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Abstract— This paper revisits a link transmission model that
is designed for nationwide air traffic prediction. The prediction
accuracy relies on the estimate of traversal time of each
link, which is obtained through statistical analysis of historical
trajectories. As the most straightforward approach, the average
traversal time is often used in the model implementation. But
the outliers inherent in the data samples can easily distort
the estimate. To address this issue, this paper proposes to
use the mode of the traversal times which corresponds to the
value reaching the peak of the probability density function
of data samples. The continuous probability density function
is estimated using a non-parametric approach, kernel density
estimation. As the mode is resistant to the outliers, using the
mode to parameterize the link transmission model is a more
robust approach. Simulations based on historical traffic data of
three months show that, in comparison with the conventional
mean approach, use of the kernel density estimation in the
sector count prediction leads to a 6% reduction in modeling
errors.

I. INTRODUCTION

Air traffic forecasting plays a more and more important
role in air traffic management in the face of ever-increasing
traffic demand. One way to predict the traffic is by propa-
gating forward each aircraft trajectory through sophisticated
flight dynamics [1]. However, for the Air Traffic Control Sys-
tem Command Center who concern more about a high level
picture of traffic, detailed modeling of individual aircraft is
not necessary and computationally inefficient. Aggregating
trajectories into flows and taking advantage of flow properties
of the traffic provide an alternative in predicting the traffic.

Traffic can be aggregated at different levels. The Linear
Dynamic System Model (LDSM) proposed by Sridhar et al.
formulates traffic at an Air Route Traffic Control Center
(simply denoted as Center hereafter) level [2]. It forecasts
aircraft count in each Center of the National Airspace System
(NAS) with a time interval of 10 minutes. It is scalable
to focus on a smaller airspace volume, such as a Center
that consists of several Sectors. A flow-based model was
proposed in [3], which was later improved to a more efficient
one called Link Transmission Model (LTM) [4]. In the LTM,
a flight path is defined as a sequence of directed links passing
through sectors. An aircraft is assumed to traverse each of
the links within an estimated traversal time such that the state
of each link can be easily tracked. As a result, aggregation
of links in each sector yields a traffic forecast for that sector.
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Aggregate models must be parameterized before starting
the time evolution of their system dynamics. For instance, in
the implementation of LDSM, in order to estimate the inflows
and outflows of each Center, the transition probabilities at
the Center boundaries must be known [2]. Similarly, the
nominal traversal times of links must be specified in the
LTM to initialize the model [4]. A straightforward approach
to obtain these parameters is to calculate the mean of
observed values in history. However, the mean may not be
the most representative value when the data samples are
not in conformance of symmetric distributions, e.g. Gaussian
distribution. An alternative measure may be more appropriate
for the most representative value.

We propose to replace the mean with the mode of the
underlying probabilistic density function (pdf), which is
estimated by Kernel Density Estimation (KDE). KDE is a
non-parametric method for estimating the distribution based
on a finite set of data samples without any presumptive
distributional properties [5]. KDE is widely used in computer
vision to identify target object [6], [12]. Application of KDE
in transportation can be found in [8] and [9]. Tabibiazar et
al. used KDE to extract the congestion spot in road network
based on collected car data. Laxhammar et al. used KDE
to detect anomalies in the sea traffic. In both applications,
the target’s position was in conformance with unknown
distributions, and KDE was used to approximate the pdf
of the position variables so that the target position can be
estimated with maximum likelihood. On close inspection
of the traversal times of different links in the LTM, the
distributional patterns are not always consistent with a single
statistical model, thus which model best describes the distri-
bution of traversal times of a particular link is never known
a priori. In such a case, KDE is an appropriate tool.

This study is the first attempt to examine the use of KDE
in an aggregate air traffic model. The LTM will be first
reviewed In Section II. Section III introduces the kernel
density estimator in the context of LTM. Numerical results
are presented in Section IV, and concluding remarks are
given in Section V.

II. THE LINK TRANSMISSION MODEL
A. Link Representation of the Traffic Network

The Link Transmission Model is an Eulerian Model [4],
which focuses on the flow properties of the traffic rather
than the flight dynamics of individual aircraft. The NAS
is a highly hierarchical system, which is comprised of
three layers, i.e. low altitude, high altitude, and superhigh
altitude. In the horizontal direction, each layer are divided
into a collection of small control volumes, called sectors, as
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Fig. 1. Sectorization of the National Airspace System in the high altitude
layer.

shown in Fig. 1. The LTM is designed to predict en route
traffic rather than terminal operations, all flight operations
are projected onto the high altitude layer to simplify the
modeling, resulting in a planar representation of traffic flows
is obtained, as illustrated in Fig. 2. Extracted from the
historical data, flight trajectories from the Chicago O’Hare
International Airport to the Atlanta International Airport are
clustered into two flows, corresponding to two routings. Each
flight path is further divided into a sequence of directed links
that are abstracted as boundary-to-boundary arcs regardless
of the actual flight trajectories inside the sectors. As a
result, a link l j is uniquely identified by a boundary pair. A
sector may contain multiple links depending on its geometry.
Similarly, a link can be a part of multiple paths that pass
through the same boundary pair. A link network can be
constructed by mining historical trajectory data, creating a
link representation of the traffic network in the NAS.

The LTM is purposely designed as a fast-time NAS-
wide traffic simulation tool, so it must avoid sophisticated
flight dynamics computation. On a flight path, the traver-
sal of flights is abstracted as one-dimensional movements.
Suppose a flight path consisting of a link sequence P =
[lp

0 , l
p
1 , · · · , l

p
j · · · , l

p
m], where p is the path index and j is the

link index. The airspeed at which a flight pass through a link
lp

j is a complicated function of multiple parameters, such as
aircraft type, gross weight, flight altitude, and so on. But
LTM assumes a universal traversal time tlp

j
for all flights

traversing the same link. Such simplification creates a fast-
time, flight-independent, and flow-level traffic model. As a
result, the link sequence corresponds to a traversal time series
t = [tlp

0
, tlp

1
, · · · , tlp

m
]. Once taking off, an aircraft k traverses

sequentially these links. Since a commercial carrier usually
files its flight plan with the air traffic authority three hours
before departure, its scheduled departure time tk

dep is known.
As a result, its arrival time at the jth link can be predicted
by accumulating the traversal times of the links:

tk
arr( j) = tk

dep +
j

∑
u=0

tlp
u

(1)

All scheduled flights are predicted in the same way. The
traffic moves forward in a deterministic manner. The aircraft
count in each sector at time step t is estimated by the

Fig. 2. Link representation of the observed trajectories.

following recursion:

S(t) = S(t−1)+ ∑
tk
arr( j)=t,lp

j ∈S

1− ∑
tk
arr( j)=t,lp

j /∈S&&lp
j−1∈S

1 (2)

where lp
j ∈ S means the jth links on flight path P is in sector

S. The second term is the inflow into sector S, and the third
term is the outflow. We refer to S(t) as the sector count
hereafter.

In the aggregate model, the traversal time is crucial to the
prediction accuracy, which is calculated based on historical
trajectory data. In an earlier implementation of LTM, the
mean was used due to easy calculations [4]. But it is an
accurate estimate of the mode only if the distribution of the
data set is symmetrical and unimodal. Due to the highly
aggregated property, the traversal times present a nature of
wide dispersion, where the mean can hardly capture the dis-
tributional properties. Fig. 3 shows four typical distribution
instances caught in historical traffic data. Fig. 3 (a) is a
Gaussian distribution. The mean well represents the mode of
the distribution in this scenario. Fig. 3 (b) shows a Gaussian-
alike distribution with scattered outliers stretching out to far
away from the main cluster. Those outliers cause the mean
diverge from the mode. Outliers in this pattern are possibly
due to tactic maneuvers like path stretching and air holding,
which are used to delay flights for flow management purpose.
The length of a delay is a random variable depending on
various factors, it thereby results in wide spread of data. In
addition, erroneous measurements by radar are also a source
of anomalies. Fig. 3 (c) shows an asymmetrical distribution.
This pattern is possibly due to the link abstraction. Different
trajectories passing through from one boundary to the other
are considered the same passage. The irregular geometry of
sectors leads to a wide range of possible entrance and exit
combinations. Fig. 3 (d) shows a bimodal distribution. It is
clear that there are a major cluster and a minor cluster in
the histogram. The mean is right between the two clusters,
capturing none of the modes. Multimodal distribution can be
caused by either a wide range of aircraft types or variations
in flight speed at different flight levels.
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(a) Symmetrical distribution (b) Distribution with outliers

(c) Asymmetrical distribution (d) Multimodal distribution

Fig. 3. Mean leads to inconsistent performances.

Given the highly dynamic nature of the air traffic system,
asymmetric distributions are very common in the data set. As
a result, use of the mean is not a reliable method to estimate
the mode of underlying distributions. A robust method should
be used to capture the mode of the distribution.

III. KERNEL DENSITY ESTIMATION

The Kernel Density Estimation is a non-parametric way to
estimate the probability density function f (x) of a random
variable x without assuming any distributional property a
priori [5]. Given a set of data samples {x0,x1, · · · ,xn}, one
can always use histogram to generate a discrete probability
mass function with a predefined resolution. A continuous
probability density function by the estimator is expressed in
the following form:

f̂KDE(x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K(
x− xi

h
) (3)

where xi refers to any of the data samples, and K(·) is
the kernel function, Kh(x) = 1

h K(x/h), usually a symmetric
unimodal probability density function, such as Gaussian.
Coefficient n is the sample size. Coefficient h is a smoothing
parameter that determines the width of the kernel function.
(3) sums up the envelope of the kernel function centered
at the data samples. The shape of the distribution to be
estimated is approximated by the sum. The selection of h
is crucial as an inappropriate value will either oversmooth
the density function or make it spiky [10]. A comprehensive

survey of bandwidth selection can be found in [11]. In this
paper, we used the standard Gaussian kernel function N(0,1)
for easy implementation and nice theoretical properties:

K(
x− xi

h
) =

1√
2π

e−
1
2 (

x−xi
h )2

(4)

We used the Direct Plug-In (DPI) bandwidth selector pro-
posed in [12] because of its good performance (see in [11]).

Let K be the kernel function, and f (x) be the un-
derlying function. Function R(K) =

∫ +∞

−∞
K(z)2dz measures

the “roughness” for the kernel function, and σ2(K) =∫ +∞

−∞
z2K(z)dz is the kernel variance. An asymptotic optimal

bandwidth selector (given f is known) is

hA =

[
R(K)

σ2(K)2R( f ′′)n

] 1
5

(5)

Note that R( f ′′) is unknown. If we replace R( f ′′) by an
estimate, then it is called the Direct Plugin (DPI) bandwidth
selector:

hDPI =

[
R(K)

σ2(K)2R̂( f ′′)n

] 1
5

(6)

Note that R̂( f ′′) may also depend on the unknown density
function f (x). A typical solution is to use several iterations
to estimate f (x). See more discussion in [12] and [10].

Once the continuous probability density function is calcu-
lated, it is easy to find the mode at which the pdf reaches
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Fig. 4. Distribution of traversal time of a link. The mode of KDE pdf is
22 minutes, and the mean is 27 minutes.

its maximum value:

tlp
j
= arg maxt f̂KDE(t) (7)

An example is shown in Fig 4. The time resolution (time
bin) used to generate the histogram and the evolution interval
used in the LTM is one minute, mostly equal to the mean of
radar update interval which typically ranges from 45 seconds
to 70 seconds found in the radar track data. In Fig 4, in total,
226 samples of traversal time extracted from the radar data
are fed into the estimator to generate a continuous pdf. The
envelop of the continuous pdf matches the histogram well.
Its mode (continuous) is close to the mode (discrete) of the
histogram. In contrast, the mean is 5 minutes higher than the
mode of KDE pdf due to outliers.

IV. NUMERICAL RESULTS

To validate the use of KDE in LTM, a NAS-wide air traffic
simulation was conducted and numerical results were statis-
tically examined. Three months (July, August and September
in 2005) Aircraft Situation Display to Industry (ASDI) data
were used [13], amongst which data of 81 days were used
for parameter training, and data of the rest 10 days were
used for model validation. There are on average 65,000 flight
records found in each day’s data. The large population pool
is sufficient for constructing a link representation of flight
routes between any airport pairs in the NAS. Flights that
are destined for or originate from airports outside of the
continental United States are considered to fly into/from
a fictional “international” sector once they cross the NAS
boundaries. This simplification results in a closed airspace
system. Furthermore, the transition between the airport space
and the sector boundaries are also considered as links. There
are 479 sectors defined in the United States high altitude
airspace. A network of 18286 links was constructed from
the training data set. For each link, the traversal time was
obtained by analyzing historical trajectories. Then the mode
and the mean of travel times were used to parameterize the
LTM respectively, enabling reproduction of the 10 days’
traffic based on filed departures. Finally, the reproduced
traffic was compared with the actual traffic to evaluate the
model performance.

Fig. 6. The peak of KDE and the mean in every two hours prediction
timeframe vary throughout the day.

The traffic demand changes throughout the day. To account
for the variation, the traversal time of each link is calculated
based on samples in every two-hour period, it thus becomes
a time variant parameter. Fig. 5 shows the traversal time
distributions of a link in different time periods. The actual
distribution (histogram) looks Gaussian alike. The KDE
modes and the histogram mode agree for most of the time,
whereas the mean is bigger than the KDE mode due to
asymmetric distributions.

Fig. 6 shows the time evolution of the KDE mode and
the mean of a particular link. The time histories of both
values are in accordance with the change of traffic demand
throughout the day. The traversal time reaches the minimum
at time 10:00 AM. From Fig. 5, it is observed that there
are less data samples between 4:00 AM through 10:00 AM,
indicating low traffic in the early morning. Flights are less
likely to be subject to air traffic control during this period. As
a result, flights pass the sector quickly, resulting in shorter
traversal times. The traversal time increases later on as the
airspace gets busy, and maintains at a high level. Fig. 7
compares the KDE modes with the means of all links in the
NAS network. The distribution shows that, for the majority
of links, the mean is higher than the KDE mode, suggesting
asymmetrical distribution with data samples prone to high
values. Actually, a few outliers of high value can easily
affect the mean if there are not sufficiently large size of data

Fig. 7. The distribution of difference between the means and the KDE
peaks of all links.
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Fig. 5. The traversal time distribution of a particular link varies throughout 24 hours. The mean and the KDE mode change accordingly.

samples.
Fig. 8(a) shows the predicted traffic against the actual

traffic in the sector ZAU83 of the Chicago Center during
high traffic period. This sector has a large volume of traffic
consisting of departures from Chicago Metroplex airports
and overflights from neighboring sectors, thus represent-
ing a benchmark scenario. L2 distances are summarized in
Fig. 8(b). Overall, the traffic predicted by using KDE is
closer to the actual traffic than the mean. To measure the
model performance throughout the day, the Euclidean norm,
also known as L2 distance, was used:

L2(Ŝ) = ||Ŝ||=

√
T

∑
t=1

(S(t)− Ŝ(t))2 (8)

where S(t) is the observed sector count at time step t,
and T is the prediction timeframe. Statistics are shown in
Table I. From the last column, It is clear that KDE achieves
a lower L2 distance value than the mean does. The second
and third column present the total time (in hour) when the
model overestimates and underestimates the traffic. For most
of the time, the model associated with mean overestimates
the traffic while the model associated with KDE does the
opposite.

To examine the performance consistency, predictions over
all sectors are presented in Fig. 9. To make the comparison
intuitive to read, we define a metric, ratio of L2, for each

TABLE I
PREDICTION PERFORMANCE FOR ZAU83 ON SEPTEMBER 21st , 2005

Approach Overest. (hr) Underest. (hr) Precise (hr) L2

Mean 13.25 10.25 0.5 231.6
KDE 10 12.75 1.25 196.5

sector, calculated as follows:

Ratio(S) =
L2

KDE(Ŝ)
L2

Mean(Ŝ)
(9)

The sectors are indexed and ordered in terms of Ration(S).
Only sectors where traffic is observed are shown. It can be
seen that KDE achieves lower prediction errors than the mean
in 79% of the sectors, and performs as the same as the mean
in 6% of the sectors, and yields higher prediction errors in the
rest sectors. The comparison of performance is summarized
in Table II. The performance of KDE is quite consistent over
the 10 days. In nearly 78% of the sectors KDE outperforms
the mean. On average, prediction error associated with KDE
is 94% of the prediction error associated with the mean,
equivalent to 6% increases in prediction accuracy.

V. CONCLUSIONS

This paper investigates an application of the Kernel Den-
sity Estimation in the context of an air traffic prediction
model. Numerical results indicates that use of KDE in
estimating the probability density function of the traversal
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(a) Sector count

(b) Prediction error

Fig. 8. Sector count prediction for ZAU83 on September 21st ,2005.

Fig. 9. The ratios of L2 distance of the 351 sectors, September 21st , 2005.

time of links can precisely capture the mode of the traversal
time, resulting in better estimation than the conventional
approach where the mean is used. The new approach reduces
6% of the prediction errors. Although the improvement is not
very significant, this preliminary study has demonstrated the
advantage of use of this statistical method in aggregate air
traffic model.

We envision a better performance if a more complicated
clustering techniques is employed. In the current implemen-
tation, we only used the highest local peak if the distribution
is multimodual. As a direction of future work, Gaussian
mix model can be used to label the modes, which may
have direct relationship to aircraft weight categories or flight
configurations. Moreover, the airspace can be divided into
different layers, i.e. low altitude, high altitude, superhigh

TABLE II
STATISTICS OF Ratio(S), SEPTEMBER 21-30, 2005

Date Sector No. < 1 = 1 > 1 Min Max Mean
21 354 79% 6% 15% 0.66 1.14 0.94
22 348 78% 4% 18% 0.64 1.24 0.94
23 350 79% 4% 17% 0.65 1.22 0.95
24 353 78% 5% 17% 0.57 1.24 0.95
25 351 79% 4% 17% 0.60 1.22 0.94
26 355 71% 6% 23% 0.67 1.41 0.96
27 350 80% 4% 16% 0.58 1.21 0.94
28 349 79% 3% 18% 0.66 1.14 0.94
29 355 77% 6% 17% 0.59 1.28 0.95
30 354 79% 6% 15% 0.57 1.19 0.95

altitude, and the traversal times are further grouped by flight
levels. As such, we can incorporate more flight information
into the model and choose an appropriate traversal time for
a particular flight. In doing so, the prediction errors are
expected to further decrease.
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