

}
(16)
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The constraint −∑n
i=1

∑m
j=1 pij yij ≤ t for p ∈ U θ is

−
n∑

i=1

m∑

j=1

pij yij = −
n∑

i=1

m∑

j=1

p∗
ij yij −

n∑

i=1

m∑

j=1

uij
pij yij ≤ t

⇐⇒ max‖u‖≤θ
−

n∑

i=1

m∑

j=1

uij
pij yij ≤ t +
n∑

i=1

m∑

j=1

p∗
ij yij

⇐⇒ θ

√√√√
n∑

i=1

m∑

j=1


p2
ij y

2
ij ≤ t +

n∑

i=1

m∑

j=1

p∗
ij yij

⇐⇒ θ

√√√√
n∑

i=1

m∑

j=1


p2
ij y

2
ij −

n∑

i=1

m∑

j=1

p∗
ij yij ≤ t (17)

We remove t and we reach our conclusion by formulating model (15). �

RO model is designed to provide a robust solution under some less favorable sce-
narios which are modeled by the uncertainty set. When θ = 0, RO model becomes a
linear programming with nominal parameters. When θ = 1, U θ becomes the largest
volume ellipsoid contained in B := {p| |pij − p∗

ij | ≤ 
pij , i = 1, . . . , n} and when

θ = √
n, U θ becomes the smallest volume ellipsoid contains B. Thus, the value of

θ would be understood as a trade-off between less risk averse and more risk averse.
A greater θ will lead to a larger ellipsoid or feasible region which leads to more
conservative decision. Since we are allocating n = 3–6 ancillary services, we thus
set θ ∈ [0,2.5] (

√
3 = 1.732,

√
6 ≈ 2.449) under various situations for the ancillary

service capacity allocation.
Suppose model (15)’s solution be y∗ ∈ R

mn and model (5)’s solution be x∗ ∈
R

mnK . y∗ has a unique meaning which is the necessary amount of capacities, of
course with certain θ , to ensure a satisfactory performance in terms of revenue. x∗ is
the solution to maximize the expected revenue. Neither of these two solutions should
be placed as bids for ancillary service. Given the fact that the estimation on ζ could
be incomplete, then placing ancillary service bids by x∗ could be questionable. Like-
wise, the solution from RO model is rather conservative. Although under the worst
case, the performance in terms of revenue will outperform other approaches, its per-
formance by average could be poor. Since ancillary service bids are daily events for
market participants, the decision makers are more concerned about the performance
in terms of revenue by average.

In order to obtain a balanced bidding plan for market participants, we present
our heuristic named “resource reservation” which is based on the idea of reserving
a certain amount of capacities. In the ancillary service capacity allocation problem,
the resource reservation heuristic requires the market participant to place two bids:
the regular bids and the must-win bids. The purpose of regular bids is to pursue
maximized expected revenue and the must-win bids are to ensure the performance in
terms of revenue under the worst scenario.
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We determine the capacities for the regular bids by the following: let

zij := min

{
K∑

k=1

x∗
ijk, y∗

ij

}
∈ R

m (18)

and
n∑

i=1

zij , j = 1, . . . ,m (19)

would be the capacity being allocated to the regular bids. Usually, the market partic-
ipant’s bid prices are pre-determined pijk .

cj −
n∑

i=1

zij (20)

would be the capacity being allocated to the must-win bids. The market participant
will place the must-win bids with significantly low bid prices to ensure winning the
auction. Fortunately, due to the paid by clearing process, the capacity for the must-
win bids will be paid at the finalized MCPs. The allocations for n ancillary services
for both regular and must-win bids are calculated by solving φ(

∑n
i=1 zij ) and φ(cj −∑n

i=1 zij ) respectively.
The resource reservation method for the ancillary service capacity allocation

heuristic can be described as follows,
Step 1. Initializing the resource reservation heuristic several days prior to the market

opening and continuously update the estimation of demands, i.e., ζ , to pursue
more accurate estimation by adaptively incorporating available information.

Step 2. Solve φ(c) for x∗ and solve (16) for y∗.
Step 3. Calculate zij = min{∑K

k=1 x∗
ijk, y

∗
ij }.

Step 4. Solve model (5) with available capacities at m distinct locations,
∑n

i=1 zij ,
i.e., calculating φ(

∑n
i=1 zij ) for the regular bids.

Step 5. Applying nesting for the regular bids obtained in step 4. Nesting is an op-
eration which market participant allows higher MCP ancillary service to
use the capacity previously allocated to other less promising ancillary ser-
vice. Consider a capacity allocation xij , i = 1, . . . , n with expected MCPs
p∗

1j ≤ · · · ≤ p∗
ij ≤ · · · ≤ p∗

nj . Then, a bid with nesting is to allow �th ancil-

lary service to use a capacity of
∑�

i=1 xij .
Step 6. Solve model (5) with available capacities at m distinct locations,

∑n
i=1 zij ,

i.e., calculating φ(cj − ∑n
i=1 zij ) for the must-win bids.

Step 7. Applying nesting for the must-win bids obtained in step 6.
Step 8. Place bids at the ancillary services market.
The resource reservation is rather an idea that reserving well determined amount of
resources will be an effective way to deal with uncontrollable uncertainty, perturba-
tion, and poor estimations. Given the difficulty to pursue a theoretical analysis of this
heuristic, we work closely with our power industry partner to test this heuristic with
real data. The numerical result suggests that this heuristic will considerably improve



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 12667, Article ID: 52, Date: 2012-01-31, Proof No: 1, UNCORRECTED PROOF

« ENSY 12667 layout: Small Extended v.1.1 file: ensy52.tex (Judita) class: spr-small-v1.3 v.2012/01/24 Prn:2012/01/30; 11:34 p. 15/24»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: mathphys»

Ancillary service capacity optimization for both electric power

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

the market participant revenue’s by average performance and bidding performance
under worst case scenario. We present results in Sect. 4.

3 ISO’s total AS amount problem

In the previous section, we assume that the individual market participants have a fixed
amount capacity, c, for allocation, with the goal of better profitability. The Indepen-
dent System Operator (ISO), however, is non-profit organization directly regulated by
state agencies. The goal of ISO is to ensure the overall reliability of the power trans-
mission. The ISO has responsibility to advise market participants to provide service
capacity to meet ancillary services demands. Let the set I, |I | = n be the set of market
participants providing ancillary services and the set D be the set of ancillary services
demands with |D| = m. The market participants have limited service capacity Mi for
i ∈ I to j th ancillary service demand. There is a fixed cost cij for providing ancillary
services from market participant i ∈ I to ancillary service demand j ∈ D. The fixed
cost cij is usually the opportunity cost of market participant and it equals to the ancil-
lary service bid price at the current ancillary services market. The ancillary services
demands are highly random and are represented by a random vector ξ ∈ R

m+. The
decision variables are the capacity from market participant i for the ancillary service
demand j , i.e. xij . Therefore, in order to pursue a system wise minimum cost and
a reliability of 1 − α,α ∈ [0,0.5], we impose the chance constraint in the following
model,

min
x

c′x

subject to P

{∑

i∈I

xij ≥ ξi, j = 1, . . . ,m

}
≥ 1 − α,xij ≥ 0 (21)

∑

j∈D

xij ≤ Mi, i ∈ I (22)

The objective is to minimize the overall ancillary services costs and satisfy the relia-
bility constraints and capacity constraints. Model (21) is usually called the probabilis-
tic programming, and chance constrained optimization. For the sake of consistency,
we will use the term chance constrained optimization in the remaining part of the
paper.

Model (21) is rather a difficult problem in general for many reasons. First, it is
numerically difficult to check whether or not a given point is in the feasible region
rather than Monte Carlo simulation which could be expensive when α = 0.01 or less.
Second, the feasible region is, generally speaking, not convex and resulting conver-
gence could only be a local optimal. We need to remark that the second difficulty
may not occur under further assumptions. When the distribution is logarithmically
concave distributions and F is a set of affine functions, the feasible set of model (21)
is convex (see [10]). The recent research removes the probability measure by explicit,
differentiable if possible, constraints. For example, when the F function can be re-
written into Ax ≥ ξ where A ∈ R

d×n is deterministic matrix. Thus the probabilistic
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constraints

P{Ax ≥ ξ} ≥ 1 − α becomes Fξ (Ax) ≥ 1 − α (23)

The cumulative probability function Fξ of logarithmically concave distributions will
never be concave/convex. However, the log composition function efficiently trans-
forms a non-concave function into a convex function be the following proposition.

Proposition 1 If the distribution Fξ is logarithmically concave, then log(Fξ ) is con-
cave.

The proof is provided in [9]. Thus, model (21) with necessary assumptions, i.e.
logarithmically concave distribution, affine constraints, and right hand side only ran-
dom vectors, is equivalent to the following model

min
x∈X

f (x)

subject to log(1 − α) − log
(
Fξ (Ax)

) ≤ 0 (24)

where A ∈ R
d×n and if we define a g(x) : R

n → R

g(x) := log(1 − α) − log
(
Fξ (Ax)

)
(25)

and g is a convex function in respect to x ∈ R
mn.

Model (5) is a convex optimization problem with computable objective and con-
straints and as such it can be efficiently solved (see [7]). Many optimization methods
combined with Monte-Carlo techniques have been developed to take this advantage.
In this paper, we apply a newly developed method (see [3]) to evaluate the gradient
of g(x) by the polynomial approximation approach and apply the feasible direction
(namely gradient mapping) on the model (25). Although we need to adopt Monte-
Carlo to assess the value of cumulative function, the author proved that the obtained
optimal solution will converge to the true optimal solution with probability by an
argument of epigraph convergence. Numerically speaking, the proposed method can
effectively solve mildly large scale optimization with chance constraints.

The model (21) provides an alternative to the current market clearing process. By
the current experience, market participant’s service capacity for ancillary services is
determined by market participants themselves and ISO will host and regulate the trad-
ing. Although ISO’s goal is to maintain the power transmission reliability, the current
market clearing process does not effectively ensure that the procured capacity will
meet the uncertain demands. The proposed solution, however, will solve this problem
for ISO by suggesting service capacities to market participants. The proposed service
capacity for market participants, if implemented, will inevitably generate meaningful
impacts on the ancillary services market by proactively ensuring the overall system
reliability. We present the supportive numerical results in Sect. 4.2.
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4 Numerical experiment

4.1 Numerical experiments for the MP’s capacity allocation plan

In this section, we will compare the proposed method with an existing method (also
called “Current Method” in this paper). The data we obtained is from the ERCOT
ancillary service MCP in public domain for March and April 2010. The experiment
subjects are:

• Current method: Market Participant submits bids with full capacity in ancillary
services market from regulation, spinning, non-spinning. If the market participant’s
bid wins, all/partial capacity will be subtracted from the available capacity.

• Stochastic programming based method: Market Participant will solve the model (5)
and revisit the previous allocation until the market opening. The bid prices are
usually the opportunity cost of generators.

• Resource reservation without nesting: Market Participant will apply the resource
reservation heuristic in Sect. 2.3 to place the regular and the must-win bids. The
suggested capacities for these bids are calculated by (5) and the market participant
does not apply nesting to the bids.

• Resource reservation with nesting: Market Participant will apply the resource
reservation heuristic in Sect. 2.3 to place the regular and the must-win bids. The
suggested capacities for these bids are calculated by (5) and the market participant
apply nesting to the bids to pursue higher revenue and to control risk.

We use all the previous data to determine the range of MCPs and we will obtain
the optimal solution without any heuristics involved because model (15) is a differ-
entiable, convex optimization on a closed and convex set. Thus model (15) can be
solved within several milliseconds on an average desktop (about 100 G floating point
operations per second). In the simulation part, we model the MCP by continuous
uniform distribution on [p∗ − 
pi,p

∗
i + 
pi] and we use the same pseudo random

number generated by Matlab R2009a to obtain a fair comparison. The numerical ex-
periments are conducted on a Dual-Core Xeon Debian/GNU/Linux workstation with
12 Gb memory. The software is the Matlab R2009a with CVX developed by Stanford
University.

4.1.1 ERCOT AS market, March data

A market participant in the ERCOT tries to allocate a pre-determined capacity for
three major ancillary services, regulation (URS), spinning (RRS) and non-spinning
(NSRS) at one location, i.e., m = 1. Thus, we remove the index j in this experiment.
Another major ancillary service, replacement, is procured differently at ERCOT and
we thereby exclude it from our numerical experiments.

Result in Table 2 shows that adjusting θ will change the feasible region accord-
ingly. Once the feasible region is enlarged, the decision will be more conservative.
When θ = 0.5, resource reservation method does the same as model (18) which al-
locates all the capacity to the most promising service. Since, resource reservation
method is designed to control the resource allocation under the “worst” scenario,
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Table 2 Ancillary service capacity allocation by model (15) based on ERCOT March data

Service name p∗
i


pi θ = 0.5,
capacity (%)

θ = 1,
capacity (%)

θ = 1.5,
capacity (%)

Regulation (URS) $11.03 $4.38 100% 64.5% 45.0%

Spinning (RRS) $7.51 $2.37 0% 35.5% 55.0%

Non-spinning (NSRS) $5.36 $4.63 0% 0% 0%

Fig. 6 Summary of different allocation plans with θ = 0, 0.5, 1, 1.5 without nesting. The horizontal axis
is the replication index and the vertical axis is the revenue by simulation

when θ = 1, resource reservation method starts to allocate resource to multiple ser-
vices to spread the risk. So does the case when θ = 1.5. As θ increases, the service
with less MCP range is more likely to receive increasingly amount of capacity.

To compare and illustrate the performance of all the methods, we simulate the
price of continuous uniform distribution at the range of [p∗ − 
pi,p

∗
i + 
pi] with

100 replications with the same random numbers used. In Fig. 6, the four charts are
about the revenues in the order of current methods, resource reservation method at
θ = 0.5 without nesting, the resource reservation method at θ = 1 without nesting,
and resource reservation method at θ = 1.5 without nesting by 100 replications. The
resource reservation method will greatly reduce the standard deviation as expected
when θ > 1. However, the revenue is lower compared to the current method without
nesting.
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Fig. 7 Summary of different allocation plans with θ = 0, 0.5, 1, 1.5 with nesting. The horizontal axis is
the replication index and the vertical axis is the revenue by simulation

Table 3 Simulation summary for March ERCOT data, replication = 10,000

Setting Mean St. deviation Max Min

Current method $1653.1 $381.7 $2311.5 $997.6

SP based method $1653.1 $381.7 $2311.5 $997.6

RR, θ = 0.5 without nesting $1653.1 $381.7 $2311.5 $997.6

RR, θ = 1 without nesting $1467.3 $257.2 $2012.7 $925.2

RR, θ = 1.5 without nesting $1365.6 $206.5 $1850.7 $882.7

RR, θ = 0.5 with nesting $1653.1 $381.7 $2311.5 $997.6

RR, θ = 1 with nesting $1657.7 $375.7 $2311.5 $925.2

RR, θ = 1.5 with nesting $1660.2 $373.4 $2311.5 $882.7

In Fig. 7, the four charts are about the revenues in the order of current methods,
resource reservation method at θ = 0.5 with nesting, the resource reservation method
at θ = 1 with nesting, and resource reservation method at θ = 1.5 with nesting by 100
replications. The nesting results dominate the current method in terms of revenue and
its standard deviation. If it were applied in the real business, the capacity allocation
plan would lead to a higher revenue with a lower variation, i.e. less risk.

In Table 3, we present the simulation data with 10,000 replications to compare
all the methods. The simulation is based on the same random number. Clearly the
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Table 4 Ancillary service capacity allocation by model (15) based on ERCOT April data

Service name p∗
i


pi θ = 0.5,
capacity (%)

θ = 1,
capacity (%)

θ = 1.5,
capacity (%)

Regulation (URS) $7.71 $7.04 30.9% 34.9% 20.2%

Spinning (RRS) $8.44 $5.62 69.1% 65.1% 35.6%

Non-spinning (NSRS) $3.52 $2.38 0% 0% 44.2%

resource reservation method with/without nesting will reduce the standard devia-
tion. The resource reservation method without nesting controls risk by almost halv-
ing the standard deviation. However, since there is no nesting operation, the rev-
enue is lower as well. The resource reservation method with nesting consistently
outperforms all the other methods in revenue and outperforms the current method
in terms of standard variation as well. We notice the improvement on the revenue
may not be quite significant. Our interpretation on this less significant revenue is
that the regulation (URS) MCP is substantially greater than the other two services.
The overlap between URS and RRS is quite small which means the URS will yield
more revenue. Thus, the resource reservation method will tend to allocate less ca-
pacity for other services (see Table 2). Despite the dominating URS MCP, the re-
source reservation method with nesting still yields a greater revenue and smaller
standard deviation. When URS MCP is not dominating others, the improvement of
applying the resource reservation method with nesting becomes more substantial (see
Sect. 4.1.2).

4.1.2 ERCOT AS market, April data

The same market participant tries to allocate a pre-determined capacity in April.
The experiment settings remain the same as the previous subsection. In Table 4, we
present the capacity allocation plan by the current method and the RR methods. Since
the MCP of URS is not dominating in April, the capacity is well spread out that 44%
of capacity is allocated to NSRS service when θ = 1.5.

In Fig. 8, we illustrate the simulation result with 100 replications by presenting
charts in the order of current methods, resource reservation method at θ = 0.5 without
nesting, resource reservation method at θ = 1 without nesting, and resource reserva-
tion method at θ = 1.5 without nesting. All the illustrations are based on the identical
flow of random numbers and we claim the differences in revenue and standard devia-
tion are meaningful. We draw the same conclusion as the previous experiment that the
resource reservation method will control the risk but lead to a lower revenue without
nesting.

In Fig. 9, we illustrate the simulation result with 100 replications by presenting
charts in the order of current methods, resource reservation method at θ = 0.5 with
nesting, resource reservation method at θ = 1 with nesting, and resource reservation
method at θ = 1.5 with nesting. Clearly, the resource reservation method with nesting
method leads to the best performance in revenue.

In Table 5, we simulate the bidding process with 10,000 replications. In this ex-
periment, there is no dominating MCP, the resource reservation method outperforms



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 12667, Article ID: 52, Date: 2012-01-31, Proof No: 1, UNCORRECTED PROOF

« ENSY 12667 layout: Small Extended v.1.1 file: ensy52.tex (Judita) class: spr-small-v1.3 v.2012/01/24 Prn:2012/01/30; 11:34 p. 21/24»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: mathphys»

Ancillary service capacity optimization for both electric power

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Fig. 8 Summary of different allocation plans with θ = 0, 0.5, 1, 1.5 without nesting. The horizontal axis
is the replication index and the vertical axis is the revenue by simulation

the current method without the help of nesting by up to 7% and reduces the standard
deviation by 37%. The resource reservation method with nesting outperforms the cur-
rent method in terms of revenue by up to 26% and reduce the standard deviation by
up to 29%.

4.2 Numerical results for ISO’s total AS amount problem

We performed computational tests on a probabilistic version of the ISO’s total ancil-
lary services amount problem. We have a set of market participants I, |I | = 40 and a
set of ancillary services demands D with |D| = 20. The ancillary services demands
vector was generated by the multivariate normal distribution with the mean and co-
variance matrix which is suggested by the ERCOT’s historical data. Essentially, any
logarithmic concave and continuous distribution, e.g. Normal, Exponential, etc would
be valid too if it fits the historical data. The cost coefficients are pre-generated con-
stants. We use the Monte-Carlo sampling to evaluate g(x) and ∇g(x) and apply the
feasible region methods to obtain the optimal solution. During the Monte Carlo sam-
pling, all scenarios occur evenly likely with probability 1

N
where N = 10,000 is the

sample size. We obtain the market participants’ service capacity, Mi , i = 1, . . . ,40
from the numerical experiments of market participant’s ancillary services capacity
allocation problem. A matlab based CVX package is used and all experiments were
done on a computer with four 2.4 GHz processors and 12.0 Gb of memory. The im-
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Fig. 9 Summary of different allocation plans with θ = 0, 0.5, 1, 1.5 with nesting. The horizontal axis is
the replication index and the vertical axis is the revenue by simulation

Table 5 Simulation summary for April ERCOT data, replication = 10,000

Setting Mean St. deviation Max Min

Current method $1154.2 $613.6 $2212.5 $100.6

SP based method $1154.2 $613.6 $2212.5 $100.6

RR, θ = 0.5 without nesting $1237.7 $388.9 $2129.5 $336.4

RR, θ = 1 without nesting $1232.8 $385.1 $2134.1 $324.5

RR, θ = 1.5 without nesting $921.4 $232.8 $1562.1 $292.5

RR, θ = 0.5 with nesting $1419.4 $446.4 $2212.5 $336.4

RR, θ = 1 with nesting $1403.9 $450.9 $2212.5 $324.5

RR, θ = 1.5 with nesting $1463.2 $434.3 $2212.5 $372.9

posed chance constraint with α = 0.05 which means the procured ancillary services
capacity will ensure a reliability at 95%.

We compared the proposed method with the market clearing process in which the
capacity allocation xij is determined by the resource reservation method with nest-
ing operation. We summarize the result in Table 6. The results suggest that imposing
the chance constraints will greatly improve the system reliability by up to 35%. Both
chance constrained optimizations take more than 5 hours. Considering their remark-
able social benefit in terms of lifting power system reliability, the occurred compu-
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Table 6 System reliability under different methods for ISO’s total AS demand amount

Data Chance constrained optimization Current market clearing Gap

ERCOT March AS market 95.2% 71.4% 23.8%

ERCOT April AS market 96.1% 60.9% 35.2%

tational cost becomes trivial. Our results will surely guarantee at least 95% system
reliability.

5 Conclusion

In this paper, we use stochastic models to solve the market participant’s capacity al-
location problem and the ISO’s total ancillary service amount problem. We propose
the resource reservation method for a market participant to place both the regular
bids and the must-win bids with different purposes. The regular bids are calculated
by stochastic programming model to pursue higher revenue under the uncertain de-
mands. The must-win bids are to ensure a satisfactory performance under the worst
scenario. Since the estimation of random factors could be incomplete, we will con-
stantly revisit the previously made plans until the trustworthy distributional informa-
tion is obtained. Meanwhile, we need to be prepared under the worst case scenario.
Then we model the MCP as unknown-but-bounded random variables and adopt ro-
bust optimization methods. Thus, our resource reservation is by now a heuristic which
combines the stochastic programming and robust optimization. In order to evaluate
the performance, we conduct our numerical experiments on the real business data
from ERCOT. We use the identical stream of random numbers to compare the per-
formance of all the available methods, including the current methods, the stochastic
programming only method, and the resource reservation method with and without
nesting methods. The numerical experiment shows that the proposed method obtains
a better revenue with a smaller standard deviation. Particularly when no ancillary ser-
vice has a dominating MCP range, the gain by implementing our method is to reduce
up to 29% of standard deviation and increase revenue by more than 26%.

We propose a chance constrained optimization model to determine the ISO’s total
ancillary service amount for a market participant. The proposed model yields two
major impacts to the current ancillary services market. First, the proposed method
suggests a proactive ISO action to pursue better system reliability. Our numerical re-
sults suggest that the proposed method will outperform the current market clearing
process in terms of the system reliability up to 35%. Second, the proposed method
becomes an alternative to the current market clearing process when determining the
proper amount of capacity for individual market participant. Since the coefficients
in the objective is the market participant’s opportunity cost, this market participant
needs to continuously reduce the operational cost to maintain or pursue a lasting ad-
vantage in the competition. Therefore, this central planning feature will help market
participants solely concentrate on technical innovations to reduce the unit ancillary
service cost rather than polishing the ancillary service bidding strategy. All involved
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parties, market participants, ISO, and public will benefit from this proposed research
by taking advantage of significantly improved system reliability.
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