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Three Eulerian models are implemented on a network graph model of air traffic flow. The
underlying network is constructed using one year of ASDI/ETMS data. The three models
are applied to high altitude traffic for a full Air Route Traffic Control Center of the National
Airspace System and surrounding airspace. Simulations are carried out for a full day of
data, to assess the predictive capabilities of the respective models. The models’ predictions
are compared to the recorded flight data (ASDI/ETMS). Several error metrics are used to
characterize the relative accuracy of the models. The efficiency of the respective models is
compared in terms of computational time and memory requirements for the scenarios of
interest. A discussion of the three models’ structural differences explains why one model
may outperform another.

I. Introduction

The almost uninterrupted growth of US air traffic over the last few decades has motivated the design of
a semi-automated Air Traffic Control (ATC) system to help Air Traffic Controllers manage the increasing
complexity of traffic flow in the en route airspace.1 ATC is operated at the sector level, where a sector is a
small portion of the airspace controlled by a single human Air Traffic Controller. Traffic Flow Management

(TFM) typically deals with traffic at the Center level, i.e. 10 to 20 sectors. TFM problems include main-
taining the aircraft count in each sector below a legal threshold in order to ease the human ATC workload,
as well as to ensure the safety of the flights.2 This task is quite cumbersome; furthermore, extensive traffic
forecast simulations (including all airborne aircraft) are computationally too expensive to include systematic
investigations of traffic patterns that lead to sector overload. As a result, a new class of traffic flow models
has emerged from recent studies: Eulerian models, which are control volume based. This is in contrast
to Lagrangian models, which are trajectory-based and take into account all aircraft trajectories.3 Unlike
Lagrangian models which focus on the history of a given agent therefore using the position vector of the
agent and time as variables, the Eulerian models provides a picture of the spatial distribution of the flow in
function of position in space and time.

Eulerian models have two main advantages over Lagrangian models. (i) They are computationally
tractable, and their computational complexity does not depend on the number of aircraft, but only on
the size of the physical problem of interest. (ii) Their control theoretic structure enables the use of standard
methodologies to analyze them, such as control theory or optimization.

This article presents the comparison between three Eulerian models of the National Airspace System

(NAS), to assess their respective accuracy, computational efficiency, and predictive capabilities. This study is
thus motivated by the need to efficiently model the NAS. For fairness of the comparison, we are implementing
the three models on the same network developed in earlier work, based on one year of ASDI/ETMS data.

The field of Eulerian network modeling for the NAS has been pioneered by the award winning AIAA
article of Menon et al.4. This article is strongly inspired by hydrodynamic theory for highway traffic flow,
in particular the work of Lighthill, Whitham and Richards,5,6 and its discrete counterparts in the highway
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traffic literature.7,8 This framework is sometimes referred to as the LWR theory .9 To the best of our
knowledge, Menon et al.4 were the first to model air traffic flow using an Eulerian framework, i.e. focusing
on control volumes rather than single aircraft trajectories.10–13 This work was subsequently extended by
the same authors. It triggered a large interest in the Air Traffic Management (ATM) community, leading to
several articles inspired by their original approach.12,14 This model was later adapted to include a stochastic
framework,15,16 in which data aggregation procedures enable predictions of flows in the expected sense. For
the present study, the Menon model12 is modified to fit a graph structure developed in our earlier work.17

Adjoint based techniques18 were subsequently developed for a fully continuous19 NAS model (i.e. using
partial differential equations), which was also used for modeling behavior of single agents (airlines) in the
NAS.20,21 In order to alleviate the problems due to network splits (this problem will be explained in detail
later in this article and affects all previous models), a delay system model based on network flow techniques22

was finally proposed17 and successfully implemented, which does not suffer such shortcomings.
In this article, we present a modified version of the Menon model, adapted to fit a general network

topology. We summarize a delay-based model presented in our earlier work.17 Finally, we present a new
application of the Lax Wendroff scheme to a PDE model developed earlier.19 We implement and compare
the three models above on the same benchmark problem. We will thus compare the modified Menon model,
the more recent delay system model,17 and the fully continuous PDE model.19

This paper is organized as follows. In the next section, the formulation of the three models are sum-
marized. Section III assesses the predictive capability of each model through a careful validation against
recorded ASDI/ETMS data. Section IV compares the predictive capabilities of the different models, com-
putational time and memory requirements. A discussion follows that highlights the structural differences
between the three models and explains why one model may outperform another. Finally conclusions are
presented in Section V.

II. Models

A. The Modified Menon Model12 (MMM)

This section is based on earlier work by Menon et al.12. The model has been modified to fit the structure of
the graph model that will be discussed in Section II D. First, the Menon model is summarized followed by
the details of the modifications.

The Menon model is an Eulerian traffic flow model in which the air traffic flow is spatially aggregated into
control volumes.12 It is based on the LWR theory in which the traffic flowing into a control volume changes
the density of aircraft in the control volume and, hence, changes the outflow from the control volume. In
the present work, the Menon model has been adapted by keeping track of the flow rates into and out of the
control volumes as well as the aircraft count within each volume. We will thus refer to the improved version
of the model as the Modified Menon Model (MMM). The model is also able to account for ATC actions as
well as handle merging and diverging air traffic flow. The model consists of two parts, the one-dimensional
control volume model and the merge and diverge routing structure.

The one-dimensional control volume model takes air traffic flow as a network of inter-connected control
cells where the air traffic flows through a series of control volumes. One way to think of the model is as a
sequence of cells, where each cell is a control volume. The air traffic flow and aircraft counts in a network,
can be described by the discrete-time difference equation,

xj(i + 1) = xj(i) + τj [yj−1(i)− yj(i)] (1)

In the above equation, xj(i + 1) is the aircraft count of control volume j at time i + 1. The flow into j
is yj−1(i) and yj(i) is the flow out of j. The time step τj is computed by dividing the cell dimension, Ωj ,
by the aircraft speed in the cell, vj (τj = Ωj/vj). In other words, τj is the time an aircraft takes to travel
through the cell.

The effects of delaying aircraft due to ATC is accounted for by recirculating some of the air traffic flow
in a control volume. The recirculated air traffic flow in control volume j is defined as uj . The physical
constraint on uj is that at time i it can not be greater than the existing flow in the cell and it can not be
less than 0,

0 ≤ τjuj(i) ≤ xj(i) (2)
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Including uj and writing down the equation for yj , the model can be written as a linear, discrete-time
dynamic system,

xj(i + 1) = ajxj(i) + τjuj(i) + τjyj−1(i) (3)

yj(i) = bjxj(i)− uj(i) (4)

The coefficients, aj , bj , and τj handle the conversion between the air traffic flow, yj , and the aircraft
count, xj . In other words, at a given time step, aj is the portion of aircraft remaining in the volume, and
bj is the portion of air traffic flow leaving the volume. As was noted earlier, τj is the length of time needed
for the aircraft to travel the length of the control volume. The coefficients are defined in terms of Ωj , the
control volume length, and vj , the aircraft speed.

aj = (1− vjτj/Ωj), bj = vj/Ωj , τj = Ωj/vj (5)

The original Menon model assumes that velocity is constant within a given control volume. This means
that aj is always zero (see equation (13) in the original article12). That is, if there is no control from uj ,
then all the aircraft in the volume travel to the subsequent volume on the next time step.

Intuitively, what is happening in equations (3) and (4) is that the aircraft count in a given control volume
at time i + 1 depends on the number of aircraft in the volume at time i, the number of aircraft that flow
into the volume, the number of aircraft that are recirculated and the number of aircraft that flow out of the
volume. Over multiple time steps, aircraft will move through successive cells.

In a network of inter-connected control volumes, there may be points where air traffic coming from dif-
ferent directions merge into a single flow. This type of situation is referred to as a merge node. Furthermore,
there may be points where the air traffic in one direction diverges into multiple flows. This type of situation
is referred to as a diverge node. Because the nodes do not retain any aircraft, the conservation principle
implies that for merge nodes, the resulting air traffic flow is the sum of all air traffic flows into that node.
For example, if the air traffic flows qk−1 and qk−2 merge into qk,

qk = qk−1 + qk−2 (6)

Likewise, diverge nodes can make use of the same conservation principle and the flow along a path from
a diverge node is a proportion of the flow coming into the diverge node. The proportion is defined as the
divergence parameter, β, and is the ratio of aircraft travelling out of the diverge node along a given path
over the aircraft travelling into the diverge node. In the following example, the air traffic flow diverges from
the qk to qk+1 and qk+2,

qk+1 = βqk, qk+2 = (1− β)qk (7)

As mentioned earlier, since the MMM is implemented on a graph model of traffic flow constructed in
the articles17,23 and discussed in Section II D, a number of modifications were made to improve the original
Menon model described in the article.12

1. The flights in the MMM are aggregated according to the links of the graph structure defined in our
earlier work, and not the graph model presented in their original article.12 This will ensure fairness of
the comparison with the other models.

2. A link length (physical distance) is determined from flights in the data. That is, flights in the data
are aggregated according to the links in the graph. A link’s entry and exit locations are determined
by those flights’ link entries and exits. The entry and exit locations are used in computing the link’s
length.

3. The MMM contains merge-diverge nodes. A merge-diverge node is one that has both merging and
diverging flows at the same time. The original Menon model does not have such nodes.

4. A merge-diverge node can have n (n ≥ 2) outflows, whose β values are determined from the data,
whereas in the original Menon model n is limited to two.
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B. The delay system model

The delay system model is a new Eulerian traffic flow model developed by Robelin et al.24. It is a graph-
theoretic model of traffic flow. Air traffic flow on this graph is modeled as a discrete time dynamical system.
Under the assumption that air traffic flow can be accurately represented by an aggregated travel time, the
behavior of aircraft flows on a single link can be modeled by a deterministic linear dynamical system with
unit time delay, defined as follows.24

xi(k + 1) = Aixi(k) + Bf
i fi(k) + Bu

i ui(k) (8)

y(k) = Cixi(k) (9)

where xi(k) = [xmi

i (k), ..., x1
i (k)]

T is the state vector, whose elements represent the corresponding aircraft
counts in each cell of link i at time step k, and mi is the number of cells in the link. The [forcing] input,
fi(k), is a scalar which denotes the entry count onto link i during a unit time interval from k to k + 1, and
the [control] input, ui(k) is an mi × 1 vector, representing holding pattern control. The output, y(k), is the
aircraft count in a user-specified set of cells at time step k. The nonzero elements of the mi × 1 vector Ci

correspond to the cells in the user-specified set, and are equal to one. Ai is an mi×mi nilpotent matrix with
1’s on its super-diagonal. Bf

i = [0, ..., 0, 1]T is the forcing vector with mi elements, and Bu
i is the mi × mi

holding pattern matrix, in which all nonzero elements are 1 on the diagonal and −1 on the super-diagonal.
Please see article23 for more details about the model.

Because there is no interconnection between different links in one sector, it is straightforward to extend
this modeling technique to set up a sector level model as follows. Suppose there are n links in a sector, then
the state space equations for the model at the sector level can be described as:

x(k + 1) = Ax(k) + Bff(k) + Buu(k) (10)

y(k) = Cx(k) (11)

where x(k) = [xn(k), ..., x1(k)]
T denotes the state, and f(k) = [fn(k), ..., f1(k)]

T is the [forcing] input vector
(the entry count onto the sector). The [control] input vector u(k) = [un(k), ..., u1(k)]

T . y(k) represents the
aircraft count in a user-specified set of cells at time step k. The matrices A, Bf , and Bu are block diagonal,
such that A = diag(An, . . . , A1), Bf = diag(Bf

n, . . . , Bf
1 ), and Bu = diag(Bu

n, . . . , Bu
1 ). The vector C is given

by [Cn, ..., C1]. The quantities, xi(k), fi(k), ui(k), Ai, Bf
i , Bu

i and Ci are all defined by Equations (8) – (9).
When a center level model is created, it is necessary to includemerge/diverge nodes in the network.12,15,16,19

This is achieved by taking into account a priori knowledge of the destination of the aircraft. More details
about the merge/diverge mechanism are provided in the article.23

C. The PDE model

This section is based on earlier work by Bayen18,19 et al.. We present a different numerical scheme to solve
the same problem, which is more efficient than the one used in the earlier work.18,19 Corresponding control
strategies are presented in a companion article.25 We consider aircraft density in the NAS as a continuum
and study the generated flow.

We divide the airspace into line elements on which we model the density of aircraft. These line elements
are called paths. We represent a path as a segment [0, L] and we denote by u(x, t) the number of aircraft
between distances 0 and x at time t. This is sometimes referred to as “cumulated vehicle count” in the
transportation literature. In particular, u(0, t) = 0 and u(L, t) is the total number of aircraft in the path
modeled by [0, L] at time t. We make the additional assumption of a stationary velocity profile v(x) > 0
which depicts the mean velocity of aircraft flow at position x and time t. Applying the conservation of mass
to a control volume comprised between positions x and x + h, and letting h tend to 0, one easily finds the
following relation between the spatial and temporal derivatives of u(x, t):











∂u(x,t)
∂t

+ v(x)∂u(x,t)
∂x

= q(t) (x, t) ∈ (0, L)× (0, T ]

u(x, 0) = u0(x) x ∈ [0, L]

u(0, t) = 0 t ∈ [0, T ]

where q(t) represents the inflow at the entrance of the link (x = 0) or in terms of the density q(t) = ρ(0, t)v(0),
where ρ(x, t) denotes aircraft density at location x and time t. This is an advection equation with control
velocity and source term.
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It can be shown using the method of characteristics that this partial differential equation admits a unique
solution. Even though this framework is a purely continuous framework, we need to discretize it for the sake
of computation.

We apply the Lax-Wendroff scheme to the preceding partial differential equation. We use a discrete grid
on the domain [0, L]× [0, T ]:

xi =
iL

M
, 0 � i � M and tj =

jT

N
, 0 � j � N

The Lax-Wendroff numerical scheme is based on the second order Taylor series expansion of u(x, t)

u(x, tj+1) = u(x, tj) + (∆t)ut(x, tj) +
1

2
(∆t)2utt(x, tj) + . . .

Given that u(x, t) is a solution of the partial differential equation above, we have:

ut(x, t) = −v(x)ux(x, t)− v�(x)u(x, t)

utt(x, t) = −v(x)uxt(x, t)− v�(x)ut(x, t)

If we differentiate the expression of ut(x, t) with respect to x , we obtain: uxt(x, t) = −v(x)uxx(x, t) −
v��(x)u(x, t)− 2v�(x)ux(x, t) which yields:

utt(x, t) = v2(x)uxx(x, t) + 3v(x)v�(x)ux(x, t) + (v(x)v��(x) + (v�(x))2)u(x, t)

Using the preceding expressions of ut(x, t) and utt(x, t) in the Taylor series expansion, we find:

u(x, tj+1) = u(x, tj)− (∆t)v(x)ux(x, tj)− (∆t)v�(x)u(x, tj)

+
1

2
(∆t)2(v2(x)uxx(x, tj) + 3v(x)v�(x)ux(x, tj) + (v(x)v��(x) + (v�(x))2)u(x, tj)) + . . .

Then we replace the spatial derivatives by central finite difference approximations:

ux(x, t) ↔
uj

i+1 − uj
i−1

2∆x

uxx(x, t) ↔
uj

i−1 − 2uj
i + uj

i+1

(∆x)2

We eventually obtain the Lax-Wendroff scheme:

uj+1
i = (1− (∆t)v�(xi) +

(∆t)2

2
(v�(xi))

2)uj
i +

∆t

2∆x
v(xi)(

3

2
(∆t)v�(xi)− 1)(uj

i+1 − uj
i−1)

+
1

2

�

∆t

∆x

�2

v2(xi)(u
j
i−1 − 2uj

i + uj
i+1)

The initial condition implies:

u0
i =

1

2∆x

� xi+1

xi−1

u0(x)dx for 0 � i � M

The boundary conditions are implemented using 2 ghost-cells on the left and right of the spatial domain.
Given that the velocity is always positive, the boundary conditions can only be prescribed on the left; we
use zero-order extrapolation for the right boundary condition:

uj
−1 =

1

∆t

� tj+1

tj

q(t)

v(0)
dt and uj

M+1 = uj
M for 1 � j � N

Finally, when choosing the space and time steps, the CFL (Courant-Friedrichs-Lewy) condition has to
be verified:
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�

�

�

�

v(x)∆t

∆x

�

�

�

�

� 1 for x ∈ [0, L]

�

�

�

v(x)∆t

∆x

�

�

�
is called the Courant number. The Lax-Wendroff scheme will be increasingly accurate as the

Courant number approaches to 1 and the time and space steps should be chosen so that:

∆t

∆x
is slightly smaller than

1

supx∈[0,L] v(x)
.

D. A benchmark example for comparison of the three models

For the comparison, the three models described above are implemented on the same aggregate traffic flow
graph model depicted in Figure 3. The construction of the graph is outlined in the articles.23,24 The portion
of airspace of interest for this study is depicted in Figure 1, and consists of 23 sectors of the Oakland, Los
Angeles, Seattle and Salt Lake City Centers. The graph identification procedure relies on the notion of
path, illustrated in Figure 2. We use one year of ASDI/ETMS data for this identification, which results in
the graph shown in Figure 3. For the MMM, we will use β splits at the nodes where traffic is diverging,
following the procedure outlined in their original article12 modified according to Section II A. For the two
other models, we will use the notion of paths, linking any origin to any destination in the graph. This idea
was suggested to us by Dr. George Meyer, and is sometimes referred to as the colored flow paradigm. This
enables us to avoid the identification of the β split parameters, and the resulting inaccuracies of this model.

Using the terminology in Figure 2, the graph used for this study has 217 paths, 102 links, 4069 cells
(MMM), 10293 cells (delay model), and 43400 grid points (PDE model). It consists of 10 high altitude
sectors, includes three major airports (SFO, SJC and OAK). The number of flights used for this study for
a single day is on the order of 8000.

The parameter identification used for the MMM is straightforward: following the work of the authors of
the MMM14 we average all velocities of all aircraft over one year for the airspace of interest. For the delay
model and the PDE model, we do it path by path. An example of velocity fit for one path is shown in
Figure 4. The β split coefficients used for the MMM are computed by dividing the number of aircraft on
a branch from a split by the total number of aircraft exiting the split. The cell dimension in the MMM is
computed as the distance traveled by an aircraft in one minute (our time step in the simulation). Since the
average velocity is 380 knots, this gives the cell dimension to be 11 km. For the delay system model, the cell
dimension is time-based and is one minute in length.

The inflow conditions for the three models are extracted from the ASDI/ETMS data for one day. Each
flight in the data is analyzed in terms of its time of arrival in one of the sectors under consideration.
Additionally, the delay system model and the PDE model also analyze a flight path according to the details
in the earlier work.23,24

III. Model validation

The models are validated against ASDI/ETMS data and their respective performances are compared.
Simulations are performed from 8:00am GMT on January 24th, 2005 to 8:00am GMT on January 25th,
2005. The input to the models is the number of aircraft entering the considered region (Oakland Center).
The predicted states are computed from each model and compared with the recorded data.

Sector counts predicted by the three models are first compared with the recorded air traffic data
(ASDI/ETMS). Our study shows that all the sector counts predicted by the three models and ASDI data
differ by noise of a non-negligible magnitude for the following reasons: (1) for the delay system model, the
travel time on a link in the network is computed as the average travel time for all flights in the data set used
for the identification; (2) for the PDE model, the velocity profile of each path is filtered from sampled veloc-
ities and only several modes are preserved; (3) for the MMM, the split ratios are computed from historical
data which usually do not match the instantaneous ratios for a specific day and also the MMM assumes a
uniform velocity across the whole network.

A Moving average filter (MAF) technique is used to filter the sector counts for both the recorded
ASDI/ETMS data and the models’ simulation data. Applying a MAF to the data requires an appropri-
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Figure 1. Map of the region of the airspace considered in this study: the Oakland ARTCC, called ZOA, a portion of
Los Angeles ARTCC, called ZLA, a portion of Salt Lake City ARTCC, called ZLC, and a portion of Seattle ARTCC,
called ZSE.
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Figure 2. Examples of vertices and links; trajectories and paths.
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Figure 3. Top: An example of flight tracks in Oakland Center and nearby airspace. Bottom: Graph model repre-
senting the flow patterns above, composed of 312 links.
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Figure 4. A typical velocity profile along a path. x-axis: positions from the starting point of a path in the model;
y-axis: velocities in knots. A third order curve is used to fit the velocity profile. Typically, flights going through
this path (passing through way-points TROSE-INYOE-OAL) pop-up from low altitude airspace and climb up to high
altitudes.

ate number of data points (time window) in the average. A small time window captures the dynamics of the
flow errors but loses the “filtering” benefits, while a large time window filters noise but destroys the error
dynamics. To determine a proper size of time window, an experiment involving the maximum sector count
error is performed. The maximum count error is the maximum error computed as the absolute difference
between the model’s sector count and the actual sector count computed from the recorded ASDI/ETMS
data, over the course of a simulation. The model chosen to determine the time window does not make
significant difference. Figure 5 shows the results obtained using the PDE model. It shows how the maximum
error decreases as the time window (number of data points in the average) increases. Note that for most
sectors, the maximum errors are below two when the time window is 30 minutes, and above 30 minutes,
increasing time window does not help much decrease the maximum error, and does not make sense for the
problem of interest as well. For this reason, 30 is chosen as the number of data points in the average (the
time window, or time span). Removing noise makes physical sense for this problem. Indeed, very often,
sector count exceeds legal values for a few minutes (if aircraft are about to exit a sector), which is tolerated
in practice, as such flights usually do not pose significant problems to air traffic controllers.

Figure 6 shows an example of the unfiltered raw data overlayed with the filtered data using MAF. As
can be seen, a significant portion of the noise in the data can be removed by performing a MAF of the data,
which makes it more suitable for analysis and comparison.

Figure 7 shows the predicted and actual sector counts as a function of time in four sectors: medium
loaded sectors ZOA32, ZOA34, highly loaded sector ZOA33, and low traffic sector ZOA35. The data shown
in the figure is filtered by MAF. From the figures we can see that all the models correctly predict the trends
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Figure 5. Maximum sector count error between simulation of the PDE model and ASDI/ETMS data (after filtering).
The maximum error decreases as the time window increases.
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Figure 6. Moving average filter (MAF): the dotted curve represents the unfiltered sector counts of sector ZOA33,
and the solid curve represents the filtered data using a time window of 30 minutes.
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of sector counts.

Figure 7. Comparison of the predictions of aircraft sector counts with the three models and the ASDI/ETMS data.
Curves represent the processed sector counts after filtering.

A similar comparison is done with inflows into the sectors. Inflows represent the number of aircraft
entering a certain sector in a unit of time (one minute in our study). For example, for ZOA33, the inflows
count the number of aircraft arrivals from sectors ZOA15, ZOA34, ZOA32, ZOA43, ZLC42, ZLC45, ZLALE,
ZLA16, ZLAED, as well as flights originating in ZOA33 (please refer to Figure 1). Figure 8 shows the
predicted inflows into four sectors (ZOA32, ZOA33, ZOA34 and ZOA35), as well as the inflows computed
from the recorded ASDI/ETMS data, into these three sectors. The curve in each plot represents the filtered
inflows. From the figures we can see that all the models correctly predict the trends of the inflows into
sectors.

IV. Comparison

From Figures 7 and 8, we can see that the PDE model displays the best prediction capabilities among
all the models. As can be seen in Figures 7 and 8, the sector count and inflow predictions of the PDE model
are closer to the recorded ASDI/ETMS data, compared with the other two. In comparing the three models
we will quantify each model’s error as well as their computational efficiency.
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Figure 8. Comparison of the predictions of the sector inflows with the three models and the ASDI/ETMS data.
Curves represent the processed inflows after filtering.
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A. Error analysis

The error analysis involves two comparisons: cumulated occurrence of sector count error breach (S), and
the instantaneous sector count error. Following the article,24 S is defined as the summation of time intervals
under the condition that difference of sector counts between the simulation and ASDI/ETMS data is greater
than or equal to a user-specified capacity limitation, within a certain time window. This is summarized in
equation (12):

S =
T

	

k=1

I{|ysim(k)−yASDI/ETMS (k)|≥Cs} (12)

where I represents the indicator function. The sector count is denoted by y(k), ASDI/ETMS and simulated.
The constant Cs is a user-defined threshold. The time window we choose in our simulation is 1440 minutes
(24 hours), i.e. T = 1440. To measure the similarity in the simulation and the ASDI/ETMS data, different
values of Cs are used, and plots of percentage of breaches versus Cs are shown in Figure 9. For example,
if we choose Cs = 3, the percentage of breaches of the MMM in sector ZOA32 is 15%, which means the
predicted sector counts in ZOA32 by the MMM differ from the ASDI/ETMS data by at least three aircraft
for 15% of the time. As the value of Cs increases, the breach length for each model tends to zero. This is
because Cs is the aircraft count error limit. The PDE model is close to zero breach when the aircraft count
error limit is less than five, which has the best predictive performance. The aircraft count error limits to
bring the delay system model and the MMM to zero breach are higher than the PDE model. The reason for
this will be explained in a later section.

The instantaneous sector count error analysis is performed as well. This error is the difference between the
models’ aircraft count and the actual aircraft count for each sector computed from the recorded ASDI/ETMS
data at each time step in the simulation. The corresponding relative error is the ratio between the absolute
instantaneous error and the actual count. The instantaneous error and relative error are shown for sectors
ZOA32, ZOA33 and ZOA34 in Figure 10.

Number 1 2 3 4 5 6 7 8 9 10

Name ZOA13 ZOA14 ZOA15 ZOA31 ZOA32 ZOA33 ZOA34 ZOA35 ZOA36 ZOA43

Table 1. Indices for the considered sectors in Oakland Center (numbers refer to Figure 11).

Figure 11 shows a summary of the max/mean error of the sector counts, and the error variance as well.
From Figure 11 we can see that the PDE model experiences less error and less variance than both the other
two.

B. Computational efficiency

For all three models, it takes approximately ten minutes to convert the aggregate traffic flow graph model
referred to in Section II D according to each model’s specifications. Table 2 lists the CPU time and memory
usage for the three models to predict inflows and sector counts. The analysis is done for 10 high altitude
sectors in the Oakland Center, for each minute over 24 hours embedded in a set of 23 high altitude sectors,
in order to eliminate undesirable boundary effects (see map in Figure 1). The computations are done on a
1.4 GHz CPU, 512 MB RAM PC running Linux, using the c++ programming language. The delay model
has the fastest running time (six minutes), which is about 10 times faster than the PDE model and 15
times faster than the MMM. The difference between the delay model and the PDE model is that the time
increments required for a PDE model simulation are smaller than the delay unit used in the delay model.
The reason why the PDE model and the delay model are significantly faster than the MMM is that the
MMM must keep track of all the merge diverge nodes in the system. In order to do this, at each time step,
there are a number of matrix multiplications in that model must be computed in order to account for all
merge and diverge nodes. For the PDE model and the delay model the aircraft count updates are based on
only the previous counts and the path length (see Section II D).

C. Critical differences in the three models - interpretation

The previous simulations enabled the quantitative comparison of the three models presented earlier. This
comparison showed several significant differences in the respective performances of the models, which we
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Figure 9. Occurrences of breach of sector count error for four sectors in the Oakland Center (unit is % of the time).
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Delay model PDE model MMM

CPU time (minutes) 6 50 90

Max memory usage (MegaBytes) 395 481 376

Table 2. Computational efficiency (runs performed on a 1.4 GHz CPU, 512 MB RAM PC running Linux, using
c++).

now summarize and explain:

1. One evident result stands out: the PDE model consistently outperforms both of the other two models
and the delay system model is the second. The PDE model incorporates the continuous dynamics
of aircraft, which is close to the physics of the flows and considers aircraft density in the NAS as
a continuum and studies the generated flows, which explains its higher order of accuracy. Even if it
performs better in terms of accuracy, the underlying mathematical framework used (PDEs) forces us to
use sophisticated optimization techniques to perform optimal TFM policy synthesis. This is illustrated
in a companion article.25 There is thus obviously a tradeoff between accuracy and efficiency.

2. In terms of the velocity of aircraft flow, the modified Menon model is less accurate while the PDE
model is the finest. The modified Menon model uses an average velocity as the speed of all aircraft in
the model, which is a first order approximation. The delay system model assumes average velocities on
a given link. So, a particular path, composed of consecutive links, has different speeds, corresponding
to successive portions of the flight (climb, cruise, descent). Therefore the delay system model has more
flexibility than the modified Menon model in describing features of the flows. For the PDE model, the
velocity along a link is computed using least-squares and is continuous along a path (see Section II D
for more details).

3. In terms of the diverge nodes, the modified Menon model is also the roughest while the PDE model
and delay system model are finer. The modified Menon model computes a fixed ratio of outgoing flow
at a diverge node based on the data set. This is a fundamental issue of Eulerian models, which was
resolved using the colored flow diagram of Dr. George Meyer. The PDE model and the delay system
model generate a path through the network for each incoming flight, as outlined in article.24

V. Conclusion

Three Eulerian models are implemented on a network graph model of air traffic flow. Adaptations are
made to the models to fit the general network topology. The models are applied to high altitude traffic for
a full Air Traffic Control Center of the National Airspace System. Each model is implemented on the same
aggregate traffic flow graph model and simulated over an entire day. Compared to flight data, the models
show good predictive capabilities. The models are also compared to each other in terms of their predictive
ability, computation time and memory requirements.

Future work will include implementation of Menon 2D model26 and will be to use a full year of ASDI/ETMS
data to study hourly/weekly patterns of air traffic flows to show how using these patterns can improve the
respective predictive capabilities of each of the models. More simulations, including different days and con-
trolled experiments, will be run in order to underline the strengths and weaknesses of each model. The
network graph model will be extended to incorporate NAS-wide studies. We will also add Ground Delay

Programs (GDP) and airports, such as airport capacities and constraints in the formulation of the model.
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Figure 10. Left: Instantaneous error for three high altitude sectors (ZOA32, ZOA33 and ZOA34). Right: Relative
error for the three sectors.
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Figure 11. Left: A summary of the absolute instantaneous error of aircraft sector count. Right: The relative error
summary. Numbers on the y-axis correspond to the sectors listed in Table 1.
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