
Roadmap Based Pursuit-Evasion and Collision
Avoidance

Volkan Isler, Dengfeng Sun and Shankar Sastry
CITRIS

University of California Berkeley, CA, 94720
Email: {isler,sundf,sastry}@eecs.berkeley.edu

Abstract— We study pursuit-evasion games for mobile robots
and their applications to collision avoidance. In the first part
of the paper, under the assumption that the pursuer and the
evader (possibly subject to physical constraints) share the same
roadmap to plan their strategies, we present sound and complete
strategies for three different games. In the second part, we utilize
the pursuit-evasion results to post-process the workspace and/or
configuration space and obtain a collision probability map of
the environment. Next, we present a probabilistic method to
utilize this map and plan trajectories which minimize the collision
probability for independent robots.

I. I NTRODUCTION

Motion planning is one of the fundamental problems in
robotics. Broadly speaking, it is the problem of selecting a
set of actions or controls which, upon execution, would take
the robot from a given initial state to a given final state.

Motion planning is a challenging problem whose complex-
ity stems primarily from two sources: environment complexity
and system complexity. The former refers to the complexity
of planning trajectories for perhaps simple robots but in
complex environments. For example, finding shortest paths
in 3D is an NP-hard problem [1]. By system complexity,
we refer to the complexity of planning trajectories for com-
plex, high degree-of-freedom systems even in the absence of
obstacles. Traditionally, the former complexity is addressed
by algorithmic/combinatorial techniques and data structures
(e.g. Dijkstra’s algorithm on visibility graphs) whereas the
latter type of complexity is addressed using control-theoretic
techniques.

Developing techniques that address both types of complex-
ity has been the focus of significant recent research (see [2],
[3] for an overview). Notable success has been achieved by
sampling-based roadmap methods [4], [5] which we review in
Section II.

In this paper, we present algorithms which solve two dy-
namic motion planning problems that take place on roadmaps:
pursuit-evasion and collision avoidance.

In the first part of the paper, we study pursuit-evasion games
that take place on roadmaps. In a pursuit-evasion game, a
pursuer tries to capture an evader while the evader is tryingto
avoid capture. In robotics, solutions to pursuit-evasion games
are used to obtain worst-case guarantees to collision-avoidance
problems and, in general, to motion planning in dynamic envi-
ronments. For example, suppose two robots are independently
operating in the same workspace. When there is a danger of

collision, each robot can execute an evasion strategy obtained
as the solution of a pursuit-evasion game where the other robot
acts as a pursuer trying to collide. Such a solution would
guarantee that each robot will avoid collision regardless of the
actions of the other robot. In Section III, we present solutions
to pursuit-evasion games on roadmaps. Our model studies
interactions between a pursuer and an evader who use the
same roadmap to plan their trajectories. Under this assumption,
we present algorithms based on the dynamic programming
principle to generatesound and completestrategies for both
players.

The pursuit-evasion models we study in the first part assume
that the players haveglobally conflicting objectives. In this
model, the pursuer is truly adversarial and its objective isto
collide with the evader. In most motion-planning settings,such
a model can be too strict for modeling collision-avoidance.
Typically, robots plan their trajectories independently.How-
ever, when they get close to each other, they may switch to a
reactive collision-avoidance mode and become unpredictable.
At this point, it is desirable to have the worst-case guarantees
given by the game theoretic formulation. In the second part of
the paper (Section IV) we propose a model for such scenarios.
In this formulation, independent (neither collaborating nor
conflicting) agents operate in the workspace while avoiding
collisions locally. We utilize the results of the first part to
definelocal pursuit-evasion gameswhere the players react to
each other only when they are within a given interaction zone.
Under this model we show how
• the workspace and/or configuration space can be post-

processed to obtain a collision probability map of the
environment,

• the players can compute worst-case collision avoidance
strategies after they are enter the interaction zone, and

• compute optimal trajectories that minimize the expected
probability of a collision.

We start with an overview of related literature.

A. Related work

Due to their many applications, literature on pursuit-evasion
games is vast. To model the adversarial nature of the game,
pursuit-evasion games are usually studied in a game theoretic
framework [6], [7]. The conditions under which the pursuer
can capture the evader are obtained by studying a Hamilton-
Jacobi-Isaacs equation which brings together the system equa-

tions of the pursuer and the evader. This approach has the
advantage of yielding a closed-form solution of the game.
Unfortunately, as the environments get complicated, solving
Hamilton-Jacobi-Isaacs equations become intractable.

Recently, there has been increasing interest in developing
pursuit strategies (which incorporate sensing limitations) to
capture intelligent evaders contaminating a complex environ-
ment [8], [9], [10].

In robotics, complex environments are modeled either
topologically (usually with a graph-based representation)
or geometrically (usually a polygonal/polyhedral representa-
tion). Classical work on pursuit-evasion games on graphs
includes [11], [12], [13], [14]. See [15], [16] for recent results.
Pursuit-evasion games in polygonal environments are also well
studied. See [17], [18], [19] and recently [20], [21], [22].

As mentioned earlier, solving pursuit-evasion games be-
tween robots subject to physical constraints (such as turning
radius) which takes place in a complex environment is very
challenging. Note that such problems inherit all difficulties of
traditional motion-planning. To tackle these two difficulties,
our approach in this paper is to reduce a game between two
robots subject to physical constraints to a pursuit-evasion game
that takes place on a graph, a.k.a. the roadmap. We defer the
details to Section II.

Our work is also directly related to the work in multi-robot
planning and collision avoidance. For basic results in multiple
robot planning see [23]. For recent work in collision avoidance
and multi-robot planning see [24], [25], [26], [27]. Recent
research on extending the probabilistic roadmap frameworkto
multi-robot and dynamically changing environments can be
found in [28], [29], [30], [31].

II. N OTATION AND PRELIMINARIES

In this section, we present the main concepts and the
notation used throughout the paper. LetC be the configuration
space of a robot. We assume that we are given a discrete
set of pointsC̃ that represent the configuration space. Such a
set can be obtained, for example, by randomly sampling the
configuration space as in the case of probabilistic roadmapsor
by putting a grid on the configuration space which is practical
for low dimensional configuration spaces. When the robot is
in a configurationc∈C, we use the notationW(c) to denote
the subset of the workspace occupied by the robot.

We are also givenU = {u1, . . . ,uK}, a set of deterministic,
‘simple’ controllers for the robot. Given two arbitrary configu-
rationsci ,c j ∈ C , the notationci→u c j is interpreted as:when
in configuration ci , if the robot executes controller u∈U, it
reaches configuration cj in a single time unit.The significance
of the simplicity of the controllers inU lies in easy verification
of ci →u c j for arbitrary configurations.

The main data structure that will be utilized throughout the
paper is the notion of atimed roadmap. A timed roadmap is
a graphG = (V,E). The vertex setV is given by the discrete
sampling of the configuration space,V = C̃ . Let c : V→ C̃ be
a bijection such thatc(v) returns the configuration associated
with the vertexv. The edge setE is obtained as follows:

For any vi ,v j ∈ V, the edge(vi ,v j) ∈ E if and only if there
exists a simple controlleru∈U such thatc(vi)→u c(v j). The
function u : E→U returns the controller associated with an
edge1. For a given vertexv, N(v) = {v′ : (v,v′) ∈ E} denotes
the neighborhood ofv.

For we are interested in pairwise interactions between the
robots, we define thestatic interaction spaceIs = {(vi ,v j) :
vi ,v j ∈ V}. Similarly, the dynamic interaction spaceId =
{(ei ,ej) : ei ,ej ∈E}. For pursuit-evasion games, we assume the
availability of a capture function,capture: Id→{true, f alse}
which, given (ei ,ej) ∈ Id with ei = (vi ,v′i) and ej = (v j ,v′j),
capture((ei ,ej)) returns true if and only if capture occurs
while the first robot is executingvi →u(ei) v′i and the second
robot is executingv j →u(ej) v′j . Again, the simplicity of the
controllers become a crucial factor in computing the capture
function. In addition, note that for simplicity of notationwe
assume that the robots use the same roadmap for planning
their trajectories2.

We demonstrate these concepts with the well-known Dubins
car, which will be used as an ongoing example for the pursuit-
evasion results.

A. Dubins Vehicle

We model each agent as a Dubins car by assuming that an
agent moves at a constant forward speedus and its maximum
steering angle isφmax, which results in a minimum turning
radius ρmin. As the agent travels, its movement is governed
by the following dynamics:

ẋ(t) = uscosθ(t)

ẏ(t) = ussinθ(t)

θ̇(t) = u

(1)

where (x(t),y(t)) ∈ R
2 is the position of the agent at time

t and θ(t) is the orientation;u is chosen from the interval
U = [− tanφmax, tanφmax].

Let us define three motion primitives such that in each
motion primitive a constant steeringu is applied:

Symbol S L R
Steeringu 0 −umax umax

S primitive means that an agent moves straight ahead, while
L and R primitives mean that an agent turns as sharply as
possible to the left and right, respectively. The primitiveC
refers to eitherL or R.

Dubins showed in [32] that given any two configurationsc1

and c2, the shortest path can be expressed as a combination
of no more than three of these motion primitives. Dubins
also showed that only six “words” (combinations of the three
motion primitives) are possible:

{LRL,RLR,LSL,RSL,LSR,RSR}. (2)

1We assume that there is a unique controller associated with each edge and
ambiguities are resolved arbitrarily.

2If there are two different roadmaps, we simply define the interaction space
as the product of these two graphs.

For the Dubin’s car, we start with a discretization of
the configuration spaceW × SO(1) where W denotes the
workspace. We restrict ourselves to three types of basic
controllers corresponding to each motion primitive: “turnleft
α degrees for 1 time-unit”, “turn rightα degrees for 1 time
unit” and “move straight” for 1 time unit. We connect two
configurationsci ,c j if there c j is reachable fromci by the
execution of a simple controller.

Figure 1 shows a simple workspace and the shortest trajec-
tory of an agent moving from configurationc1 = [2,2, π

2] to
c2 = [14,8, π

2]. In this scenario, the orientation angles inC are
coarsely discretized byπ/2.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

Fig. 1. An agent moves fromc1 to c2. Diamonds mark the intermediate
configurations the agent passes inC̃ . Obstacles exist in the areas marked
black.

Collision detection:We define asafety distance rs such that
whenever the distance between agentss1 and s2 is less than
rs, collision occurs. Notice that in practicers is time varying
depending on both positions and orientations of the agents.
In this paper we assume that the agents are in the form of
discs and assume that the radius of an agent isr. In this case,
rs = 2r.

Since every trajectory of an agent is a combination of the
motion primitives, for collision detection between agents, it
is enough to check whether there is collision between any
C−C, C−S andS−S primitives along the two trajectories of
the agents.

θ0

α

(xc,yc)

c0, t0

Lα

ρ

c1, t1

Fig. 2. L primitive

Consider the curve of anL primitive centered at(xc,yc)
in Figure 2. The curveLα starts from configurationc0 =
(x0,y0,

π
2 + θ0) at time t0 and ends at configurationc1 =

(x1,y1,
π
2 + θ0 + α) at time t1. Without loss of generality,

assumet0 = 0, t1 = Ts. The coordinates(x(t),y(t)) at time
t ∈ [0,Ts] can be derived as:

x(t) = xc +ρcos(umaxt +θ0)

y(t) = yc +ρsin(umaxt +θ0)
(3)

Similarly for anR primitive, we have

x(t) = xc +ρcos(−umaxt +θ0)

y(t) = yc +ρsin(−umaxt +θ0)
(4)

In the following, we useL primitive as a representative for
C type primitives. A similar result can be derived forR
primitives.

c0, t0

c1, t1

θ0

Fig. 3. S primitive

An S primitive is shown in Figure 3, which starts atc0 =
(x0,y0,θ0) and ends atc1 = (x1,y1,θ0). The coordinates att
are (again, we assumet0 = 0, t1 = Ts)

x(t) = x0 +ust cosθ0

y(t) = y0 +ust sinθ0
(5)

Suppose the positions ofs1 and s2 are (x1(t),y1(t)) and
(x2(t),y2(t)) at time t. The distance betweens1 ands2 is

d(t) =
√

[x1(t)−x2(t)]2 +[y1(t)−y2(t)]2. (6)

wherexi(t),yi(t), i = 1,2, are defined in Equations (3, 4, 5).
Clearly d(t) is a continuous function on[0,Ts]. To detect if
collision exists, it is enough to check if

min
t∈[0,Ts]

d(t) < rs. (7)

III. SOLUTIONS TO TYPICAL PURSUIT-EVASION PROBLEMS

USING THE TIMED-ROADMAP

In this section, we show how typical pursuit-evasion prob-
lems can be solved when the motion-plans of the players are
restricted to the timed-roadmap.

We use the following formulation for all the games we
consider. The games take place between a pursuerP and
evaderE . We assume that the players are identical and they
plan their trajectories using the same timed-roadmap (Hence,
they use the same controller setU). In this section, we
consider games with full state information where the players
can observe each other’s configuration throughout the game.
We begin with the following basic version:

GAME 1: Given initial configurationsp0 and e0, can P

eventually collide withE?
The algorithm in Table I allows us to preprocess the

static interaction space and answer this query for all initial
conditions.

After the execution of the algorithm, the variable
(p,e).timestampis set to the number of time-steps to a colli-
sion after the pursuer and the evader reach the configurations
p and e respectively. The following two lemmas show that
Algorithm Collision-Detection can used to solve GAME 1
in a sound and complete fashion. We assume, without loss
of generality, that the evader wants to maximize the time to
collision and the pursuer wants to minimize it.

Fig. 4. An instance of GAME 1.Left: When the initial configuration of the pursuer is given by the green arrow, it can cause a collision with all the red
evader configurations. The evader configurations marked blueyield collisions with the walls.Right: A sample collision (green: evader, red: pursuer).

Algorithm Collision-Detection
For each pair(p,e) ∈ Is

(p,e).timestamp← ∞
For t = 1 to |Is|,

For each pair(p,e) ∈ Is with (p,e).timestamp= ∞
If ∀e′ ∈ N(e),∃p′ ∈ N(p) with

timestamp rule :
(p′,e′).timestamp< t or

collision rule :
capture((p, p′),(e,e′))

then
(p,e).timestamp← t

TABLE I

SOLUTION OF GAME 1

Lemma 1:Let p0 and e0 be the initial configurations of
the players. If at the end of Algorithm Collision-Detection
(p0,e0).timestampis finite, then for every evader trajectory,
there exists a pursuer trajectory that results in a collision.

Proof: By induction on the timestamp of(p0,e0). For the
basis, consider initial configurations with(p0,e0).timestamp=
1. When (p0,e0).timestampis updated, only the collision
rule is applicable. Therefore, for every possible action ofthe
evader, the pursuer can cause a collision. For the inductive
step, assume all initial conditions with timestamp less than k
lead to collision. Suppose(p0,e0).timestamp= k. Then, by the
timestamp rule, no matter where the evader moves, the pursuer
can either reach a state whose time-stamp is less thank and
cause a collision from then on (by the inductive hypothesis)
or directly cause a collision during the transition.

Lemma 2:Let p0 and e0 be the initial configurations of
the players. If at the end of Algorithm Collision-Detection
(p0,e0).timestampis infinite, then for every pursuer trajectory,
there exists an evader trajectory that avoids a collision.

Proof:: Let p and e be the current configurations of
the pursuer and the evader respectively. We observe that
the evader can always postpone collision until the players
reach configurationspf and ef with (pf ,ef).timestamp= 1.
This is because, these are the only configurations where the

pursuer can cause a collision for alle′ ∈ N(e). For all other
configuration pairs(p,e), there must be a next configuration
e′ for which the timestamp rule applies. Hence, the evader can
move there and postpone collision to the next time step.

Now consider (p0,e0). Suppose, for contradiction,
(p0,e0).timestampis infinite but the evader can not avoid
collision. This means that the current configuration pair
(pt ,et).timestamp must become one at some timet.
However, since(p0,e0).timestamp is infinite, there must
be a configuratione′ ∈ N(e) such that for every possible
p′ ∈ N(p0), the transitione→ e′, p→ p′ is collision free
and the resulting pair(p′,e′) has timestamp infinite –
otherwise the timestamp of(p0,e0) would be updated. This
argument shows that the evader can guarantee that at all
times (pt ,et).timestamp remains infinite. This contradicts
with an eventual collision because the timestamp would never
become 1.

Game 1 is illustrated in Figure 4.
Next, we present a variant of GAME 1, where the evader’s

goal is to arrive at a configurationef and simultaneously avoid
a collision.

GAME 2: Given initial configurationsp0 and e0, and a
destinationef for E , canP collide with E before it arrives at
ef ?

Algorithm Navigation
For each pair(p,e) ∈ Is

(p,e).timestamp← ∞
For each pair(p,e) ∈ Is with ef ∈ N(e)

If ∀p′ ∈ N(p) capture((p, p′),(e,ef)) = f alse then
(p,e).timestamp← 0

For t = 1 to |Is|,
For each pair(p,e) ∈ Is with (p,e).timestamp= ∞

If ∃e′ ∈ N(e) such that∀p′ ∈ N(p), (p′,e′).timestamp< t then
(p,e).timestamp← t

TABLE II

SOLUTION OF GAME 2

The following lemmas are analogous to Lemmata 1 and
2 and show the correctness of the algorithm. The proofs are

similar and hence omitted.
Lemma 3:Let p0 and e0 be the initial configurations

of the players. If at the end of Algorithm Navigation,
(p0,e0).timestamp= k < ∞, then the evader can reachef in k
steps while avoiding a collision.

Lemma 4:Let p0 and e0 be the initial configurations
of the players. If at the end of Algorithm Navigation
(p0,e0).timestampis infinite, then the pursuer can collide with
the evader before it reachesef .

Finally, we present the solution of a dog-fight game. First
we define the capture condition.capture((p, p′),(e,e′)) is true
if and only if:

(i) during the transition fromp to p′, the angle between the
heading of the pursuer and the ray from the pursuer to the
evader becomes less than a threshold

(ii) the distance between the players is less than a threshold
(iii) there are no obstacles between the players
We are now ready to define the dog-fight game:
GAME 3: Given initial configurationsp0 and e0, can E

captureP beforeP capturesE?
Note that during a dog-fight, the roles of the pursuer and the

evader are not uniquely defined. The players must both avoid
a capture and capture simultaneously. However, Algorithm
Collision-Detection can be modified to solve GAME 3 as
follows. We run the algorithm with the modified capture
function.

Algorithm DogFight
For each pair(p,e) ∈ Is

(p,e).timestamp← ∞
For t = 1 to |Is|,

For each pair(p,e) ∈ Is with (p,e).timestamp= ∞
If ∀e′ ∈ N(e),∃p′ ∈ N(p) with

timestamp rule :
(p′,e′).timestamp< (e′, p′).timestampor

collision rule :
capture((p, p′),(e,e′))

then
(p,e).timestamp← t

TABLE III

SOLUTION OF GAME 3

Lemma 5:Let p0 ande0 be the initial configurations ofP
andE respectively.

(i) If at the end of Algorithm Collision-Detection
(p0,e0).timestamp≤ (e0, p0).timestamp, thenP wins the dog-
fight game.

(ii) If, (p0,e0).timestamp≥ (e0, p0).timestamp, thenE wins
the dog-fight game.

The proof of Lemma 5 is similar to the proof of Lemma 1.
Note that, it is possible to have(p0,e0).timestamp=

(e0, p0).timestamp < ∞ and both players win the
game simultaneously as well as(p0,e0).timestamp=
(e0, p0).timestamp= ∞ with no winner. These cases are
illustrated in Figure 5.

IV. A PROBABILISTIC APPROACH FOR COLLISION

AVOIDANCE

In the previous section we modeled the collision-avoidance
problem as a pursuit-evasion game where one of the robots
tries to cause collision whereas the other tries to prevent it. The
advantage of this formulation is that it requires no coordination
between the robots and if a solution exists, we obtain a worst-
case guarantee for avoiding collisions.

However, for most applications such an adversarial formu-
lation may be too strict. On the other hand of the spectrum,
we can have truly cooperative robots, which broadcast their
destinations to a central location where a multi-robot collision-
free plan is computed. Even though this approach has the
advantage of producing optimal, cooperative motion plans,it
has two main drawbacks. First, it is centralized and requires
that the destinations of all robots are known apriori which may
not be feasible for some applications. Second, computation
of multi-robot motion plans is provably computationally hard
(c.f. [23] for details).

In this section, we propose an intermediate solution. We
start with the case of two robots, operating independently in
the same workspace. Given the configuration spaceC , we
preprocess it by running the Collision-Detection Algorithm
given in Table I. Recall that the output of the algorithm is a
timestamp for each pair of configurations which is equal to
the maximum length of the path leading to a collision.

Next, for each configurationc ∈ C , we definea reaction
zone, R (c) with the interpretation that a robot in configuration
c reacts to another robot in configurationc′ only if c′ ∈ R(c).
Typically R (c) is given by configurations that are visible from
c whose distances are within a certain threshold.

We say a configurationc′ ∈ R(c) is a dangerous configura-
tion for c if (c′,c).timestampis finite. This is analogous to a
pursuit-evasion game that starts only if the pursuer entersthe
reaction zone of the evader. As the robots have no information
about their trajectories, configurations which may lead to a
possible collision are marked as dangerous. For illustration
purposes, in Figure 6 we present a 2D configuration space
where two configurations, their reaction zones and correspond-
ing dangerous states are marked.

A. Configuration space post-processing for collision avoid-
ance

The notion of a dangerous configuration allows us to
post-process the configuration space to obtain a collision-
probability map. Letp : C → [0,1] be our prior belief that
the pursuer is present at a given configuration. If we have no
information,p will be uniform. When our robot (evader) visits
a configurationc, we define the probability of collision atc
as:

P [c] =

∑
{c′:c′is dangerous for c}

p(c′)

∑
{c′:c′∈R (c)}

p(c′)
(8)

p
0

e
0

Fig. 5. An instance of GAME 3.Left: For the green pursuer initial configuration: If the evader starts with initial configurations in red, it will lose the dog-fight
game; in this case,(p,e).timestamp< (e, p).timestamp. If the evader starts with initial configurations in yellow,both players win the game simultaneously;
in this case(p,e).timestamp= (e, p).timestamp< ∞. If the evader starts with initial configurations in blue, itwill lose the game due to a collision with a
wall. For all other evader initial configurations, both players chase each other forever and can not win the game.Right: A sample collision (green: evader,
red: pursuer).

(7,58)

10 20 30 40 50 60 70 80 90 100

−10

0

10

20

30

40

50

60

(10,8)

10 20 30 40 50 60 70 80 90 100

−10

0

10

20

30

40

50

60

Fig. 6. Reaction zones (yellow) and dangerous configurations (red) for two configurations.

Workspace

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

16

18

20

Collision Probability

Fig. 7. A sample workspace and collision probabilities. Brighter colors indicate higher collision probability.

The collision map for a 2D configuration space is presented
in Figure 7.

B. Trajectory planning

Once we obtain the collision probabilities, we can obtain
optimal collision avoiding paths using a Markov Decision
Process (MDP) formulation. A finite state Markov Decision
Process is given by a finite set of statesS, a finite set
of actions A, transition probabilitiesP(r|s,a) of arriving at
state r when actiona is taken from states, and rewards
R(r|s,a) from arriving at stater from states via action a.

A policy π is a function that takes a state-action pair(s,a)
and returns a real number in [0,1], indicating the probability
of taking actiona when in states. An optimal policy is a
policy which maximizes expected return at each state. Given
a finite MDP it is possible to find an optimal policy using
dynamic programming or its variants such as Policy Iteration.
A comprehensive introduction to MDPs can be found in [33],
[34].

To compute trajectories from all initial configurations to a
given final configurationcf ∈ C , we build an MDP as follows:

The state space of the MDP is given byS= C ∪{COL}
whereCOL is a special state to denote collision. The set of
actions is equal to the set of controlsA= U. For eachc,c′ ∈C
with c→u c′, we have

P(c′|c,u) = 1−P [c′]

P(COL|c,u) = P [c′]

and the corresponding rewards:

R(c′|c,u) = −1

R(COL|c,u) = −∞

We add the special cases

P(cf |cf ,u) = 1

P(COL|COL,u) = 1

for all u with

R(cf |cf ,u) = 0

R(COL|COL,u) = −∞

All other rewards and probabilities are zero. Once we build
the MDP, we compute the optimal policy. In Figure 8, the
optimal collision avoiding policy for an arbitrary final state is
displayed in contrast to the shortest-path policy.

C. Multi-robot settings

To explore the utility of the collision probabilities we
performed a simulation where our robot tries to reach a
final configuration amidstk = {1, . . . ,10} robots performing
a random walk. For eachk, we performed 1000 experiments
and compared the success rate of the MDP optimal policy
with the shortest path policy. The results are summarized in
Figure 9.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Success Rates

SP
MDP

Fig. 9. Success rates in the presence ofk (horizontal axis) robots performing
a random walk for the shortest path and optimal MDP policies.

V. CONCLUSION

In the recent years, roadmap based methods have been
extremely successful for motion-planning in complex configu-
ration spaces. In this paper, we address two important robotics
problems, pursuit-evasion and collision avoidance, and present
solutions based on roadmaps.

In the first part of the paper, by using time aware controllers
to build the roadmaps, we show how to obtain solutions to
various pursuit-evasion games. The algorithms are based on
the dynamic programming (DP) principle and inherit both
advantages and disadvantages of DP based approaches. The
primary advantage is in the soundness and completeness of
the algorithms. However, their running times increase withthe
dimension of the configuration space; making them practical
for only low-dimensional configuration spaces. In our future
work, we plan to investigate this issue further.

In the second part of the paper, we presented a probabilistic
framework for collision avoidance. We study a scenario where
the robots react to each other only when they enter a certain
reaction-zone. We assume that the robots are independent,
however once they are within the reaction zone, they become
unpredictable. To capture this unpredictability, we modelthem
as adversarial pursuers and utilize the results from the first
part to obtain worst-case guarantees for collision avoidance.
This formulation allows us to process the workspace and
build a collision-probability map. Afterwards, optimal colli-
sion avoiding trajectories are computed using standard MDP
algorithms. Preliminary simulations demonstrate the utility
of our approach. In our future work, we plan to investigate
the effect of the diameter of the collision reaction zone and
implement the algorithm on real robots to further study their
feasibility.

ACKNOWLEDGEMENTS

This work has been supported in part by NSF grants IIS-
0438125 and EIA-0122599. We gratefully acknowledge the
industrial support through CITRIS organization.

REFERENCES

[1] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” in28th Annual IEEE Symposium on Foundations
of Computer Science, 1987, pp. 49–60.

[2] S. M. LaValle, Planning Algorithms. [Online], 2004, available at
http://msl.cs.uiuc.edu/planning/.

[3] H. Choset and et. al.,Principles of Robot Motion: Theory, Algorithms,
and Implementation. MIT Press, 2004.

[4] L. E. Kavraki, J.-C. Latombe, and R. Motwani, “Randomized query
processing in robot path planning,”Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 50–60, August 1998.

[5] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the re-
lationship between classical grid search and probabilistic roadmaps,”
International Journal of Robotics Research, 2003.

[6] R. Isaacs,Differential Games. Dover, 1965.
[7] T. Basar and G. J. Olsder,Dynamic Noncooperative Game Theory.

SIAM, 1998.
[8] J. Hespanha, H. J. Kim, and S. Sastry, “Multiple-agent probabilistic

pursuit-evasion games,” inIn Proc. of the 38th Conf. on Decision and
Contr, 1999, pp. 2432–2437.

[9] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: Theory, implementation and experimental eval-
uation,” IEEE Transactions on Robotics and Automation, vol. 18, pp.
662–669, 2002.

[10] J. P. Hespanha, G. J. Pappas, and M. Prandini, “Greedy control for
hybrid pursuit-evasion games,” inProceedings of the European Control
Conference, Porto, Portugal, September 2001, pp. 2621–2626.

[11] R. Nowakawski and P. Winkler, “Vertex-to-vertex pursuit in a graph,”
Discrete Math, vol. 43, pp. 235–239, 1983.

[12] T. D. Parsons, “Pursuit evasion in a graph,” inTheory and Application
of Graphs, Y. Alavi and D. R. Lick, Eds. Springer Verlag, 1976, pp.
426–441.

Shortest Path Policy

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

16

18

20

Collision Avoidance Policy

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

16

18

20

Fig. 8. Vector fields for reaching a final configuration in the lower right. Left figure is the vector field for generating shortest paths and the right figure is
the optimal policy corresponding to the MDP.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C.H.
Papadimitriou, “The complexity of searching a graph,”J. ACM, 1988.

[14] M. Aigner and M. Fromme, “A game of cops and robbers,”Discrete
Applied Math, vol. 8, pp. 1–12, 1984.

[15] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking,
“Randomized pursuit-evasion in graphs,”Proceedings of the
International Colloquium on Automata, Languages and Programming
(ICALP), 2002. [Online]. Available: citeseer.nj.nec.com/510108.html

[16] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion with
limited visibility,” in Proc. of ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[17] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,”SIAM Journal on Computing, vol. 21, no. 5, pp.
863–888, 1992.

[18] S.-M. Park, J.-H. Lee, and K.-Y. Chwa, “Visibility-based pursuit-
evasion in a polygonal region by a searcher,”Proceedings of the
International Colloquium on Automata, Languages and Programming
(ICALP), vol. 2076, pp. 456–468, 2001. [Online]. Available:
citeseer.nj.nec.com/park01visibilitybased.html

[19] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani, “A visibility-based pursuit-evasion problem,”
International Journal of Computational Geometry and Applications,
vol. 9, no. 4/5, pp. 471–, 1999. [Online]. Available:
citeseer.nj.nec.com/guibas96visibilitybased.html

[20] J. Sgall, “Solution of David Gale’s lion and man problem,”Theoret.
Comput. Sci., vol. 259, no. 1-2, pp. 663–670, 2001.

[21] V. Isler, S. Kannan, and S. Khanna, “Locating and capturing an evader
in a polygonal environment,” inProc. of 6th Workshop on Algorithmic
Problems in Robotics (WAFR’04), 2004, pp. 351–367.

[22] B. Gerkey, S. Thrun, and G. Gordon, “Clear the building:Pursuit-evasion
with teams of robots,” inProceedings of the AAAI National Conference
on Artificial Intelligence. San Jose, CA: AAAI, 2004.

[23] J. Latombe,Robot Motion Planning. Kluwer Academic Publishers,
1991.

[24] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,”IEEE Robotics and Automation, vol. 4, no. 1,
1997.

[25] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,”IEEE Trans. on Robotics
and Automation, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[26] J. M. Phillips, L. E. Kavraki, and N. Bedrossian, “Spacecraft rendezvous
and docking with real-time, randomized optimization,” inAIAA Guid-
ance, Navigation, and Control, 2003.

[27] C. Clark, S. Rock, and J. Latombe, “Dynamic networks for motion
planning in multi-robot space systems,” inInternational Symposium on
Artificial Intelligence, Robotics and Automation in Space, 2003.

[28] R. Bohlin and L. Kavraki, “Path planning using lazy prm,”in Interna-
tional Conference on Robotics and Automation, 2000.

[29] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking
ofrobot paths,” inWorkshop on Algorithmic Foundations of Robotics
(WAFR, 2002.

[30] C. M. Clark, T. Bretl, and S. M. Rock, “Applying kinodynamic ran-
domized motion planning with a dynamic priority system to multi-robot
space systems,” inIEEE Aerospace Conference, 2002.

[31] L. Jaillet and T. Simeon, “A prm-based motion planner for dynamically
changing environments,” inIEEE/RSJ International Conference on In-
telligent Robots and Systems, 2004.

[32] L. Dubins, “On curves of minimum length with a constraint on average
curvature, and with prescribed initial and terminal positions and tan-
gents.”American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[33] R. S. Sutton and A. G. Barto,Reinforcement Learning:An Introduction.
The MIT Press, 1998.

[34] D. P. Bertsekas,Dynamic Programming and Optimal Control: 2nd
Edition. Athena Scientific, 2000.

