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Coordinating nationwide air traffic flow is a large-scale problem. Themodeling process generally involves analysis

of massive flight data, and its optimization involves computationally expensive algorithms. This paper uses Hadoop

MapReduce, a big data processing model, to facilitate air traffic flow modeling and optimization, where

computationally intensive tasks are automatically spread to Hadoop clusters for concurrent executions. The overall

wall-clock time of computation is reduced. A nationwide traffic flow management problem that has been previously

studied was restructured under the MapReduce framework. The problem aims at minimizing flight delays while

respecting system capacities. Due to its temporal and spatial scope, the size of this problem grows to an extent where it

is toobig to be solvedon standalone computers. Lagrangian relaxationwas applied to decompose the original problem

into a collection of solvable subproblems. The optimization proceeds in two iterative stages: solving subproblems and

Lagrange multiplier updates. These two processes are encapsulated in the mapper and reducer functions,

respectively. As a result, the optimization is automatically scheduled to run in parallel tasks. The cloud-based air

traffic modeling and optimization were validated through running nationwide air traffic optimization instances on a

small Hadoop cluster with six nodes. The modeling processing is eight times faster and the optimization is 16 times

faster than that running on standalone computers.

Nomenclature

Aarr, Adep = set of links connecting origin or destination airport
Cs�t� = maximum number of aircraft allowed in sector s at time t
Carr�t�, Cdep�t� = airport arrival and departure capacity
dk�λs�t�� = objective of the kth subproblem
fk�t� = departures into route k at time t
K = set of routes in simulation and optimization
nk = number of links on route k
Qsi = set of links inside sector si
qki �t� = outflow of link i at time t
S = set of sectors in the National Airspace System
si = sector that link i lies in
T = planning time horizon of air traffic optimization
Tki = traversal time of link i on route k, min
t = time step
λs�t� = Lagrange multiplier for sector s at time t

Subscripts

i = index of a link
j = index of iteration
s = index of a sector

Superscript

k = index of a route

I. Introduction

I N AIR traffic management (ATM), most scheduling problems, such as runway scheduling [1], arrival sequencing [2], and rerouting, are
modeled as discrete-time systems and solved by integer programming (IP). Integer optimization is computationally expensive to solve. On the

other hand, air traffic control requires real-time solutions to support decision making. As a result, computational issues become a concern in air
traffic modeling. This is typically true in strategic traffic management. En route traffic is generally modeled as a multicommodity network.
Paradigms involve a queuing network model [3], a Bertsimas–Stock-Paterson (BSP) model [4], and an aggregate flow model [5]. Despite the
variations in network abstraction, the underlying formulations are similar, characterized by linear objective functions and integral decision
variables. The queuing networkmodel builds a networkwith tens of thousands of arcs across theNationalAirspace System (NAS). Thismodel has
to restrict route options to mitigate computational issues. The BSP model is designed to reduce NAS-wide delays. Even a medium BSP instance
involving 1000 flights can lead to hundreds of thousands of variables and constraints. Calculating integer solutions at this scale is computationally
demanding. It is reported that a BSP instance took 2.5 h to finish on a Sun SPARCstation [6]. The interval of radar-based position update in the
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enhanced trafficmanagement system (ETMS) for en route traffic is roughly 1min. Ideally, a decision support tool should deliver a solutionwithin
this timeframe to accommodate the dynamic nature of air traffic.

A considerable amount of effort has been devoted to reduce the running time due to optimization (the term “running time” used throughout this
paper refers to wall-clock time, and the computational efficiency discussed hereafter is measured by wall-clock time only). Bertsimas et al. used a
computer with higher configurations to test the BSP benchmark, and the running time was reduced to 16 min as a consequence [7]. Rios and Ross
from NASA Ames Research Center achieved further speedup by employing multithreaded programming [8]. But, the parallelism was limited to a
standalone computer.More recently, a fine-grain Eulerian–Lagrangianmodel was developed and tested [9,10]. The running time decreased from 2 h
to 6min by employing parallel computing [11], which leverages commodity computers to build a relatively cheap yet powerful computing platform.
The model runs faster by splitting the computations on a cluster of 10 Dell workstations. However, prototyping a multithreaded program requires
extensive programming skills to deal with communication and synchronization between computers, which are often out of the scope of ATM
researchers’ domain knowledge. Cloud computing makes the use of distributed systems easier. The word “cloud” is a metaphor describing a
networkedmemory and storage system [12].Awell-known framework of cloud computing isApacheHadoopMapReduce,which is an open-source
software developed for large-scale data processing on clusters of commodity computers [13]. Cloud computing leverages the computer power of
networkedhardwares.Computer clusters function as a high-end computerwhilemanagingdistributed computing resources that are transparent to the
developer. Programming amultithreaded application is as easy aswriting a single-thread program. Cloud computing is typically used for datacentric
applications, such as deoxyribonucleic acid sequence analysis [14], remote sensing image analysis [15], and power system analysis [16]. Huge
datasets are digested by a large number of CPUs that run concurrently in parallel. As a result, massive parallelism is achievable.

TheATMcommunity has taken the initiative to leverage the power of cloud computing. The FederalAviationAdministration (FAA) announced
its cloud computing strategy inMay 2012 in response to the Office of Management and Budget’s “cloud first” policy [17]. In the announcement,
the FAA set forth a roadmap to deploy its cloud infrastructure in 2014, which will continue to mature through 2016. This cloud will serve both
internal and external users to enhance the NAS’s performance. NASA also initiated a project in 2012. It worked with the General Electric
Company to introduce the cloud environment into the Next Generation Air Transportation System [18]. The infrastructure changes are supposed
to revolutionize the data storage model and software management. From a research perspective, the incoming changes mean an opportunity to
reevaluate existing models that could potentially take advantage of the cloud platform to improve performance. This paper is in response to this
call. A link transmission model (LTM), previously developed for addressing the NAS-wide traffic flow management problem, is revisited in this
paper [9]. We refactor the code under the MapReduce framework to show that decomposable algorithms can be encapsulated in the cloud-based
data processing model. We also show that analysis of the traffic data is well suited in the cloud environment.

The rest of this paper is organized as follows. Section II recapitulates the traffic flow management problem and the link transmission model.
Section III briefly introduces the network construction from raw flight data. Section IV introduces theMapReduce programming model and how
the LTM is coded under the framework. Section V presents a benchmark to show the improvement of efficiency. Section VI concludes this paper.

II. Link Transmission Model and Traffic Flow Management Problem

The link transmission model is a data-driven model. It establishes a route network based on radar tracks extracted from aircraft situation-
distributed-to-industry (ASDI) data compiled by the ETMS [19,20]. Figure 1a is a snapshot of as-flown trajectories recorded in three months.
These flights departed from Chicago O’Hare International Airport (ORD) and landed at Atlanta International Airport (ATL). Two clusters are
clearly visible. This indicates that the aircraft followpredefinedpathwayswith variations tomeet traffic flowmanagement (TFM) requirements. In
Fig. 1a, flights in the left cluster stretched their flight paths to meet the estimated time of arrival imposed on the northwest gate of ATL. However,
these flights largely traversed the same sector sequence. At the sector level, a route can be represented as a directed link sequence, with a link being
an abstraction of passage within a sector, as shown in Fig. 1b. Trajectories that are not in any cluster due to significant deviations in response to a
variety of stochastic events in the NAS do not contribute to the network abstraction.

In theLTM, air traffic is considered a discrete-time linear system.Thevariable xki �t� represents the number of flights in each link ion route k, and
qki �t� is the outflow of this link. The flow must comply with the flow conservation principle:

Fig. 1 Link representation of flight routes.
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xki �t� 1� � xki �t� − qki �t� � qki−1�t�; ∀ i ∈ f0; · · · ; nkg; k ∈ K; t ∈ T

For the first link, its upstream outflow is departure fk�t�. A basic traffic flow management problem is to control the flow rate qki �t� to ensure
sector counts do not exceed sector capacity Cs�t� while minimizing delays. This problem is formulated as an integer programming problem:

min d �
X

t∈T

X

k∈K

X

1≤i≤nk
cki x

k
i �t� (1)

subject to

xki �t� 1� � xki �t� − qki �t� � qki−1�t� (2)

X

�i;k�∈Qsi

xki �t� ≤ Cs�t�;
X

�0;k�∈Aarr

qk0�t� ≤ Carr�t�;
X

�nk;k�∈Adep

qk
nk
�t� ≤ Cdep�t� (3)

X

t∈T
qk0�t� �

X

t∈T
qk
nk
�t� �

X

t∈T
fk�t� (4)

XTk�

t�Tk
0
�Tk

1
· · ·�Tki

qki �t� ≤
XTk�−Tki

t�Tk
0
�Tk

1
· · ·�Tki−1

qki−1�t� (5)

XTk
0
�Tk

1
· · ·�Tki−1

t�0
qki �t� � 0; xki �0� � xki (6)

xki �t� ∈ Z�; qki �t� ∈ Z� ∀ Tk� ≥ Tk0 � Tk1 · · · �Tki ; i ∈ f0; · · · ; nkg; k ∈ K; t ∈ T; s ∈ S (7)

The objective function dminimizes the weighted total flight time of all flights in the planning horizon, which is equal to minimizing the total
delays. Inequalities (2–7) regulate traffic flow behaviors. Inequality (3) enforces en route and airport capacity constraints. Equation (4) states that
the total inflow into a route is equal to its total output. Inequality (5) dictates that every flight must dwell in a link for at least Tki min. Equation (6)
and inequality (7) are initial states and integer constraints, respectively. We refer readers to [9] for detailed discussions of these constraints. In
addition, the LTM represents a deterministic scheduling that is distanced from operation realities. However, the aggregate flow model is able to
include stochastic inputs to account for weather impact or demand uncertainty [21]. The focus here is computational efficiency.

The outputs of the optimization are controlled flows along each route. Specifically, the vector �xk1�t�; xk2�t�; · · · ; xknk�t�� represents the state of
route k at time t. As t evolves, the states of the vector represent themovement of traffic flow. But, the LTM is an aggregatemodel that loses track of
flight identifications, and the outputs of the optimization are not in an immediate form of executable commands that air traffic controllers can read.
However, the results can be translated into flight-specific actions by a disaggregation process. Since the vector �xk1�t�; xk2�t�; · · · ; xknk�t�� sets
globally optimal states for route k, these states can be used as constraints for scheduling the flights on route kwhere variables are defined as ground
delays and airborne delays associated with individual flights. The disaggregation process is discussed in detail in [19,22]. The outputs of this
process are delays imposed on individual flights in each sector.

Although the formulation is simple, a LTM instance could be intractable when it covers a vast airspace. The LTM is essentially an IP problem
typically solved by a branch-and-bound algorithm that is not in polynomial time. Even for the linear programming (LP) relaxations, the best
known runtime complexity isO�N3.5L�, where N is the number of variables and L is the length of the data [23]. For NAS instances with at least
tens of thousands of variables, the runtime complexity is thus at an order of trillion. The LP relaxations at this scale are not solvable, let alone the
original IP problem. The size of the problem must be reduced in order to proceed. All constraints are defined by route, except for inequality (3).
Routes passing through the same sector are coupled together by the sector capacity. By assigningLagrangemultipliers λs�t�, λ�0;k��t�, and λ�nk;k��t�
to each of these constraints and adding them to the objective function, constraints pertaining to different routes can be separated such that each
route is associated with an independent and smaller IP problem. As such, the large-scale problem is decomposed into a collection of small
subproblems. The optimization proceeds by iteratively finishing two tasks. The first one solves all the subproblems. The second one updates
Lagrange multipliers using a subgradient method based on the solutions of subproblems [24]. The process is summarized in Algorithm 1.

Algorithm 1 Decomposed TFM optimization

Step 1: ∀ k ∈ K, solve:
min dk�λs�t�� �

P
t∈T�

P
nk−1
i�2 �cki � λs�t��xki �t� � �ck1 � λ�1;k��t��xk1�t� � �cknk � λ�nk;k��t��xknk �t��

subject to Inequalities (2, 4–7)
Step 2: Update master problem and Lagrange multipliers:

d�λs�t�� �
P

k∈K d
k�λs�t�� −

P
t∈Tf

P
s∈S λs�t�Cs�t� �

P
�0;k�∈Aarr

λ�0;k��t�Carr�t�
�
P
�nk;k�∈Adep

λ�nk;k��t�Cdep�t�g
λs�t� ≔ maxf0; λs�t� � 1

j�1 �
P
�i;k�∈Qsi

xki �t� − Cs�t��g, ∀ t ∈ T, s ∈ S
j � j� 1
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III. Parameterization of the Link Transmission Model

To set up the LTM, the following information is needed: 1) routes identified in theNAS and the link sequence of each route, 2) the traversal time
of each link Tki , and 3) scheduled departures f

k�t�. This information can be extracted from raw flight messages [25]. AnASDI log recording a full
day of operations can be up to 500 MB. A snippet of the data looks like the following:

Each line is a flight message sent by one of the facilities across the country. The most relevant messages include the departure message (DZ),
arrival message (AZ), flight plan information (FZ), flow control track (TZ), and flight cancellation message. A trajectory can be restored by
extractingmessage flow pertaining to the trajectory. But, the ETMS sorts incomingmessages by timestamp. As a result, a trajectory’s information
could scatter through an ASDI file, especially for long-range flights. The whole file must be scanned to connect each piece of information
pertaining to a flight. A flowchart of parameterization of LTM is shown in Fig. 2. To extract trajectories, the data have to be processed as follows:

1) The first process is decoding. ASDI compiles structured data [19]. Each message starts with a timestamp in conjunction with the message
type, followed by aircraft identification (ACID), and a varying number of fields defined for specific message types. The flight message can be
interpreted and stored in a list.

2) The second process is sorting and matching. Grouping the decoded flight messages by ACID yields a flight history of each aircraft.
3) The third process is filtering. ASDI data are flawed with mismeasurements [26]. Some waypoints deviate from a nominal flight path by big

displacements, which would lead to erroneous flight time estimation in the subsequent steps. Therefore, each waypoint must be scanned and
filtered to remove anomalies.

4) The fourth process is interpolation. A flight is tracked by different facilities as it travels along its route; as a result, the intervals between
successive TZmessages are not constant, ranging from a few seconds to 4 min. In some cases, the loss of messages results in large intervals. This
would cause erroneous measurements in the subsequent link identifications. To guarantee a reasonable spatial resolution, each trajectory must be
scanned and interpolated if the interval between two successive waypoints is larger than 1 min. Interpolation is linear and based on the three-
dimensional position and speed of the waypoint where interpolation begins.

5) The fifth process is sector mapping. Once filtered, the trajectory is represented by a vector of geographic coordinates. It must be translated
into a link representation. Mapping coordinates to the sectors can be done by using the Ray casting algorithm [27], which is able to determine
whether a point intersects a polygon.

6) The sixth process involves the link representation for the route. The individual traversal time Tki is obtained by calculating the difference of
the entry record and exit record to/from a particular sector.

7) The seventh process involves the link statistics. The traversal time Tki is one of the most important parameters for the model setup. Given the
defects inherent in ASDI data, estimating Tki based on individual trajectories is not reliable. For an estimate to be statistically significant, a large
sample set is required. To identify a route, we stipulated that the sample size must be at least 70% of the number of days when the data were
collected. In this paper, our dataset spans 84 days. A routewas identified if therewere at least 59 trajectory samples. To estimate the traversal time
of a link, we took the mode of a sample set.

IV. MapReduce Programming Model

Apache Hadoop (high-availability distributed object-oriented platform) is the most popular open-source cloud environment‡ used for large-
scale processing of data. It is deployed on commodity hardware that ismanaged by theHadoop distributed file system (HDFS), as shown in Fig. 3.
In aHadoop cluster, themaster machine, also known as the name node in the context of the HDFS, automatically coordinates slavemachines (i.e.,
data nodes) tomanage the file system. Files are split into trunks,withmultiple replicas stored across data nodes to guarantee accessibility in case of
individual node failure. This design also minimizes data transfer by prioritizing the ingestion of local data on data nodes. The name node runs a

Fig. 2 Parameterizing the LTM using information extracted from raw flight messages.

‡Data available online at http://hadoop.apache.org [retrieved 2015].
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daemon process called JobTracker that is responsible for job scheduling, and data nodes run daemon processes that are called TaskTracker.
JobTracker coordinates TaskTracker to perform parallel computing.

Hadoop’s MapReduce is a programming model written in Java for parallel list processing [28]. MapReduce centers around the concept of a
< key; value > pair, which is a formatted data structure. The key and value can be any data type. AMapReduce job is to sequentially digest a list
of < key; value > and generate another list of < key 0 0; value 0 0 > as output. Figure 4 shows the data flow. Input files are first divided intomultiple
splits, with each being read into < key; value > format; then, each split concurrently goes through two sequential phases:

1) The first phase is tomap. Each of the key–value pairs < k; v > is loaded into amapper function, where they aremapped to a new intermediate
set of key–value pairs < k 0; v 0 > in accordance with user-specified rules. Once all key–value pairs are processed, the intermediate multisets are
automatically sorted and shuffled with respect to k 0. Pairs with the same key are aggregated, i.e., < k 0; v 01; v

0
2; · · · � >.

2) The second phase is to reduce. Each aggregated pair is loaded into a reducer function, where < k 0; v 01; v
0
2; · · · � > is mapped to a new key–

value pair < k 0 0; v 0 0 > in accordance with a user-specified rule. These pairs are written into the output file as a list.
In general, the size of the output list is smaller than the size of the input list. Information is extracted from a large dataset through mapping

operations. Users specify the mapping operations by implementing two Java classes: mapper and reducer. Their pseudocodes are given as
follows:

MapReduce schedules multiple mapper or reducer instances running on Hadoop clusters in parallel to achieve high performance.
MapReduce’s list-processing model makes it a perfect scheme for the LTMmodeling. Particularly, MapReduce automatically sorts key–value

pairs by key,which significantly reduces the programmingworkloadwhen dealingwithASDI data decoding and trajectory analysis. Even solving
TFMoptimization can take advantage of themapper and reducer functions. The LTMproblem is developed in two stages. In the first stage, a large
ASDI dataset is processed to prepare parameters for the LTM setup. The steps described in Sec. III.B are refactored in MapReduce jobs. In the
second stage, the recursive optimization algorithm is encapsulated in a chain ofMapReduce jobs. A high-level description of each job is provided
next. For clarity, we denote themapper function and reducer function as κ�� and ρ��, respectively; andwe denote jobs in the first stage as “Job1.x”
and jobs in the second stage as “Job2.x.” In a job, the output of κ�� will be the input of ρ��. Jobs are concatenated in a job flow. The output of an
upstream job is the input of the downstream job.
k: Offset from the first line of ASDI data file.
v: Raw messages, e.g., AF, DZ, TZ, etc.
k 0: ACID.
v 0: Flight information associated with message type, i.e., (φ�tm�, λ�tm�, h�tm�) for TZ message or departure time for DZ message.
k 0 0: ACID� tdep.
v 0 0: �φ�tm�; λ�tm�; h�tm��.
< k 0; v 0 > κ�k; v�: Read a line from the ASDI file. Decode the flight message. Emit flight information associated with ACID� tdep.
< k 0 0; v 0 0 > ρ�k 0; v 0�: Correspond to the sorting andmatching step. SinceMapReduce automatically sorts the decodedmessages byACID, ρ��

receives a list of flight information associated with an ACID. To separate connecting flights, sort flight information by timestamp. Pair up DZ and
AZ messages to set the time boundaries for a flight. Combine ACID with departure time tdep as a unique identification for a flight. Emit matched
waypoints to an output file.
k: Offset from the first line of output file derived from job 1.1.
v: Content of a line.
k 0: ACID� tdep.
v 0: �φ�tm�; λ�tm�; h�tm��.
k 0 0: ACID� tdep.
v 0 0: Interpolated �φ�tm�; λ�tm�; h�tm��.
< k 0; v 0 > κ�k; v�: Read a line from the output file from job 1.1. Emit waypoints associated with ACID.
< k 0 0; v 0 0 > ρ�k 0; v 0�: correspond to the filtering and interpolation steps. Derive a list of waypoints of a flight sorted by timestamp. Check

anomaly and interpolate as necessary. Emit interpolated trajectory associated with ACID� tdep.

Fig. 3 Hadoop system topology.
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k: Offset from the first line of output file derived from job 1.2.
v: Content of a line.
k 0: ACID� tdep.
v 0: Sector (tm).
k 0 0: Link name.
v 0 0: Tki .
< k 0; v 0 > κ�k; v�: Correspond to the sector mapping step. Read a line from the output file from job 1.2.Mapwaypoints to sectors. Emit sectors

associated with ACID� tdep.
< k 0 0; v 0 0 > ρ�k 0; v 0�: Correspond to the link representation of route and link statistics steps. Derive a list of sectors a flight traverses, and find

out the links and associated traversal time. Emit link name and traversal time.
k: Offset from the first line of output file yielded in job 1.3.
v: Content of a line.
k 0: Link name.
v 0: Tki .
k 0 0: Link name.
v 0 0: T̂ki .
< k 0; v 0 > κ�k; v�: Read a line from the output file derived from job 1.3. Emit link name and its traversal time Tki .
< k 0 0; v 0 0 > ρ�k 0; v 0�: Derive a list of traversal time associated with a link. Estimate the mode of the samples. Emit link name and its estimated

traversal time T̂ki .
Routes and links information is stored in a database for the setup of subsequent LTMoptimization. In addition, the initial Lagrangianmultipliers

λsi�0� and scheduled departure fk�t�must be parameterized before kicking off a LTMoptimization. The initial Lagrangian multipliers were set to
be one. Since commercial carriers usually file their flight plans with the air traffic authority approximately 3 h before departure, fk�t� is obtained
by analyzing FZ and AFmessages, which provide proposed route and departure time. Routes extracted fromASDI data are represented by links.
Tomatch the route specified in a FZmessage to a route stored in the database, all thewaypoints and fixes specified in the FZmessages aremapped
to sectors. These sectors in conjunctionwith the origin/destination airports are used to comparewith routes in the database. The routewith themost
matched sectors is considered to be the proposed route. A flowchart is shown in Fig. 5, and the workflow is given as follows:
k: Offset from the first line of output file yielded in job 2.1.
v: Content of a line.
k 0: Sector si.
v 0: xki �t�.
k 0 0: Sector si.
v 0 0: λsi�t�.

Fig. 4 MapReduce data programming model. A workflow consists of two phases: map and reduce.

Fig. 5 Flowchart of the recursive algorithm based on MapReduce. Job 1.2 decodes DZ messages to parameterize fk�t�. Job 2.2 recursively runs the
optimizations.
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< k 0; v 0 > κ�k; v�: Read a line from the output file derived from job 2.1. Retrieve link information from database and set up subproblem using
time series fk�t�, traversal time Tki , and initial Lagrangian multipliers λsi�t�. Solve the subproblem. Emit sector name and the sector count xki �t�
contributed by this route.

< k 0 0; v 0 0 > ρ�k 0; v 0�: Obtain a list of sector counts contributed by different routes. Aggregate the sector counts and update Lagrangian
multipliers. Emit sector and its Lagrangian multipliers for next iteration.

V. Simulation Results

This section presents NAS-wide instances of TFM problems that run on a Hadoop cluster with six nodes. Each instance covers traffic in the
continental U.S. airspace in a 2 h period. The Hadoop nodes were DELL workstations configured with an Intel i7 CPU and 16 GB of RAM. All
workstations run Ubuntu 10.04 with Hadoop 0.20.2. Eighty-four ASDI data files corresponding to the traffic of 84 days were used to train
parameters for the LTM. Table 1 summarizes the information culled from the data. Over 62,000 flights were tracked in theNAS each day, and over
6 million flight messages were filed. A large volume of data provides a statistically significant sample pool. As a prototype, we focused on the
airspace in the continental United States only, which contains 1258 sectors. Airspace outside the continental Unites States was classified as an
“international” sector where international flights originate from or are destined to. With this simplification, almost 30,000 links and 100,000
routes were identified. The route network includes 3838 general public airports in the United States. It covers themajority of commercial aviation
routings in the U.S. airspace. Despite the large number of routes identified, only those involved in the planning horizon were pulled out of the
database for the TFM problem setup.

To examine the efficiency of the cloud platform,weused both a standalone computer and aHadoop cluster to process theASDI data. InHadoop,
the ASDI files were loaded into the HDFS before parsing the flight messages; hence, the processing time does not account for the file transfer.We
did likewise in the serial processing. Figure 6 shows the breakdowns of the running times of both serial and parallel computing. The improvement
of efficiency is significant. The Hadoop cluster took 12.1 h to finish the processing with multiple threads, whereas the standalone computer took
94.5 h. The parallel computing was about eight times faster than the monolithic threading.

The TFM problem was validated by running a 2 h NAS-wide instance, which represents the high-traffic period of a day. Two-thousand, three-
hundred, and twenty-six routes were involved in the scenario. The optimized traffic was implemented in NASA’s simulation platform: Future
ATMConcept Evaluation Tool (FACET) [29]. To test themodel, we purposely reduced the sector capacity to 70% of themonitor alert parameters
used in real-world operations [30]. The recorded traffic exceeded the reduced system capacity as a consequence. Figure 7 shows snapshots of the
traffic simulated by FACET.We used different coloring to represent sector loads, indicating the number of aircraft exceeding the sector capacity,
the number of aircraft close to the sector capacity, and the number of aircraft reaching half of the sector capacity. It is clear that the optimization
alleviates congestion. The number of overloaded sectors were significantly reduced. There were still rare cases of overloading sectors. This is
becausewe set a cap of 50 for the stopping criterion of iterations, which balances the quality of solutions and time that the usersmay invest. Indeed,
the ATC may accept an imperfect scheduling delivered in a timely way instead of a perfect solution without time limit.

The running time of the optimization is shown in Fig. 8. As a configurable parameter, the maximum number of mappers allowed on a node can
be specified by users as a means of controlling concurrency level. The running time decreases as more mappers are launched. But, the efficiency
stops increasingwhen the number ofmappers ismore than eight. This is due to the fact that an Intel i7CPUhas four physical cores, with each being
capable of handling two threads simultaneously. As a result, the maximum number of threads a node can run in parallel is eight. In theory, the
Hadoop cluster can have at maximum 6 × 8 � 48 threads running concurrently; however, the speedup is not linear to the number of threads.
Running the same TFM problem on a standalone computer took 135 min in comparison to 8.5 min on the Hadoop cluster. Only 16 times the
speedup was achieved. There are two reasons to account for this. First, the parallel programming model has inherent overheads such as
communication and synchronization between nodes. Second, unbalanced workloads cause idle time for some nodes. Figure 9 shows the running
time of solving subproblems on each node. Node 3 is about 4.5 s ahead of node 4 in each iteration. In the implementation, we evenly distributed
subproblems to each node. Although all the nodes have the same configuration, the complexity of subproblems has awide range due to the length
of routes. A more sophisticated dynamic allocation algorithm may help to reduce the gap; we leave this to our future work.

To evaluate the performance of the cloud-based TFM optimization, 360 NAS-wide instances were tested. We divided 30 days into 360 2 h
periods. Each 2 h trafficwas used to run the TFMoptimization. These instances included both low- and high-traffic scenarios. Figure 10 shows the

Table 1 Extracted information from the ASDI data

Information Each file on average Total

ASDI file size 474 MB 39.8 GB
Flight messages 6,151,970 5.17 × 108

Flights 62,462 5,246,808
Sectors 1,121 1,258
Airports 3652 (in the U.S.) 3838 (in the U.S.)

4013 (outside the U.S.) 4502 (outside the U.S.)
Routes 87,351 99,337
Links 26,175 29,586

Fig. 6 Comparison of running time of LTM parameterization using serial processing and parallel processing.
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results. In general, the running time is proportional to the problem size. When more than 1500 routes are involved, the chance to solve a TFM
problem in a few minutes is slim. However, the running time can be leveraged by deploying more nodes in the cluster.

An advantage of the MapReduce framework is its built-in fault-tolerance capability. Figure 11 shows a test where a node was purposely shut
down during the iterations. It took longer to finish the MapReduce job in response to the failure of the node. As the master constantly
communicates with the nodes, when it detects that a node fails to respond for a preset period of time, it reschedules the task to be reexecuted on
other nodes so that the job can continue. As such, MapReduce recalculated the data splits and assigned jobs to the active nodes in the remaining
iterations. As a result, the whole optimization was completed without interruptions. Fault tolerance is an important feature lacking in non-cloud-
based computational frameworks.

Fig. 7 Snapshots of traffic simulation in FACET [30]. Only high-altitude sectors are shown: uncontrolled traffic (left), and optimized traffic (right).

Coloring represents the degree of sector load.
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VI. Conclusions

This paper addresses the potential impact of a novel, cloud computing platform solving large-scale optimization problems that are traditionally
intractable. In the application for air traffic management, this platform is potentially helpful for developing supporting tools for operational
decisionmaking at a national level, such as in the FAASystemCommandCenter. It is demonstrated that traffic flowmanagement problems can be
solvedmore efficiently by breaking down large problems into smaller problems using Lagrangian methods and employing parallel programming
model. MapReduce’s programming model saves developers from dealing with multithreaded programming work, significantly reducing
developmentworkload. Users can customize their applicationswith theMapReduce library that comeswith theHadoop package. This framework
is not only efficient but also robust. Its distributed file system enhances data safety as well as runtime fault tolerance. All these features make it a
suited platform for air traffic management research. In the long run, shifting the ATM concept evaluation to the cloud environment will speed up
the development cycle and reduce the cost. More important, the cloud provides a hardware solution that is scalable to the problem size, helping
researchers to tackle complicated computationally intensive aviation problems.
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Fig. 8 Running time decreasing as a function of the number of threads under the MapReduce framework.

Fig. 9 Unbalanced workload between nodes.

Fig. 10 Running time of 360 instances of TFM optimization. Each instance spans 2 h.

Fig. 11 Failure tolerance test. Node 4 was purposely shut down.
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