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Abstract—The insertion of communication networks in
the feedback loops of control systems is a defining feature
of modern control systems. These systems are often subject
to unknown inputs in a form of disturbances, perturbations,
or attacks. The objective of this paper is to analyze and
design an observer for networked systems with unknown
disturbances and inputs. The network effect can be viewed as
either a perturbation or time-delay to the exchanged signals.
In this paper, we focus on the time-delay representation of the
network. First, we review an Unknown Input Observer (UIO)
design for non-networked system from the UIO literature.
Second, we derive the dynamics of the UIO-based NCS, also
referred to as Networked Unknown Input Observer (NetUIO).
Third, we design the NetUIO such that the effect of higher
delay order terms are nullified, assuring that the effect of the
unknown inputs on the plant state estimation is minimized.
Fourth, we derive a bound on the maximum allowable time-
delay for the NetUIO. Finally, a numerical example is shown
to illustrate the usefulness of the proposed model.

Keywords—Networked Control Systems, Unknown Input
Observers, NetUIO, Time-Delay Systems.

I. INTRODUCTION AND LITERATURE REVIEW

THE objective of this paper is to analyze and design
an observer for Networked Control Systems (NCS)

with unknown disturbances and inputs. Many modern
control systems are becoming networked, where often a
band-limited network is used as a mean of communication
between sensors, actuators and controllers [1]. Estimators
in general, and observers in specific, use the known plant’s
inputs and outputs to generate estimates for the state
of the plant. The closed loop system is then controlled
through a controller that often use the estimated plant
state to generate control commands.

State-estimators and observers are used in power
networks to precisely estimate the plant state (i.e., the bus
voltages and phase angles), which is crucial for successful
control and operation of the modern smart-grid. The
generated real-time dynamic estimates of the bus voltages
and angles facilitate calculating optimal power flows for
transmission lines [2]. One of the main objectives behind
utilizing state estimators and observers for dynamical
systems is to augment or replace expensive sensors in
a control system [3]. For that and various reasons, the
analysis and design of dynamic robust observers for
linear and nonlinear systems, for systems with known and
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unknown inputs and disturbances have received noticeable
attention in the past few decades.

Luenberger was the first to propose, analyze and design
observers [4]–[6]. The well-known Luenberger Observer
is still utilized for various engineering applications.
Furthermore, observers for systems with unknown
inputs and disturbances, also called Unknown Input
Observers (UIO), have been extensively studied since
the late seventies. The following are some well known
research efforts on UIOs: Bhattacharyya [7], Chang et
al. [8], Chen et al. [9], Chen and Patton [10], Corless
and Tu [11], Darouach et al. [12], Hui and Żak [13]. For
more references on different UIO architectures, we direct
the reader to [3, p. 431].

The study of UIOs is becoming more crucial to
large-scale systems, as these systems are becoming more
susceptible to high-disturbances, faults, cyber and physical
attacks. The design of robust UIOs for systems under
attacks would result in a better estimation of the state of
the plant and thus better control and performance. UIOs
can be used to employ Fault Detection and Isolation (FDI)
mechanisms as proposed by Chen et al. [9]. Teixeira et
al. [14] applied UIOs to design an FDI scheme to analyze
power networks under cyber attacks.

The basic idea behind most FDI schemes is to generate
weighted residual functions for each subsystem or node
which is defined as the difference between the actual
system outputs and the estimated ones [3], as in power
networks. After choosing a suitable dynamic or static
estimation threshold for the error of the residual functions,
faulty nodes are isolated. For example, if a bus in a power
network is continuously generating higher residuals than
the threshold, this bus would be geographically identified
and then physically isolated from the overall network.

II. RESEARCH GAPS AND PAPER OVERVIEW

As mentioned in Section I, observers use the known
plant’s inputs and outputs to generate estimates for
the state of the plant. The closed loop system is then
controlled through a controller that often uses the
estimated plant state to generate control commands.
Observers in different large-scale dynamical systems such
as transportation networks, power plants, and remotely
controlled mobile agents are often distributed. Hence,
the UIO’s inputs (i.e., the plant’s input and output) are
transmitted through a communication network, which is a
key component in modern NCSs. Thus, most observers for
systems with unknown inputs are Networked Unknown
Input Observers (NetUIO).



Most of the developed UIOs in the literature are designed
for non-networked systems as in [7]–[13]. The UIO’s input
is assumed to be transmitted without any disturbances,
perturbations, or time-delays. Since communication
networks are inserted in most decentralized control
systems, the analysis and design observers for networked
systems with unknown inputs becomes a necessity.
The network effect can be either modeled as a
perturbation or time-delay to the transmitted signals.
In [15] and [16], we analyzed the effect of perturbation of
the signals exchanged through communication networks
for decentralized observer-based control for systems with
only known inputs. In [17], we applied a time-delay
analysis for NCSs with applications to power networks,
also for systems with only known inputs.

In this paper, the proposed design targets the time-
delay representations of a network. In Section III, we
review an Unknown Input Observer (UIO) design for
non-networked system from the UIO literature as in [3].
In Section IV we derive the dynamics of the UIO-based
NCS and we design the NetUIO such that the effect of
higher delay order terms are nullified, assuring that the
effect of the unknown inputs to the plant is minimized. In
Section V, we derive a bound on the maximum allowable
time-delay for the NetUIO. Section VI includes numerical
examples to illustrate the usefulness and applicability of
the proposed model. Closing remarks, conclusions, and
future work are presented in Section VII.

III. SYSTEM MODELING AND PROBLEM
FORMULATION

Fig. 1. Networked Unknown Input Observer (NetUIO) Generic Archi-
tecture

The objective of the research presented in this paper is
to study the effect of Unknown Input Observers (UIO)

architecture for networked systems with unknown dis-
turbances. The non-networked UIO architecture used in
this paper is presented in [3]. The generic architecture
considered in this paper is depicted in Figure 1. The input
to the UIO block is the delayed or perturbed version of
the plant’s output (y), that is ŷ, and the delayed version
of the known input u1, that is û1. These two quantities
are assumed to be known to the UIO block. The output of
the UIO is the estimate of the plant state (xp), that is x̂p.
The local controller takes the a reference input (vref ) and
x̂p as inputs. The control law is computed through a linear
state feedback, but this could be changed according to the
application under consideration. The unknown input for
the plant is u2 (unknown plant disturbances, nonlinearities
and actuator faults).

A. Observer Review for Non-Networked Systems with Un-
known Inputs

The observer design and the state estimations for
non-networked systems with unknown inputs used in
this paper is based on a projector operator approach
used in [3]. In this paper, we assume a Linear Time-
Invariant (LTI) class of systems. The modeled plant can
be a linearized representation of a nonlinear plant.

The linearized plant dynamics can be written as:

ẋp = Apxp +B(1)
p u1 +B(d)

p ud +B(a)
p fa

y = Cpxp,

where A ∈ Rn×n is the state matrix, B(1)
p ∈ Rn×m1 is

the input matrix, B(d)
p ∈ Rn×md is the disturbance matrix,

B(a)
p ∈ Rn×ma represents the actuator fault’s matrix, and

Cp ∈ Rp×n is the output matrix. The unknown inputs to
the given system are ud (representing the unknown plant
disturbances and nonlinearities) and fa (actuator fault).
We assume that Ap,B

(1)
p ,B(d)

p ,B
(a)
d and Cp are all

known system parameters. For simplicity, we can combine
the unknown inputs ud and fa into one unknown input
quantity u2. More precisely, u2 =

[
u>d f>a

]> ∈ Rm2 . In
addition, the unknown input matrices B(d)

p and B(a)
p are

combined into B(2)
p ∈ Rn×m2 . The plant dynamics can be

re-written as:

ẋp = Apxp +B(1)
p u1 +B(2)

p u2. (1)

The dynamics of the UIO presented in [3] for non-
networked systems are

q̇ = (I −MCp)

(
Apq +ApMy +B(1)

p u1 (2)

+L(y −Cpq −CpMy)

)
x̂p = q +My, (3)

where M ∈ Rn×p is chosen such that
(I −MCp)B

(2)
p = O and L is an added gain to improve

the convergence of the estimated state (x̂p). The initial
conditions for the observer are q(0) = (I −MCp)x̂(0),
where x̂(0) is an estimate of the initial plant state. Under



the assumption that the pair (Cp,Ap) is detectable, this
observer for non-networked control systems guarantees
that the estimation error (e(t) = xp(t)− x̂p(t)) converges
to zero as t→∞ under mild conditions [3].

As mentioned in the introduction, the objective of
the paper is to analyze the effect of the communication
network on the state and unknown input estimation for an
UIO architecture. To do so, we first rewrite the dynamics
of the observer so that it matches the typical setup of
controllers/observers from the NCS literature. Letting
xc = q, the dynamics of the UIO can be rewritten as
follows:

ẋc = (I −MCp)

(
Apxc +ApMy +B(1)

p u1

+L(y −Cpxc −CpMy)

)
ẋc = Acxc +B(1)

c y +B(2)
c u1,

where

Ac = (I−MCp)(Ap−LCp),B
(2)
c = (I−MCp)B

(1)
P

B(1)
c = (I −MCp)(ApM +L−LCpM).

The addition of the communication network perturbs the
UIO’s inputs (which are y and u1), as the observer uses
the plant’s input and output to estimate the state of the
plant. Hence, the dynamics of the UIO are as follows:

ẋc = Acxc +B(1)
c ŷ +B(2)

c û1, (4)
x̂p = xc +Mŷ. (5)

In this section, we assume that state-feedback control is
used.

u1 = −Kx̂p + vref
u1 = −Kxc −KMŷ + vref . (6)

IV. NETWORK EFFECT AS PURE TIME DELAY

A. Closed Loop Dynamics

In this section, we model the communication
network by a pure-time delay. Precisely, we assume that
ŷ = y(t − τ) and û1 = u1(t − τ), where τ is the time
delay due to the presence of the network in the feedback
loops. To simplify the derivations, we assume that the
communication network is only inserted between UIO
and its inputs and that the reference input (vref ) is set to
zero.

Assuming that the innovation function of the observer
is embedded in the UIO dynamics, we can rewrite the
dynamics of the observer and the controller as in the
typical form of an NCS controller/observer:{

ẋc(t) = Acxc(t) +B(1)
c y(t− τ) +B(2)

c u1(t− τ)
u1(t) = Ccxc(t) +Dcy(t− τ),

(7)

where Cc = −K and Dc = −KM . The plant and the
controller state dynamics can be written as:

ẋp(t) = Apxp(t) +B(1)
p Ccxc(t)

+B(1)
p DcCpxp(t− τ) +B(2)

p u2(t)

ẋc(t) = Acxc(t) +B(1)
c Cpxp(t− τ) +B(2)

c u1(t− τ)
= Acxc(t) +B(1)

c Cpxp(t− τ)
+B(2)

c Ccxc(t− τ) +B(2)
c DcCpxp(t− 2τ)

Combining ẋp(t) and ẋc(t) to find

ẋ(t) =
[
ẋ>p (t) ẋ>c (t)

]>
,

we get, [
ẋp(t)
ẋc(t)

]
= Γ0

[
xp(t)
xc(t)

]
+ Γ1

[
xp(t− τ)
xc(t− τ)

]
+Γ2

[
xp(t− 2τ)
xc(t− 2τ)

]
+ Γ3u2(t),

where Γ0 =

[
Ap B(1)

p Cc

O Ac

]
, Γ1 =

[
B(1)
p DcCp O
B(1)
c Cp O

]
,

Γ2 =

[
O O

B(2)
c DcCp O

]
and Γ3 =

[
B(2)
p

O

]
.

We can now write ẋ(t) as:

ẋ(t) = Γ0x(t)+Γ1x(t−τ)+Γ2x(t−2τ)+Γ3 u2(t). (8)

With longer delays, we can consider the following approx-
imation as in [19] and [20, p. 62]:

ẋp(t− τ) = ẋc(t− τ) = 0, a.e..

Taking the second derivative of x(t) and substituting the
above approximation, we have,

ẍ(t) = Γ0ẋ(t) + Γ3 u̇2(t). (9)

We use the following Taylor series expansion for x(t−τ):

x(t− τ) =
∞∑
n=0

(−1)n τ
n

n!
x(n)(t).

Neglecting the higher order terms, we get an approximated
expression of ẋ(t) in terms of only x(t) and τ as follows:

x(t− τ) = x(t)− τ ẋ(t) + τ2

2
ẍ(t) (10)

x(t− 2τ) = x(t)− 2τ ẋ(t) + 2τ2ẍ(t) (11)

Substituting (9) into (10) and (11):

x(t− τ) = x(t) + (
τ2

2
Γ0 − τ)ẋ(t)

+
τ2

2
Γ3u̇2(t) (12)

x(t− 2τ) = x(t) + (2τ2Γ0 − 2τ)ẋ(t)

+2τ2Γ3u̇2(t) (13)

By substituting (12) and (13) into (8), we can write ẋ(t)
as:

ẋ = (Γ0 + Γ1 + Γ2)x+

(
τ2

2
Γ1Γ3 + 2τ2Γ2Γ3

)
u̇2

+

(
−τΓ1 +

τ2

2
Γ1Γ0 + 2τ2Γ2Γ0 − 2τΓ2

)
ẋ+ Γ3 u2.



Rearranging, we get

ẋ(t) = Ψ0x(t) +Ψ1u̇2(t) +Ψ2u2(t) (14)

where
Ψ0 = Θ (Γ0 + Γ1 + Γ2) ,

Ψ1 = Θ

(
τ2

2
Γ1Γ3 + 2τ2Γ2Γ3

)
,Ψ2 = ΘΓ3

Θ =
(
I −

(
−τΓ1 +

τ2

2 Γ1Γ0 + 2τ2Γ2Γ0 − 2τΓ2

))−1
.

B. Time-Delay Based Networked UIO Design

In this section, we design the controller and the
observer to minimize the effect of the unknown input
from the global dynamics of the closed loop system as
well as the higher order time-delay terms.

Recall that

Γ2 =

[
O O

B(2)
c DcCp O

]
and Γ3 =

[
B(2)
p

O

]
.

Then, Γ2Γ3 =

[
O

B(2)
c DcCpB

(2)
p

]
. The matrices

B(1)
p ,B(2)

p and Cp are given matrices. Also, B(2)
c =

(I − MCp)B
(1)
p and Dc = −KM . In addition, the

UIO for the non-networked system is designed with the
following restriction on B(2)

p as in [3]:

(I −MCp)B
(2)
p = O.

We can design the observer such that the higher order
delay terms are nullified and the effect of unknown input
is minimized. Precisely, we can set Γ2Γ3 = O, then we
must have B(2)

c DcCpB
(2)
p = O, or

B(2)
c Dc = −(I −MCp)B

(1)
p KM = O.

Hence, we have the following matrix equations to solve:

(I −MCp)B
(1)
p KM = O (15)

(I −MCp)B
(2)
p = O. (16)

We don’t have much control over K as this depends
on what needs to be achieved through the linear state
feedback. Hence, the design variable here is M . All other
matrices involved in the above system of equations is
assumed to be given. Letting R = B(1)

p K ∈ Rn×n, we
can rewrite the above system as:

RM = MCpRM (17)

B(2)
p = MCpB

(2)
p . (18)

Assuming that M has full rank, then M †M = I , and (17)
can be written as R = MCpR. Rearranging, we have:[

M O
O M

] [
W 1

CpR

]
=

[
E1

R

]
, (19)

or

I2 ⊗M

[
W 1

CpR

]
=

[
E1

R

]
,

where Oa×b denotes a matrix of zeros ∈ Ra×b and,

W 1 =
[
CpB

(2)
p Op×(n−m2)

]
,E1 =

[
B(2)
p Op×(n−m2)

]
.

We can write (19) as,

(I2 ⊗M)W = G, (20)

where M ∈ Rn×p, (I2⊗M) ∈ R2n×2p,W =

[
W 1

CpR

]
∈

R2p×2n and G =

[
E1

R

]
∈ R2n×2n. Solving (20) provides

a solution for (15) and (16).

V. STABILITY ANALYSIS OF THE NETUIO

After designing the NetUIO, the simplified dynamics
of the closed loop system with a feedback controller can
be written as:

ẋ(t) = Ψ0x(t) +Ψ1u̇2(t) +Ψ2u2(t) (21)

where

Ψ0 = Θ (Γ0 + Γ1) ,Ψ1 = Θ

(
τ2

2
Γ1Γ3

)
,

Ψ2 = ΘΓ3, Θ =

(
I −

(
−τΓ1 +

τ2

2
Γ1Γ0

))−1
.

In this section, we analyze the stability of the UIO-based
NCS with the feedback controller. First, recall that the non-
networked UIO is designed such that the closed loop sys-
tem is stable. Hence, the non-networked system (i.e., with
τ = 0) is asymptotically stable for any bounded unknown
input. The dynamics of the non-networked system for the
UIO can be written as:

ẋ(t) = (Γ0 + Γ1)x(t) + Γ3u2(t) = Γx(t) + Γ3u2(t).
(22)

where Γ is Hurwitz by the design assumption of the non-
networked UIO.

Theorem 1. For the UIO-based NCS in (21) and for a
Hurwitz Γ, we have P = P> � O, is the solution to the
Lyapunov matrix equation

Γ>P + PΓ = −2Q,

for a given Q = Q> � O and if the UIO design
parameter (M ) satisfies (20), and if ‖u̇2‖ ≤ ρ‖x‖ and
‖u2‖ < µ‖x‖, where ρ, µ > 0, then if the network induced
delay satisfies the following inequality,(
µ‖PΓ1Γ0Γ3‖+µ‖PΓ2

1Γ3‖+‖PΓ1Γ0Γ‖+2‖PΓ2
1Γ‖

+ρ‖PΓ1Γ3‖

)
τ2 +

(
−2µ‖PΓ1Γ3‖ − 2‖PΓ1Γ‖

)
τ

+

(
2µ‖PΓ3‖ − 2λmin(Q)

)
< 0

then the origin is a globally exponentially stable equilib-
rium point of the NetUIO.

For brevity, we omit the proof of Theorem 1.



VI. NUMERICAL EXAMPLE

In this section, we illustrate the usefulness of our
proposed UIO-based NCS design with a numerical exam-
ple. We show the UIO design for non-networked (Sec-
tion VI-A) and networked systems (Section VI-B) for a
single input single output (SISO) system.

A. Single Input Single Output UIO Design Example for A
Non-Networked System

In this example, we review the UIO design based
on [3]. We follow the exact algorithm to build the non-
networked UIO. Then, we simulate the networked system
with the UIO. The given system example is a simple
one known input, one unknown input, one output LTI
system (i.e., n = 3,m1 = 1,m2 = 1, p = 1). The system
is modeled by:

A = Ap =

[−5 3 0
4 −10 4
0 0 −4

]
, B1 = B(1)

p =

[
1
0
2

]
,

B2 = B(2)
p =

[
2
1
2

]
, & C = Cp = [2 4 −1] .

Before analyzing the networked UIO, we first follow the
design algorithm for the UIO in [3] and find the design
parameters for the non-networked system. After that, we
map the non-networked UIO to a general NCS form by
computing Ac,B

(1)
c ,B(2)

c as follows:

Ac = P̃ (Ap −LCp),B
(2)
c = P̃B

(1)
P

B(1)
c = P̃ (ApM +L−LCpM).

We set the initial plant state to xp(0) = [−10 10 8]
>, the

initial UIO state to

xc(0) = (In −MCp) [12 15 20]
>
= [−10 4 4]

>
,

the unknown input u2(t) = 0.5 sin(t). Figure 2 shows
a very good estimation for the plant states for the non-
networked UIO.

B. UIO Design Example for the Networked System

After finding the UIO parameters for the non-
networked system as in Section VI-A, we follow the steps
mentioned in Sections III and IV to map the UIO to the
typical NCS configuration and then follow Algorithm 1.

Since Ap is already stable, a simple solution for (20)
would be setting K = O, hence the design matrix M
would be:

M = B(2)
p (CpB

(2)
p )† = [0.3333 0.1667 0.3333]

>
.

Choosing the same known and unknown inputs and
initial states for the networked observer and plant as
in Section VI-A, we simulate the NetUIO. Figure 3
shows the state trajectories and estimation error of the
networked system for τ = 0.17 sec. The plots show that
the networked system is stable for this small value of
the time-delay. The estimation error for the networked
system converges to zero, albeit exhibiting more transient
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Fig. 2. UIO State Estimation For Non-Networked System (τ = 0)

Algorithm 1 NetUIO Design and Stability Analysis
1: Solve for M in (20):

(I2 ⊗M)W = G,

where W and G are defined in Section IV-B.
2: Given Ap,Ac,B

(1)
p ,B(2)

p ,B(1)
c ,B(2)

c ,Cp,Cc and
Dc, compute Γ,Γ0,Γ1,Γ2 and Γ3

3: Find a matrix P = P> � O, a solution to the
Lyapunov matrix equation

Γ>P + PΓ = −2Q

4: Analyze the stability of the networked system:

ẋ(t) = Ψ0x(t) +Ψ1u̇2(t) +Ψ2u2(t)

by varying the time-delay (τ )
5: Establish an experimental bound on τ that guarantees

the stability of the UIO-baed NCS
6: Compare the theoretical bound on τ given by the

quadratic polynomial in Theorem 1 and the experi-
mental one computed in Step 5

response than the non-networked case due to the network
effect. Other simulations have showed that as τ increases,
the estimation error diverges. Setting a threshold for the
estimation error to be emax = 10, the minimum value of
τ that would violate this estimation threshold constraint
is τmax

exper. = 0.18 sec.

Recall that the bound on τ would guarantee the stability
of the UIO-based NCS is given by Theorem 1. Evaluating
the coefficients for the second degree polynomial (in
terms of τ ) for the bound, we get:

(2.308 · 107)τ2 − (4.4712 · 106)τ − 0.4410 < 0.

For this inequality to hold, we need

0 < τ < τmax
theor. = 0.1937 sec.
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Fig. 3. UIO State Estimation for the NetUIO (τ = 0.17 sec)

Hence, the derived upper bound (τmax
theor. = 0.1937 sec.)

for the time-delay that guarantees the convergence of the
estimation error for the NetUIO is close to the actual
one (τmax

exper. = 0.18 sec.)

VII. CONCLUSIONS AND FUTURE WORK

Albeit it provides many advantages such as the ease
of use, flexibility, and utilization of more efficient control
laws, the addition of a communication network in the feed-
back loops of control systems complicates their analysis
and design. In this paper, we discuss an Unknown Input
Observer-based design for Networked Control Systems.
The determination of an upper bound on the network
induced time-delay is significantly important in the design
of an NCS so that a suitable sampling period is chosen.
When the time-delay is greater than the sampling period in
an NCS, then the global stability of the overall NCS can
not be guaranteed as discussed by Kim et al. [23]. The
results show that the derived bound for UIO-based NCS is
accurate. In our future work, we plan to consider other UIO
architectures and Sliding Mode Observers for networked
systems. We also want to apply the proposed model of
the NetUIO for power networks where fault detection and
isolation techniques can be employed to better monitor the
usually networked power systems.
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