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Abstract: This paper studies the exponential stability of linear time-varying (LTV) systems using the 

recent proposed integral function. By showing the properties of the integral function and applying the 

Bellman-Gronwall Lemma, a sufficient and necessary condition for the exponential stability of LTV 

systems is derived. Furthermore, the exponential decay rate of the system trajectories can be obtained 

by computing the radii of convergence of integral function. The algorithm for computing the integral 

function is also developed and two classical examples are given to illustrate the proposed approach. 
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1. INTRODUCTION 

 

The linear continuous time-varying (LTV) systems has 

been receiving increasing attention by system and control 

community, since they appear frequently in practical 

engineering areas such as aerospace control systems 

[1,2]. While important, LTV systems are very hard to 

investigate despite of the fundamental stability problem. 

It is well known that, even when the eigenvalues of the 

system have strictly negative real parts for all instants of 

time, the time-varying system may be unstable. 

However, numerous important progresses, including 

but not limited to [3-10] have been achieved through the 

effort of researchers. They more or less all rely on the 

use of a linear time-invariant plant as an approximation 

of the LTV system and ensuring that the influence of the 

approximation is not excessive. The main advantage of 

this frozen time method is the possibility of exploiting 

the great deal of tools which have been developed for 

linear time-invariant (LTI) systems.  

This paper tries to present a novel approach to 

investigate the exponential stability of LTV systems. In 

the previous work [11], an integral function approach 

was proposed to analyze the exponential stability of a 

class of piecewise-linear systems, and a computational 

sufficient and necessary criterion was provided in terms 

of the integral function. 

In this paper, an improved integral function is 

introduced, which has some nice properties including 

homogeneity, sub-additivity, convexity, common-bound 

and vertex-bound. Based on the properties and Bellman-

Gronwall lemma, a sufficient and necessary condition for 

the exponential stability of LTV systems is derived, and 

the exponential decay rate of the LTV systems is 

characterized by the radius of convergence of integral 

function without conservatism. As our best knowledge of 

LTV systems, it is the first time that such a rate has been 

characterized exactly. 

 

2. PROBLEM FORMULATION 

 

We consider a class of continuous-time PPLS repre-

sented by  

0
( ) ( ) ( ), ,x t A t x t t t= ≥�  (1) 

where ( )x t ∈Rn and ( ) Rn n

A t
×

∈  are. It is assumed that 

A(t) is continuous in t, and bounded for all 
0
.t t≥   

 

Definition 1: Let 
0

( , ; )x t t z  denotes the solution of 

LTV system with initial time t0 and initial state z. The 

system (1) is called exponentially stable if there exist 

(0,1)r∈  and 
r

κ > 0 such that 0

0
( , ; )

t t

r
x t t z r zκ

−

≤  for 

all t ≥ t0. 

 

Definition 2: Define the exponential decay rate of 

LTV system (1) as  

0*

0 0
inf{ | ( , ; ) , R , }

t t n

r
r r x t t z r z z t tκ

−

= ≤ ∈ ≥  (2) 

to characterize the convergence rate of the “most 

unstable” trajectories of LTV system (1).  

The objectives are: (i) present a computable sufficient 

and necessary criterion of exponential stability for LTV 

systems; (ii) compute the exponential decay rate without 

conservatism. 
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In the general cases of LTV systems, although the 

system solution x(t,t0;z) cannot be analytically represent-

ed as the LTI case, the homogeneity and additivity 

properties are still retained as In the general cases of 

LTV systems, although the system solution can not be 

analytically represented as the LTI case, the homogen-

eity and additivity properties are still retained as stated in 

the following lemma.  
 

Lemma 1: The solution of LTV system (1) has the 

following properties:  

0 0
( , ; ) ( , ; ), R;x t t z x t t zα α α= ∈  

0 1 2 0 1 0 2 1 2
( , ; ) ( , ; ) ( , ; ), , R .nx t t z z x t t z x t t z z z+ = + ∈  

 

3. MAIN RESULTS 

 

In this section, we present the integral function 

approach to the exponential stability analysis of LTV 

systems. The integral function is defined, analyzed and 

used to determine the exponential stability of system (1). 

Furthermore, the radii of convergence of integral 

function is defined and used to compute the exponential 

decay rate of LTV systems. Additionally, the algorithm 

for computing the integral function is developed such 

that the whole approach is computationally effective. 
 

Definition 3: We define integral function ( , )I z⋅  of 

the LTV system as:  

0

0
0

2

0

0

( , ) sup ( , ; ) .
t t

t
t

I z x t t z dtλ λ
∞

−

≥

= ∫  (3) 

For each fixed 0,λ ≥ ( , )I zλ  is a function of z only: 

( ) : ( , ).I z I z
λ

λ=  (4) 

Obviously, (0) 0,I
λ

=  and 
1 2

( ) ( ),I z I z
λ λ

≥ 0z ≠  if 

and only if 
1 2

0.λ λ> ≥  

 

3.1. Properties of integral function  

Based on Definition 3 and Lemma 1, we obtain the 

following properties of the integral function.  
 

Proposition 1: Iλ(z) has the following properties:  

1. (Homogeneity) Iλ(z) is homogeneous of degree two 

in z, i.e., Iλ(αz) = α2Iλ(z), α > 0. 

2. (Sub-Additivity) For all z1,z2∈Rn,  

1 2 1 2
( ) ( ) ( ).I z z I z I z

λ λ λ
+ ≤ +  (5) 

3. (Convexity) For each 0,λ ≥
1

( )I z
λ

is a convex 

function, i.e., for all z1,z2∈Rn and α1, α2≥ 0, 
1 2

1,α α+ =  

1 1 2 2 1 1 2 2
( ) ( ) ( ).I z z I z I z

λ λ λ
α α α α+ ≤ +  (6) 

4. (Common-Bound) For each λ≥ 0, Iλ(z) < ∞ for all 

z∈Rn implies that Iλ(z) < c||z||2 for some c.  

5. (Vertex-Bound) ( ) ,
i

I z
λ

< ∞ {1, , }i n∈ �  implies 

that, Iλ(z) < ∞ for all z∈Rn, where 
1

{ }n
i i
z

=

 is a standard 

basis of Rn. 

Proof: 1. The homogeneity property is a direct 

sequence of homogeneity property of system solution 

(see Lemma 1).  

2. It can be implied by Lemma~1 and Cauchy-

Schwartz inequality in the integral form [12],  

0

0
0

0

0
0

0

0
0

0

0
0

0

0

2

1 2 0 1 2

0

2

0 1 0 2

0

2 2

0 1 0 2

0

0 1 0 2

2

0 1

0

0

0

( ) sup ( , ; )

sup ( , ; ) ( , ; )

sup [ ( , ; ) ( , ; )

2 ( , ; ) ( , ; ) ]

sup ( , ; )

sup ( , ;

t t

t
t

t t

t
t

t t

t
t

t t

t
t

t t

t

I z z x t t z z dt

x t t z x t t z dt

x t t z x t t z

x t t z x t t z dt

x t t z dt

x t t

λ
λ

λ

λ

λ

λ

∞
−

≥

∞
−

≥

∞
−

≥

∞
−

≥

−

≥

+ = +

= +

= +

+ ⋅

≤

+

∫

∫

∫

∫

( )

0

0

0
0

0

0
0

2

2

2

0 1

0

2

0 2

0

1 2 1 2

2

1 2

)

2 sup ( , ; )

sup ( , ; )

( ) ( ) 2 ( ) ( )

( ) ( ) .

t

t t

t
t

t t

t
t

z dt

x t t z dt

x t t z dt

I z I z I z I z

I z I z

λ λ λ λ

λ λ

λ

λ

∞

∞
−

≥

∞
−

≥

+

⋅

= + + ⋅

= +

∫

∫

∫

 

This implies the result (5). 

3. With the help of Sub-Additivity and Homogeneity 

for 
1 2
, 0α α ≥  and 

1 2
1,α α+ =  we have  

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ).

I z z I z I z

I z I z

λ λ λ

λ λ

α α α α

α α

+ ≤ +

= +

 (7) 

This proves the Convexity of Iλ(z).  

4. Assume there exist λ≥ 0 such that Iλ(z) < ∞. Let 

1
{ }n

i i
z

=

 denote a standard basis of Rn, then for any 

-1Snz∈  (unit-ball of Rn), there exist 0,jα ≥
2

1

n

j

j

α

=

∑ =1, 

such that 

1

n

j j

j

z zα

=

=∑ . (8) 

Apply the Sub-Additivity of Iλ(z) and the Cauchy-

Schwartz inequality in the summation form [12] to get 

that, for all -1Snz∈  

( )

( )

2

1 1

2

1 1

( )

. ,

n n

j j j j

j j

n n

j j

j j

I z I z I z

I z c

λ λ λ

λ

α α

α

= =

= =

⎛ ⎞ ⎡ ⎤
= ≤⎜ ⎟ ⎢ ⎥

⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

≤ ≤

∑ ∑

∑ ∑

 (9) 

where 
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{ }1, ,

: max ( ).j
j n

c n I z
λ

∈

= ⋅

�

 (10) 

By homogeneity, we have Iλ(z) < c||z||2, z∈Rn. 

5. The property 5 follows directly from (9-10). 

 

Remark 1: Mathematically speaking, given the LTV 

system (1), property 4 actually shows that the pointwise 

boundness of the integral function implies a common 

upper bound of integral function. This property is key 

important to the exponential stability analysis of the LTV 

system. Moreover, it can be learned from the proof of 

property 4 that the proposed upper bound is fully 

determined by the integral function values on the 

standard basis, i.e., Iλ(zi)i
n

=1, which yields that the integral 

function approach is computationally effective. 

 

3.2. Exponential stability criterion of LTV systems 

In this subsection, a sufficient and necessary condition 

of exponential stability is presented for LTV systems (1) 

via the proposed integral function. 

 

Theorem 1: Consider the LTV system (1), the follow-

ing statements are equivalent.  

(1) The LTV system (1) is exponentially stable.  

(2) There exist λ > 1 and a standard basis {zi}i

n

=1 such 

that the integral function on the standard basis is finite, 

i.e., ( ) ,iI z
λ

< ∞ {1, , }.i n∈ �  

(3) There exists 1λ >  such that the integral function 

( )I z
λ

 is finite for all z∈Rn.  

Proof: We begin by (1) (2).⇒  Suppose the LTV 

system (1) is exponentially stable, i.e., there exists 

constants 1κ ≥  and (0,1)r∈  such that  

0

0
( , ; ) , [0, ).

t t

r
x t t z r z tκ

−

≤ ∈ ∞  (11) 

By this condition we have, for all z∈Rn 

0

0
0

0

0
0

0

2

0

0

22 2

0

22 2

2
2

2

( ) sup ( , ; )

sup ( )

( )

.
2 ln( )

t t

t
t

t t

t
t

t

I z x t t z dt

r z dt

r z dt

z

r

λ
λ

κ λ

κ λ

κ

λ

∞
−

≥

∞
−

≥

∞

=

≤

=

−
= < ∞

∫

∫

∫
 (12) 

Note that (2) (3)⇒  is a direct conclusion of property 

5 in Proposition 1. Thus, the rest work is to show 

(3) (1).⇒   

Assume λ > 1 such that Iλ(z) is finite. By the property 4 

in Proposition 1, we learn that, there exists constant c > 0 

such that  

0

0
0

2

0

0

( ) sup ( , ; ) ,
t t

t
t

I z x t t z dt c
λ

λ
∞

−

≥

= ≤∫
1

S .
n

z
−

∀ ∈  (13) 

This implies that, for any given ε > 0, there exists T0 > 0 

such that for all t0 ≥ 0 and z∈Sn-1 

0
0

0

1 2

0 0
( , ; ) , .

t T
t t

t T

x t t z dt T Tλ ε
+ +

−

+

< >∫  (14) 

Applying First Mean Value Theorem [12] to (14), we 

have that, there exists [ , 1]t T T
∗
∈ +  such that 

0
0 *

0

1 2

0 0 0
( , ; ) ( , ; ) .

t T
t t t

t T

x t t z dt x t t t zλ λ ε
+ +

−

∗
+

= + <∫  

 (15) 

On the other hand, for all 0t ≥ ,  

( )
*

*

*

2

0 0

2 2

0 0 * 0

0 0 0

2

0 * 0

2 2

0 0 * 0

( , ; )

( , ; ) ( , ; )

2 ( , ; ) ( ) ( , ; )

( , ; )

2 ( , ; ) ( , ; ) ,

t

t

t
T

t

t

t

x t t t z

d
x t t z d x t t t z

d

x t t z A t x t t z d

x t t t z

x t t z d x t t t z

τ τ
τ

τ τ τ τ

ς τ τ

+

= + + +

= + + +

+ +

≤ + + +

∫

∫

∫

 (16) 

where ς is the upper bound of || A(t)||. 

By Bellman-Gronwall Lemma [13], one thus has  

*
2 22

0 0 0 * 0
( , ; ) e ( , ; ) .

t t

x t t t z x t t t z
ς −

+ ≤ +  (17) 

In particular, for [ , 1]t T T∈ + , 

2 22

0 0 0 * 0
( , ; ) e ( , ; ) .x t t t z x t t t z

ς
+ ≤ +  (18) 

With the help of (15), we can further obtain that  

* *
2 2 2

0 0

2 1

0

( , ; ) e e

e , [ , 1], .

t t t t

t

x t t t z

t T T T T

ς ς

ς

ελ ε λ λ

ε λ

− − −

− +

+ ≤ =

≤ ∈ + >

 (19) 

By noting that the ε, λ and ς are all independent with T to 

get  

2 2

0 0 0
( , ; ) e , .t
x t t t z t T

ς
ελ λ

−

+ ≤ ∀ >  (20) 

Let 
0 0

2

0 0
[0, ) [0, ]

sup sup ( , ; ) ,

t t T

M x t t t z

∈ ∞ ∈

= +  then we have M 

< ∞ in view of (13) and (17), hence for all z∈Sn-1, 

0
2 1 2

0 0
( , ; ) (1 ) e ,

T t
x t t t z M

ς
ε λ λ

+ −
+ ≤ +  0t∀ ≥  (21) 

i.e.,  

0 0
2 1 ( )2

0( , ; ) (1 ) e ,
T t t

x t t z M
ς

ε λ λ
+ − −

≤ +  
0
.t t∀ ≥  (22) 

Furthermore, by denoting 01 2(1 ) e
T

M
ς

κ ε λ
+

= +  and 
1/ 2

,r λ
−

=  the result (22) can be reformulated as  

0
2 ( ) 1

0 0( , ; ) , , S .
t t n

x t t z t t zκλ
− − −

≤ ∀ ≥ ∈  (23) 

At last, applying the Homogeneity of system solution 

and noting that r∈ (0,1), we obtain the result that the 

LTV system is exponentially stable. 

 

Remark 2: From Theorem 1, to judge the exponential 

stability of LTV system (1), we just need to check if 
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there exists λ > 1 such that the integral function Iλ(z) on a 

standard basis {zi}i

n

=1
 is finite, which can be effectively 

solved using the algorithm to be developed later. 

 

3.3. Characterization of exponential decay rate 

In the following subsection, we define the radius of 

convergence of the integral function. It can be shown this 

quantity characterizes the exponential decay rate of the 

LTV system. 

 

Definition 4: The radius of convergence of integral 

function denoted by λ*, is defined as  

{ }*

sup 0 | ( ) , R .
n

I z z
λ

λ λ= ≥ < ∞ ∀ ∈  (24) 

The following theorem shows the relationship between 

the radius of convergence λ* and the exponential decay 

rate r*. 

 

Theorem 2: Given the LTV system (1) with a radius 

of convergence λ*, then for any 1/ 2( ) ,r λ
∗ −

>  there 

exists a constant 
r

κ  such that 0

0
( , ; ) ,

t t

r
x t t z r zκ

−

≤  

0
.t t≥  Furthermore, 1/ 2( )λ

∗ − is also the smallest value 

for the previous statement to hold. In other words, the 

exponential decay rate 1/ 2( ) .r λ
∗ ∗ −

=  

The proof is similar with (1) (3)⇒  and (3) (1)⇒  in 

the proof of Theorem 1 by considering the scaled LTV 

system with system matrix ( ) ,A t

r
 therefore we skip the 

proof here. 

 

3.4. Computation of integral function 

All the analysis methods proposed in the previous 

subsections require to compute the integral functions of 

LTV systems on a standard basis {zi}i

n

=1
. Therefore, we 

develop an algorithm for computing the truncation of 

integral functions as the approximations of Iλ(z).  
 

Definition 5: For each T > 0, define  

0

0
0

2

0

0

( ) sup ( , ; ) .
T

t tT

t
t T

I z x t t z dt
λ

λ
−

≤ ≤

= ∫  (25) 

The following proposition shows the relationship 

between ( )T
I z
λ

 and Iλ(z). 
 

Proposition 2: Consider the LTV system (1), the 

following two statements hold.  

1. For λ > 0, the integral function Iλ(z) is infinite for 

some z∈Rn, then ( )T
I z
λ

 will converge to infinite with 

the increase of T. 

2. For λ > 0, the integral function Iλ(z) is finite for all 

R ,
n

z∈  then lim ( ) ( ).
T

T
I z I z
λ λ→∞

=  

Proof: 1. The apagoge is employed. Assume that there 

exists z∈Rn, Iλ(z) is infinite, but ( )T
I z
λ

 is bounded in 

(0, ),T ∈ ∞  i.e., there exists 0M >  such that for all 
1

S ,
n

z
−

∈  ( ) , 0.T
I z M T
λ

≤ ∀ ≥  This implies that, for all 

0
[0, ]t T∈  and 1

S
n

z
−

∈  

0
0

0

1 2

0
( , ; ) ,

t T
t t

t T

x t t z dt Mλ
+ +

−

+

<∫  
0
.T T∀ >  (26) 

By the similar deduction with the proof for (3) (1)⇒  

in Theorem 1, we learn that, there exists constant 0c >  

such that  

0

1
( )

2
0 0( , ; ) , .

t t

x t t z C t tλ
− −

≤ ≥  (27) 

From Theorem 2, the above condition implies that λ-1/2 

> (λ*)-1/2, which further yields λ < λ*. However, this is in 

contradiction with the assumption that Iλ(z) is infinite.  

2. For λ < λ*, let 
1

( ) / 2,λ λ λ
∗

= +  then we have, 

1
( ) ,I z

λ
< ∞ z∈Rn. It can be learned from Theorem 2, 

there exists constant 0κ >  such that  

0

1
( ) 22

0 1 0( , ; ) , .
t t

x t t z z t tκλ

− −

≤ ≥  (28) 

With the help of this inequality, we have  

00

2

0

2( )( )2
1

2
2

1 1

( ) ( ) ( , ; )

.
ln( / )

T t

T

t tt t

T

T

I z I z x t t z dt

z dt

z

λ λ
λ

κ λ λ

κ λ

λ λ λ

∞

∞
− −−

− ≤

≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∫

∫  (29) 

Note that 
1

0 λ λ< < , then letting T converges to 

infinity, we have, for all R
n

z∈ ,  

lim ( ) ( ).
T

T
I z I z
λ λ→∞

=  (30) 

From the above proposition, an approximation of the 

integral function Iλ(z) is provided by ( )T
I z
λ

 for T large 

enough, which can be obtained by the following 

algorithm. 

 

Algorithm 1: Computation of ( )I z
λ

 

1. Initialize / 2
1, 0

T
T I

λ
= =  and 0.01ε = ; 

2. Repeat 2T T← ; 

3. Set 10Tζ = ; 

4. Repeat 2ζ ζ← ; 

5. Set ,
T

T
M

ζ
ζτ = = ; 

6. for each { }0, ,k M∈ � , do 

7. 
0
t kτ= ; 

8. { }
2 1

0 0 01
( ) ode45( , , ,[ , ]);

N

i i
x t LTV t z t t T

+

=

⎡ ⎤ = +
⎣ ⎦

 

9. [ ]2 1 2 2 1

1

( ) ( ) 4 ( ) ( )
6

N

T

i i i

i

T
I z x t x t x t

N
λ − +

=

= + +∑  

10. end for 

11. Until , , / 2( ) ( )T T
I z I z

ζ ζ
λ λ ε− < ; 

12. Set ,( ) ( )T T
I z I z

ζ
λ λ= ; 

13. Until / 2( ) ( )T T
I z I z
λ λ

ε− < ; 

14. Return ( )T
I z
λ

. 

 

By increasing simulation time T and decreasing the 
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step-length τ, we can obtain the underestimates of Iλ(z) 

with any precision as permitted by the numerical 

computation errors. Therefore, the exponential stability 

of LTV system can be judged by checking the values of 

Iλ(z) on the standard basis {zi}i

n

=1. Furthermore, by 

computing Iλ=
{1, , }
max ( )

i n

I z
λ

∈ �

 for an increasing sequence 

of λ > 0, an underestimate of λ* can also be obtained. 

 

4. ILLUSTRATIVE EXAMPLES 

 

To illustrate the established results, two classical 

examples from the literatures are considered. 

Example 1: Consider a mass-spring system where 

both damping and elastic constant coefficients are time-

varying, as presented for instance in [8,10]. Let α be a 

positive constant parameter. The system matrix is given 

by  

0 1
( )

(2 sin( )) (2 cos( ))
A t

t tα α

⎡ ⎤
= ⎢ ⎥− − − −⎣ ⎦

. 

It is obvious that A(t) is continuous, and from [8], the 

eigenvalues of A(t) are 

2 2
0.5( sin( ) 2) cos ( ) 4 (sin( ) cos( )) 4,t t t tα α α− ± + − −  

which implies that A(t) is bounded for any given α > 0, 

hence the satisfaction of assumption on A(t).Therefore, 

the proposed integral function approach is applicable to 

the exponential stability analysis of this example. 

The basis consist of 
1

(1,0)Tz =  and 
2

(0,1)Tz =

 is first 

chosen. Then, the Algorithm 1 is employed to compute 

the integral function on z1 and z2 for different α and λ > 0. 

It can be found that for any given α < 3.16, there exists λ 

> 1 satisfying Iλ 1,2
( )z  are finite, which indicates that the 

LTV system in Example 1 is exponential stable accord-

ing to Theorem 1. This result is quite consistent with [10], 

and hence demonstrates the efficacy of the integral 

function approach. 

Furthermore, for any given α < 3.16 in this example, 

the exponential decay rate can be obtained. For instance 

α = 3, Iλ = max{Iλ(z1), Iλ(z2)} for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9 and 1.0 are computed by Algorithm 1. 

The obtained is plotted in Fig. 1, an estimation of λ* = 

1.082 can be obtained by the extrapolation method, thus 

the exponential decay rate is provided as r* = (λ*)-1/2 = 

0.9614 according to Theorem 2. This result was never 

provided in any existing references, which illustrates the 

advantage of the proposed integral function approach. 

The next example illustrates that the proposed integral 

function approach can also be useful in analysis of the 

unstable LTV systems. It is effective to detect the 

instability, also show its exponential divergence rate. 
 

Example 2: The second example is an unstable 

system, which has been proved in [8,10,14]. The system 

matrix is given by 

2

2

1 1.5cos ( ) 1 1.5sin( ) cos( )
( )

1 1.5sin( ) cos( ) 1 1.5sin ( )

t t t
A t

t t t

⎡ ⎤− + −
= ⎢ ⎥

− − − +⎢ ⎥⎣ ⎦
. 
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Fig. 1. Simulation results of Example 1. 

 

0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

λ

1
/I

λ

 

Fig. 2. Simulation results of Example 2. 

 

It can be easily verified that A(t) is continuous and 

bounded, i.e., the assumption on A(t) is satisfied. Similar 

to Example 1, the standard basis is chosen as z1 = (1,0)T 

and z2 = (0,1)T. Then, Algorithm 1 is used to compute the 

Iλ = max{Iλ(z1), Iλ(z2)} for λ = 0.05, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35 and 0.4, respectively. Since Iλ at λ = 0.4 is 

infinite, hence the LTV system in this example is 

unstable from Theorem 1. This result is consistent with 

[8,10,14]. 

Furthermore, the computed results on Iλ are plotted in 

Fig. 2 such that an estimated of λ* = 0.3679 can be 

obtained by the extrapolation method, thus the 

exponential divergence rate is provided as r* = (λ*)-1/2 = 

1.648 according to Theorem 2. 

 

5. CONCLUSION 

 

By applying the Bellman-Gronwall lemma, this paper 

extended the recent proposed integral function approach 

to the exponential stability analysis of the linear time-

varying (LTV) systems. It was found that the improved 

integral function can fully characterize the exponential 

stability of LTV systems, and the exponential decay rate 

of system trajectories can be exactly computed by the 

radius of convergence of the integral function. Moreover, 

the algorithm for the computation of the integral function 

is developed, and two classical examples illustrate the 

efficacy and advantage of the proposed approach. 
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Furthermore, we will consider the possibility to extend 

the integral function approach to the robust stability 

analysis of LTV systems with time-varying polytopic 

uncertainty, the key idea is to consider such kind of LTV 

systems as a special class of time-varying switching 

systems with infinite switching modes, then characterize 

its exponential stability using a new class of integral 

functions. Such a possibility is currently under study. 
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