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The nationwide air traffic flow management problem often encounters computational difficulty because it is

generally modeled as an integer programming problem that requires computationally expensive optimization

algorithms. This paper introduces a customized Spark-based optimization architecture for such large-scale integer

programming problems to further speed up the modeling and optimization process, where Spark is a big data

cluster-computing platform. First, a novel layered aggregate model is developed for handling flexible rerouting

problem, which is not well handled in a previous link transmission model. As an aggregate linear model, the layered

aggregate model has the nice features of computational efficiency and scalability, which make it suitable for Apache

Spark. By applying a dual decomposition method, the original large-scale problem is decomposed into a number of

small subproblems. The optimization proceeds by iteratively solving subproblems and updating Lagrange

multipliers. This paper encapsulated the process into the Spark-based data processing model such that the

optimization is automatically scheduled to run in parallel. Spark gains efficiency by means of in-memory computing

and dynamic schedule allocation. This is demonstrated in the experimental results that are compared to an earlier

Hadoop MapReduce-based model, where Hadoop MapReduce is a basic cloud computing framework; the

Spark-based model is solved twice as fast as the Hadoop MapReduce-based model.

Nomenclature

Aarr, Adep = set of links connecting origin or destination airport
Carr�t�, Cdep�t� = airport arrival and departure capacity
Cs�t� = maximum number of aircraft allowed in sector s at time t

Dk
i = set of downstream links of link i on layer k

dk�λs�t�� = objective of the kth subproblem
fk�t� = departures on layer k at time t
K = set of layers in simulation and optimization
nk = number of links on layer k
Qsi = set of links inside sector si
qkim�t� = outflow from link i to link m at time t

qkji�t� = inflow from link j to link i at time t

S = set of sectors in the National Airspace System
si = sector that link i lies in
T = planning time horizon of air traffic optimization
Tk
i = traversal time of link i on layer k, min

Tk
i ��� = shortest total traversal time from airport to link i on layer k, min

Uk
i = set of upstream links of link i on layer k

λs�t� = Lagrange multiplier for sector s at time t

I. Introduction

A IR traffic in the United States is managed by air traffic controllers to ensure safe operations in the National Airspace System (NAS). In
periods of high traffic demand, the surge of traffic often leads to congestion. Carefully coordinating flights can effectively alleviate

congestion. However, managing flights at the national scale is a challenging task that needs the help of computer-based decision support tools
(DSTs). Because of the dynamic nature of air traffic, real-time solutions are critical to the applicability of DSTs. The interval of radar-based
position update in the enhanced traffic management system (ETMS) for en route traffic is roughly 1 min. Ideally, a DST should deliver a solution
within this time frame. As a result, computational efficiency becomes a concern in air trafficmodeling. In air traffic management (ATM) research,
integer programming (IP) is a common way to formulate scheduling problems, such as runway scheduling [1,2], arrival sequencing [3–5], and
rerouting [6,7]. These discrete-time models, solved by the integer optimization approach, often encounter computational issues. This is because
the integer optimization approach often requires developing a search tree for integer solutions. TheBertsimas–Stock-Patterson (BSP)model [8] is
among the seminal paradigms that address traffic flowmanagement (TFM) problem in the NAS. A medium BSP instance involving 1000 flights
can lead to an IP problemwith hundreds of thousands of variables and constraints. Solving IP problems at this scale is computationally demanding
due to the problem size. According to [9], 2.5 h was needed to finish such a BSP instance on a Sun SPARC station, which was insufficient for
operational implementation.
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To reduce the running time due to optimization (computational efficiency discussed hereafter ismeasured bywall-clock time), researchers have
made considerable strides. On the modeling side, to overcome the computational limitation of the traditional Lagrangian models (e.g., BSP),
the Eulerian model of air traffic flow was proposed [10]. Because this modeling technique spatially aggregates the air traffic, its computational
complexity does not depend on the number of aircraft but only on the size of the network problem. Later, an aggregateEulerian–Lagrangianmodel
was proposed to eliminate the splitting and diffusion problems of someEulerianmodels by taking into account the origin–destination information
of the flights [11]. Following this, a link transmission model was developed based on the Eulerian–Lagrangian model to further improve the
computational efficiency [12]. Moreover, a dual decomposition method was introduced to the traffic flow optimization such that the original
problem could be divided into small independent problems to perform parallel computing [13]. In this paper, we will develop, implement, and
validate a new network-based modeling method, which is highly adaptable to be customized according to geographical features and/or TFM
needs, among others.

In parallel, computational difficulty can also be overcome by hardware [14].With a more powerful computer, the BSP benchmark increased to
involve 3000 flights, whereas the running time was reduced to around 16 min [15]. Following this, a multithreaded programming approach was
employed to achieve further speedup [16]. The implementation enforces the CPU to run at full scale, thereby increasing efficiency. But the
parallelism was limited to a standalone computer. More recently, an Eulerian–Lagrangian model was solved by massive parallel computing
[11,12]. The running time decreased from2 h to 6min by splitting the computations on a cluster of 10Dell workstations [17]. The designmade full
use of distributed computation resources to increase efficiency. However, it requires extensive programming skills to implement multithreaded
programming on a cluster, such as dealing with communication and synchronization issues. To overcome this limitation, a cloud computing
framework with Apache Hadoop MapReduce was implemented to reduce the development workload from multithreaded programming [18],
where Hadoop MapReduce is a software framework to process large-scale data in parallel on large cluster. With its built-in fault-tolerance
capability, the MapReduce framework could be not only efficient but also robust. However, MapReduce is not well suited for iterative
optimization because, in each iteration, the data have to be read from theHadoopDistributed File System (HDFS), and there is a significant cost of
starting and finishing a MapReduce job. To further improve the efficiency, this paper will extend the Hadoop-based air traffic flow management
from MapReduce framework to Spark, a cluster computing platform suitable for large-scale data processing [19]. Further speedup could be
achieved by Spark’s ability to run computation in memory. Moreover, the unbalanced workload limitation on MapReduce could be solved by
Spark’s dynamic schedule allocation feature, and the Spark framework abstracts away MapReduce implementation details to help reduce the
difficulty of programming.

This paper designs and customizes a large-scale IP model that can be efficiently computed by a fast cluster architecture as provided by Spark.
This paper will be among the very first studies for a Spark-based customized optimization architecture, which solves traditional intractable large-
scale IP problems. The major contributions of this paper are listed as following.

A layered aggregate model (LAM) is introduced, which has two key features: 1) LAM is highly adaptable to be customized
depending on the objectives of studies, which is more general and powerful than the previous link transmission model (LTM) [12];
2) LAM’s layer structure is very suitable for parallel computing framework. In this paper, a customized LAM is illustrated as an
example to demonstrate the advantage for addressing flexible rerouting issue in the NAS-wide TFM problem, which is not well
handled in the previous LTM.

The LAMwas refactored to run under a Spark framework to show that LAMwith decomposable algorithms can be encapsulated in the Spark-
based data processing model to perform parallel computing.

The performance of the Spark-based model is compared with the MapReduce-based model to quantify the improvement in computational
efficiency.

It is worth emphasizing that a fast computational framework with the proper model is the key to help deliver real-time solutions for air
transportation system. In particular, a faster computational platform can solve larger problems in the same time and solve the same problemmore
often in face of disruptions. Moreover, real-time solutions are critical to the applicability of TFM models due to the dynamic nature of air
transportation system. Therefore, a faster computational framework could have significant effect on the improvement of air transportation system.

The rest of this paper is organized as follows. Section II introduces the LAM and the TFM problem. Section III introduces the Spark
programming procedure: parameterization of the model based on raw flight data and how the LAM is coded under the Spark framework.
Section IV presents simulation results to show the improvement of efficiency. Section V concludes this paper.

II. Layered Aggregate Model and Traffic Flow Management Problem

A. Layered Aggregate Model

The layer is a key component in the LAM,which can be definedbased on different airspace structures (e.g., airline, airspace centers, region origin–
destination pair, etc.). The benefit is that the dynamics of the air traffic flows on each network layer can be modeled independently but in a same
mathematical formulation for all the layers, which is the key feature to perform parallel computing. To achieve high level parallelization in this paper,
the NAS network will be duplicated for approximately 4000 layers, corresponding to the number of origin–destination airport pairs
(o-d pair) in current operation. As shown in Fig. 1, each layer contains only one o-d pair with a link subnetwork connecting them. The link is an
abstraction of passage through a sector, which is a basic airspace session of NAS. The travel time of a link is extracted from historical flight data. A
flight path is a sequence of links that connect the departure airport and an arrival airport, and all practical flight paths form a subnetwork for each layer.
Notice that a layer does not have to be defined basedono-d pairs. In fact, the concept of layer is highly flexible; it could contain a subnetworkof traffic
within an air route traffic control centers, a special used airspace, a collection of airspace of interest, etc., depending on the objectives of studies.

The LAM is developed based on the LTM [12], which has the nice features of computational efficiency and invariable complexity with the
number of flights. The LTM establishes a route network based on radar tracks extracted from aircraft situation distributed to industry (ASDI) data
compiled by the ETMS [20,21]. However, the LTMdoes not workwell with flexible reroutes when tactical weather avoidance is necessary. These
limitations will be enlarged in the Next Generation Air Transportation Systemwhen there is 2–3 times of air traffic and most airspace is predicted
to be congested [22], while more uncertainties in weather and flight scheduling are expected [23]. However, by defining the layer according to the
o-d pair, the LTM can be easily modified into the LAM to handle the rerouting issue in the TFM. The main difference between the LAM and the
LTM is that there is a link subnetwork between an o-d pair in the LAM rather than a unique flight path in LTM; therefore, the rerouting in TFMwill
be handled by LAM.

For each layer in LAM, using the principle of conservation of flow, the dynamics of the traffic flow can be modeled as

xki �t� 1� � xki �t� −
X

m∈Dk
i

qkim�t� �
X

j∈Uk
i

qkji�t�; ∀ i ∈ f1; : : : ; nkg; k ∈ K; t ∈ T (1)
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where the state variable xki �t� is defined as the aircraft count in link i on layer k at time t, qkim�t� is the outflow from this link i to a downstream
link m, and qkji�t� is the inflow of link i from a upstream link j. The base model (on one layer) has been validated in numerous previous

research such as [22,24]. Notice that the traffic flowmodel in Eq. (1) is a linear one, which will be a constraint in the optimization problem in

Sec. II.B.

B. Traffic Flow Management Problem Based on Layered Aggregate Model

Objective function: The objective is to minimize the weighted total flight time of all flights in the planning time horizon, which reflects the

realistic goal to minimize the delay. The objective function can be formulated as

mind �
X

t∈T

X

k∈K

X

0≤i≤nk
cki x

k
i �t� (2)

Note that cki is the weight for staying in link i on layer k, and c
k
i � 1 in this paper; when fairness or equity issues are addressed, cki can assume

different values [25,26].
Constraints:

xki �t� 1� � xki �t� −
X

m∈Dk
i

qkim�t� �
X

j∈Uk
i

qkji�t� xki �0� � 0

xk0�t� 1� � xk0�t� −
X

m∈Dk
0

qk0m�t� � fk�t�;
X

m∈Dk
i

qkim�t� ≤ xki �t� (3)

Constraints (3) represent the dynamic of flows as we discussed in Sec. II.A, which enforce conservation of flows. We define a

special link 0 (T0 � 1) to represent origin airport; then, its upstream’s outflow is the scheduled departure fk�t�, and
X

m∈Dk
i

qkim�t�

represents the total outflow of the link i at time t, which should be less than the current state variable xki �t�:
X

�i;k�∈Qsi

xki �t� ≤ Cs�t� (4)

X

�0;k�∈Adep

X

m∈Dk
0

qk0m�t� ≤ Cdep�t� (5)

X

�nk;k�∈Aarr

X

j∈Uk

nk

qk
jnk

�t� ≤ Carr�t� (6)

Fig. 1 Conceptual example for subnetwork on ORD-CVG layer.
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Constraints (4–6) enforce en route and airport capacity constraints, where the link nk is defined as another special link which

represents the destination airport in layer k.

X

t∈T

X

m∈Dk
0

qk0m�t� �
X

t∈T

X

j∈Uk

nk

qk
jnk

�t� �
X

t∈T
fk�t� (7)

Constraints (7) enforce all flights to depart and ensure that all flights land in their destination airport by the end of planning time

horizon. Therefore, every scheduled flight job is finished within the planning time horizon to form a complete TFM problem:

XTk�

t�Tk
i ����Tk

i

X

m∈Dk
i

qkim�t� ≤
XTk�−Tk

i

t�Tk
i ���

X

j∈Uk
i

qkji�t� (8)

XTk
i ����Tk

i−1

t�0

X

m∈Dk
i

qkim�t� � 0

∀ Tk� ≥ Tk
i ��� � Tk

i (9)

Constraints (8, 9) enforce every flight to stay in a link i for at least Tk
i minutes (the link length), which guarantees that the traffic

will not move too fast. The Tk
i ��� represents the shortest total traversal time from the origin airport to link i on layer k:

xki �t� ∈ Z�; qki �t� ∈ Z�

∀ i ∈ f1; : : : ; nkg; k ∈ K; t ∈ T; s ∈ S (10)

Constraints (10) represent integer constraints and define the ranges of the preceding subscripts or superscripts.
Ground delay and airborne delay are two important control strategies in TFM problem, which can be both taken into consideration with LAM.

Asmentioned in constraints (3), a special link 0 (T0 � 1) is defined to represent the airport as the start of each layer. The control imposed on link 0

corresponds to ground delay. At each time, when an amount of fk�t� flights enter link 0, the flights are considered to join in a departure queue.
Some flights may suffer ground holding at the next time step for traffic congestion. Correspondingly, the controls imposed on the other links are

considered to be airborne delay. Note that the weight ck0 and cki can be adjusted as the costs for ground delay and airborne delay, respectively.
The solution to the preceding TFM problem is the optimal traffic flow as well as the flow control for each layer. Specifically, vector

�xk1�t�; xk2�t�; : : : ; xknk�t�� represents the state of layer k at time t. As t evolves, the states of the vector represent themovement of traffic flow. Given

that real traffic control is generally applied to individual aircraft rather than a flow, the flow control obtained from this model seems impracticable.

However, a disaggregation process can convert the flow control into flight-specific actions. The idea is that these optimal states, i.e., vector

�xk1�t�; xk2�t�; : : : ; xknk�t��, can be used as constraints for scheduling the flights on layer kwhere variables are defined as ground delays and airborne
delays associated with individual flights [12]. The disaggregation process is discussed in detail in [24]. After the disaggregation process, the flow

controls are translated into delays imposed on individual flights in each sector.

C. Dual Decomposition Method

The preceding TFM optimization problem has a very large scale. The problem can be seen as overlapping K (K ≈ 4000) layers of identical
network together, with each layer containing network flows from one source (origin airport) to one sink (destination airport). The only

complication between these layers is the constraints in Eq. (4) and the departure/arrival capacity constraints where air traffic on multiple layers

share a same resource (such asCdep�t�). A dual decomposition method is presented in [13,17] to solve the large-scale linear/integer programming

for TFM problems. The decomposition method can be refined for the optimization model in this paper.
By assigning Lagrange multipliers λs�t�; λ�0;k��t�; λ�nk;k��t�, these coupled constraints are incorporated into the objective function. Then, the

formulation can be rearranged in terms of layer such that each layer is associated with an independent and smaller IP problem. As such, the large-

scale problem is decomposed layer by layer into small subproblems. The optimization proceeds by iteratively solving all subproblems and

updating Lagrange multipliers based on the solutions of subproblems [13]. The process is summarized in Algorithm 1.

Algorithm 1 Decomposed TFM optimization based on LAM

1: initialization: j � 0, λs�t� � λ�0;k��t� � λ�nk;k��t� � 1

2: ∀ k ∈ K, solve:

mindk�λs�t�� �
P

t∈T�
P

nk−1
i�1 �cki � λs�t��xki �t� � �ck0 � λ�0;k��t��xk0�t� � �ck

nk
� λ�nk;k��t��xknk �t��

subject to constraints (3, 7–10)

3: update master problem and Lagrange multipliers:

d�λs�t�� � maxfPk∈Kd
k�λs�t�� −

P
t∈Tf

P
s∈Sλs�t�Cs�t� �

P
�0;k�∈Adep

λ�0;k��t�Cdep�t�
�P

�nk;k�∈Aarr
λ�nk;k��t�Carr�t�gg

λs�t� ≔ maxf0; λs�t� � �1∕j� 1��P�i;k�∈Qsi
xki �t� − Cs�t��g; ∀ t ∈ T; s ∈ S

λ�0;k��t� ≔ maxf0; λ�0;k��t� � �1∕j� 1��Pm∈Dk
0
qk0m�t� − Cdep�t�g; ∀ t ∈ T; �0; k� ∈ Adep

λ�nk;k��t� ≔ maxf0; λ�nk;k��t� � �1∕j� 1��Pj∈Uk

nk
qk
jnk

�t� − Carr�t�g; ∀ t ∈ T; �nk; k� ∈ Aarr

j � j� 1
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III. Spark Programming Procedure

A. Parameterization of the Traffic Model

To set up the LAM, the following information is needed: 1) layer identified in theNAS and link subnetwork of each layer, 2) the traversal time of

each linkTk
i , and 3) scheduled departures f

k�t�. All of the information can be obtained by analyzing raw flight data [27]. The ASDI data provide a

rich source of historical traffic records for a variety of analysis purposes. However, the flight information is buried in tons of raw flight messages

that are recorded inASDI format. Thosemessages need be decoded to extract information of interest. AnASDI log recording a full day operations

is usually of 500–1000 MB. A snippet of the data looks as follows:

· · ·

01F323201952KZHNTZN717U∕041 179 000 3627N∕09305W

01F323201952KZHNTZUAL45∕396 520 350 2205N∕15422W

02F723201957KZLADZSWA761∕320T∕B733∕I SAND2020ELP 2137

· · ·

Each line is a flight message sent by one of the air traffic control facilities across the country.Messages used to restore a flight trajectory include

departure message (DZ), arrival message (AZ), flight plan information (FZ), flow control track (TZ), and flight cancellation message (RZ).

Because the incoming messages are sorted by timestamp, messages pertaining to the same flight could scatter through an ASDI file. This is

typically true for long-range flights. As a result, thewhole file needs to be scanned to connect each piece of information associated with a specific

flight. Both departures and trajectories are extracted from the data. Departure information is used to generate the time series fk�t�, and trajectories
presented as sequences of links are clustered to generate link statistics. In this research, we developed the following procedure to process and

analyze the ASDI data to build the mathematical LAM model.
Decoding: ASDI data are highly structured, with each message starting at a timestamp in conjunction with message type, followed by aircraft

identification (ACID) and varying number of fields defined for specific message types. Following the definitions of fields specified in the ASDI

interface document [20], flight information can be extracted into a list [20]. Information that is necessary for route network construction includes

timestamp, message type, ACID, aircraft type, origin and destination airports, geographic coordinates (latitude, longitude, altitude), and speed.

An example is shown in Table 1.
Sorting andmatching: Grouping the decoded flightmessages byACIDyields a flight history of each aircraft. But an aircraft may fly connecting

flights during a day.We have to segment connecting flights to extract each individual flight trajectory. This can be done by pairing up neighboring

DZ and AZ messages if their origin and destination airports match the ones recorded in the nearest FZ message. Ideally, DZ and AZ messages

should appear alternately in an ACID-sorted message sequence [DZ; TZ · · · ; TZAZ; · · · ; FZ;DZ; TZ · · · ; TZAZ]. However, the conditions
vary as follows.

Incomplete flight records: For unknown reasons, some messages are lost (e.g., [DZ; · · · DZ; · · · ]). In this case, we simply discard the DZ or

AZ messages that cannot be paired up.
Amended departure or arrival messages: From time to time, multiple departure and arrival messages are filed due to change of flight schedule

(e.g., [DZ;AF;DZ; TZ; · · · ; TZ; AZ; AZ]). The latest DZ or AZ messages reflect the updates, are thereby retained.
OnceDZ andAZmessages are paired up, anymessage filed in between is associatedwith the same flight. TheACID-sortedmessages in Table 2

show an example.
Aircraft “DAL217” took off from Atlanta International Airport at 00:00:18 and arrived at Tallahassee Regional Airport at 00:37:01.
Filtering: ASDI data are flawed with mismeasurements [28]. Somewaypoints deviate from the nominal flight route with large displacements.

These anomalies would lead to erroneous link identification in the subsequent step. Therefore, a trajectory needs to be scanned and filtered to

eliminate anomalies. The speed and the rate of descent/climb of civil flight are used as the conditions of filtering process.

Table 1 The flight data after decoding

Time Message ACID Aircraft type Origin Destination Latitude Longitude Altitude Speed

00:00:00 FZ N550DL C550 KPHN KEWR — — — — 40,000 390
23:59:39 TZ TRS148 — — — — — — 33.01 82.78 39,000 434
23:59:39 TZ AWE959 — — — — — — 34.05 84.91 33,100 457
23:59:39 TZ N925DW — — — — — — 33.75 85.12 21,000 261
23:59:40 AZ BTA6044 — — — — KORD — — — — — — — —

23:59:41 TZ AWE1491 — — — — — — 34.79 82.41 12,900 286
23:59:43 AF N3030 BFM — — — — — — — — 7,000 160

Table 2 The sorted flight data

Time Code ACID Aircraft type Origin Destinatoin Latitude Longitude Altitude Speed

00:00:18 DZ DAL217 MD88 KATL KTLH — — — — — — — —

00:00:47 TZ DAL217 — — — — — — 33.63 84.48 2400 187
00:01:08 TZ DAL217 — — — — — — 33.6225 84.50 3100 221
00:01:12 TZ DAL217 — — — — — — 33.61 84.51 3500 226

: : :
00:32:33 TZ DAL217 — — — — — — 30.44 84.27 1400 165
00:37:01 AZ DAL217 — — KATL KTLH — — — — — — — —
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Notice that when those “error”messages are discarded, they are also subtracted from the capacity constraints, and the reduction of the capacity
is done only for the certain time period. Therefore, removing observations does not introduce biases because capacity estimates are adjusted
accordingly.

Interpolation: A flight is tracked by different facilities as it travels along its route; as a result, the intervals between successive TZmessages are
not constant, ranging from a few seconds to 4 min. In some cases, the loss of messages results in large intervals. This would cause erroneous
measurements in the subsequent link identifications. To guarantee a reasonable spatial resolution, each trajectory is scanned and interpolated if the
gap between two successive waypoints is larger than 1 min. Interpolation is linear and based on the three-dimensional position and speed of
waypoint where interpolation begins.

Sectormapping: Once filtered, the trajectory is represented by a vector of geographic coordinates, which needs to bemapped into a sequence of
sector (defined as polygons in the airspace). Mapping coordinates to sectors can be done by using the ray-casting algorithm [29], which is able to
determinewhether a point is inside of a polygon.With thegeographic coordinates of sectors provided by the FutureATMConcept EvaluationTool
(FACET) [30], the mapping yields Table 3.

Link subnetwork representation and link statistics: The traversal time Tk
i is one of the key parameters for the model setup. For each individual

flight, the link traversal time Tk
i can be obtained by calculating the difference of the entry record and exit record to/from a particular sector.

However, because individual flight trajectory may temporarily deviate from its scheduled flight plan in reality, the nominal flight route cannot be
represented by an individual trajectory. Otherwise, there would be a considerable amount of trivial paths between an o-d pair, creating a huge
subnetwork. To construct a reliable link subnetwork representation for each o-d pair, a large amount of trajectories was analyzed, which spans 84
days. The most frequent three routes were used to construct the link subnetwork. For each identified link, the mode of the sample set based on
kernel density estimation (KDE) was taken to estimate traversal time of a link [31] because the KDE method provides more accurate prediction
compared to traditional method that use the mean [32].

B. Spark Programming

The Apache Spark is a cluster computing platform, which extends the popular MapReduce model to efficiently support more types of
computations. One of the main features Spark offers for speed is the ability to run computations in memory, and the system is also more efficient
thanMapReduce for complex applications running on disk [19]. The resilient distributed data set (RDD) is the basic abstraction in Spark.AnRDD
in Spark is an immutable, partitioned collection of elements that can be operated on in parallel. In Spark, all work is expressed as either creating
newRDDs, transforming existing RDDs, or calling operations onRDDs to compute a result. Spark automatically distributes the data contained in
RDDs across a cluster and parallelizes the operations to perform on them. In distributed mode, Spark uses a master/slave architecture with one
central coordinator (the driver) and many distributed workers (executors), as shown in Fig. 2. The driver is the process where the main method of
the program runs. The driver converts the program into tasks and schedules tasks on executors dynamically based on each executor’s

Fig. 2 Distributed Spark system with master/slave architecture.

Table 3 The flight data after sector mapping

ACID Time Origin Destination Latitude Longitude Altitude Sector

AWE948 14:19:23 KPHX KSFO 36.571 −76.342 10,200 ZOA33
AWE948 14:20:23 KPHX KSFO 36.592 −76.381 10,200 ZOA33
AWE948 14:21:23 KPHX KSFO 37.008 −76.438 10,200 ZOA32
AWE948 14:22:23 KPHX KSFO 37.140 −76.479 10,200 ZOA32
AWE948 14:23:23 KPHX KSFO 37.196 −76.542 10,200 ZOA32
AWE948 14:24:23 KPHX KSFO 37.244 −76.591 10,000 ZOA32
AWE948 14:25:23 KPHX KSFO 37.254 −76.642 10,000 ZOA32
AWE948 14:26:23 KPHX KSFO 37.341 −76.685 10,000 ZOA32
AWE948 14:27:23 KPHX KSFO 37.406 −76.738 10,000 ZOA31
AWE948 14:28:23 KPHX KSFO 37.441 −76.794 10,000 ZOA31
AWE948 14:29:15 KPHX KSFO 37.506 −76.847 8,000 ZOA31
AWE948 14:30:15 KPHX KSFO 37.597 −76.883 8,000 ZOA31
AWE948 14:31:15 KPHX KSFO 37.625 −76.916 7,000 ZOA31
AWE948 14:32:15 KPHX KSFO 37.716 −76.947 6,000 ZOA31
AWE948 14:33:15 KPHX KSFO 37.811 −76.978 6,000 ZOA31
AWE948 14:34:15 KPHX KSFO 37.921 −77.017 6,000 ZOA31
AWE948 14:35:15 KPHX KSFO 38.063 −77.048 5,000 ZOA28
AWE948 14:35:58 KPHX KSFO 38.147 −77.087 4,000 ZOA28
AWE948 14:36:46 KPHX KSFO 38.197 −77.102 4,000 ZOA28
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computational ability, and this dynamic allocation feature is the key to balance workload between workers. After finishing each scheduled task,

the worker will return the necessary result to the driver and proceed to the next scheduled task.

In Spark, the RDDs containing key/value pairs are called pair RDDs, which is similar to the concept of the <key; value > pair inMapReduce.

Pair RDDs are very useful building blocks for the LAMmodeling because they expose operations that allow you to act on each key in parallel or

regroup data across the network. Spark’s distributed framework and list-processing model make it suitable for the LAM modeling. The LAM

problem is developed in two stages. In the first stage, a large ASDI data set is processed to prepare parameters for the LAM setup. Steps described

in Sec. III.A are refactored in Spark processes. In the second stage, the recursive optimization algorithm is encapsulated in a chain of Spark

transformations and actions. A customized Spark-based optimization architecture for large-scale IP problems is introduced in this stage.

In the first stage, the parameter setup process is similar to the previous work with MapReduce. In MapReduce, the whole process needs to be

split and compiled into a job flow, where each job goes through two sequential phases: map and reduce. In map phase, a user-specified function is

implemented on all <key; value > pairs in parallel. In reduce phase, pairs with the same key are aggregatedwith a user-specified rule. In each job,

the output ofmap phasewill be the input of reduce phase. After each job, an output file is returned as the input of the downstream job. However, in

Spark, the process does not need to follow the standard map and reduce procedure, which reduces the difficulty of programming such that the

Spark code is much shorter than MapReduce code. Moreover, all computations can be run in memory such that the output file is unnecessary for

chained jobs. A high-level description of the parameter setup process on Spark is provided next.We refer readers to [18] for detailed discussion of

the parameters setup process with MapReduce. After the first stage, routes and links (segments of a route in a sector) information is stored in a

database for the setup of subsequent LAM optimization.

RDD1 � load�ADSIdata�: read each line of raw flight data and generate RDD.

RDD1: content of each line of raw messages.

RDD2 � map�RDD1�: Decoding the flight message and return flight information associated with ACID.

RDD2: pair RDD <k; v > with k: ACID and v: flight information.

RDD3 � reduceByKey�RDD2�: Sorting and matching step. Return the flight message associated with each flight.

RDD3: pair RDD < k; v > with k: ACID� tdep and v: flight information.

RDD4 � filter�RDD3�: filtering and interpolation step. Check anomaly and interpolate as necessary.

RDD4: pair RDD <k; v >; with k: ACID� tdep and v: Interpolated [φ�tm�; λ�tm�; h�tm�].
RDD5 � map�RDD4�: sector mapping step. Return sectors associated with ACID� tdep.
RDD5: pair RDD <k; v > with k: ACID� tdep and v: Sector.
RDD6 � reduce�RDD5�: link subnetwork representation for each layer and generate its estimated traversal time Tk

i .

RDD6: pair RDD <k; v > with k: Link name and v: Tk
i .

The Spark process of the LAMoptimization starts from the database that we got in the first stage. A flowchart of the Spark process of the LAM

optimization is shown in Fig. 3. For each flight, the associated pair RDD is created with the o-d pair (layer) as the key and the departure time as the

value. Then, the pair RDDs with the same o-d pair (layer) are aggregated such that each pair RDD is a small subproblem. To set up each

subproblem, the departure information fk�t� is generated, and the traversal time for each link in this subproblem is retrieved from the database.

Giving the initial Lagrangian multipliers and the sector capacity information, the subproblem can be solved in parallel. This will be the most

computationally intensive step, which solves a large number of IP subproblems in parallel. By aggregating the returned result from all

subproblems, the Lagrangian multipliers can be updated, and the algorithm proceeds to next iteration. The workflow is given as follows.

RDD1 � load�FlightPlan�: read each line of flight Plan file and generate RDD.

RDD1: content of each line of flight plan information.

RDD2 � filter�RDD1�: filter the flight plan based on selected date and time period.

RDD2: flight plan on selected date and time period.

RDD3 � map�RDD2�: create paired RDD with layer name and its departure time.

RDD3: pair RDD <k; v > with k: layer k and v: departure time tdep.
RDD4 � groupByKey�RDD3�: group the departure times with the same layer name.

RDD4: pair RDD <k; v > with k: layer k and v: departure time set �t1dep; t2dep; · · · �.
RDD5 � map�RDD4�: generate departure schedule fk�t� and retrieve traversal time Tk

i for each link in this layer from database.

RDD5: pair RDD <k; v > with k: layer k and v: fk�t� and Tk
i .

RDD6 � map�RDD5�: set up subproblems with initial Lagrangian multipliers λsi�t� and the sector capacity information; solve the

subproblems concurrently. Return sector name and the sector count contribute by this route.

RDD6: pair RDD <k; v > with k: sector si and v: xki �t�.

Fig. 3 Flowchart of the recursive algorithm based on Spark.
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Thiswill be themost computationally intensive step in the process,which solves a large number of IP subproblems in parallel. Themap function
here is a customized IP optimization algorithm.

RDD7 � reduceByKey�RDD6�: aggregate the sector counts contributed by different layers and update Lagrangian multipliers for next
iteration.

RDD7: pair RDD <k; v > with k: sector si and v: λsi�t�.

IV. Simulation Results

A. Model Validation

Compared to the LTM, the key advantage of the LAM is the ability to reroute aircraft in TFM. This subsection first validates the optimization
algorithm and program. Then, the benefit of the LAM is demonstrated by comparing the LAM’s result to the baseline (LTM).

In this experiment, each instance covers traffic in the continental United States airspace in a 2 h period. To get parameters for the LAM, 84ASDI
data files corresponding to the traffic of 84 days were analyzed. As a prototype, this paper only focused on the airspace in the continental United
States, which contains 1258 sectors. On each day, over 62,000 flights were tracked in the NAS. Almost 30,000 links and 100,000 routes were
identified; 3838 general public airports were included in the route network, which covers the majority of commercial aviation routes in the U.S.
airspace. Despite a large volume of data used to provide a statistically significant sample pool, only those involved in the planning horizon were
pulled out of the database for the TFM problem setup.

The TFM problem was validated by running a 2 h NAS-wide instance, which represents the high traffic period of a day with 2326 layers and
3054 flights are involved. Given that ASDI traffic is under control in reality, only 70% of the nominal sector capacity is used to test the model by
creating a “busy” traffic for all the instances in this paper. The optimized traffic of a representative sector (ZNY81, NewYork Center) is shown in
Fig. 4. It is clear that the optimization alleviates congestion. The sector counts are kept below the sector capacity after the optimization.

To demonstrate the LAM’s ability to reroute aircraft in TFM, the LTM’s result is set as the baseline and compared with the LAM’s result.
Without loss of generality, there are 10 2 h NAS-wide instances been used with both the LTM and LAM. Each instance covers a 2 h high traffic
period with about 3000 flights and 2000 layers (each layer includes three alternative routes with about 25 links in average). Therefore, each
instance has about 2 × 120 × 2000 × 25 � 12;000;000 variables and about 120 × 2000 × �25�2� � 6;480;000 constraints. Table 4 shows the
details and statistics. The last column is the computing time ratio based on a standalone computer. It is clear that the LAM reduces both the ground
delay and air delay cost by introducing rerouting. However, the LAM is 1.5 times slower than the LTM. The reason is that the LAM constructs a
link subnetwork between each o-d pair rather than a unique flight path in LTM, which introduces more variables for each o-d pair (layer). This
computational issue could be alleviated because the Spark-based platform could improve the computational performance, which will be
demonstrated in Sec. IV.B.

B. Performance Improvement with Spark Platform

This section presents NAS-wide instances of TFM problems that run on a Spark cluster. The goal is to compare the performance of the TFM
problems onSparkwith that on the existingHadoopMapReduce framework [18]. Tomake the comparisonmeaningful, the simulation experiment
was set upwith the same hardware parameters. The Spark cluster was launchedwith six nodes, where each nodewasDell workstations configured
with an Intel i7 CPU and a 16 GB RAM. All workstations run Ubuntu 14.04 with Spark 1.3.1. The optimization subproblems were solved by
calling Gurobi 6.0.2 [33].

Table 4 Comparison of LTM and LAM

Instance Flights
Sectors
(airports) Routes

Ground cost ratio
(LAM/LTM)

Air cost ratio
(LAM/LTM)

Computing time ratio
(LAM/LTM)

1 3054 93 (43) 5326 0.903 0.823 1.535
2 3272 104 (45) 6132 0.915 0.813 1.462
3 2848 87 (41) 5103 0.905 0.837 1.586
4 3558 98 (44) 5718 0.901 0.783 1.638
5 3011 91 (40) 4730 0.921 0.811 1.473
6 2629 78 (35) 3578 0.890 0.833 1.583
7 2724 86 (38) 4212 0.920 0.811 1.565
8 3127 101 (43) 5210 0.886 0.809 1.498
9 3257 96 (40) 4698 0.901 0.796 1.607
10 2976 95 (39) 4345 0.910 0.812 1.499
Average 3046 93 (41) 4905 0.905 0.813 1.545
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Fig. 4 Comparison of air traffic flow optimization within a sector of airspace.
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The performance of the TFM problem on Spark and Hadoop was compared by running the same preceding 2 h NAS-wide instance . The

running time of the optimization on Spark and Hadoop is shown in Fig. 5. As a tuning parameter to control the concurrency level, the maximum

number of executors allowed on a worker can be set by users. Because the Intel i7 CPU has four physical cores, with each being capable of

handling two threads simultaneously, the maximum number of executors per machine can be up to eight. As a result, the maximum number of

threads a machine can run in parallel is eight. In theory, the Spark cluster can have at maximum 6 × 8 � 48 threads run concurrently. The running
time decreases as more executors are launched. However, the speedup is not linear to the number of threads. The reason is that the parallel

programming model has inherent overheads such as communication and synchronization between workers.

Comparing the running time of Spark and Hadoop in Fig. 5, Spark is about two times faster than Hadoop. The running time with maximum

computing power (eight executors per machine) is reduced from 11.2 to 5.7 min. One of the key reasons is that Spark’s in-memory computation

cuts down internal input and output processes for iterative jobs. InMapReduce, the input/output data have to be read from/stored to HDFS in each

iteration, and there is significant cost of starting and finishing aMapReduce job. However, Spark’s in-memory computation avoids such cost that

parameter updates can be cached inmemory between iterations in the optimization process, which contributes to the speedup. Another key reason

is that unbalanced workloads cause idle time for some workers on Hadoop cluster. Figure 6a shows the running time of solving subproblems on

each worker of a Hadoop cluster. Worker 3 is about 6.5 s ahead of worker 4 in each iteration. In the implementation of Hadoop, the subproblems

were evenly distributed to eachworker in the beginning.Although all theworkers have the same configuration, the complexity of subproblems has
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Fig. 6 Comparison of Hadoop and spark runtime.
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Fig. 5 Running time decreasing as a function of the number of threads per machines.
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a wide range due to the difference of subnetwork. However, Spark can dynamically allocate subproblems to each of the workers, which helps to

reduce the gap. Figure 6b shows the running time andworkload of solving subproblems onworkers in Spark.Worker 3 and 6weremore powerful

than others such that the Spark driver distributed 5% more subproblems to them in the same time. As a result, the runtime is almost the same on

each worker in each iteration. This feature of Spark helps avoid the idle time associated with Hadoop cluster such that the average solving time in

each iteration is improved.

Themain differences between theMapReduce framework and Spark framework are summarized in Table 5. By taking the advantage of Spark’s

RDD framework, the process does not need to follow the standard map and reduce procedures in the MapReduce framework such that the list-

processing job is easier to programwith fewer lines of code. Beyond the list-processing job, Spark’s RDD framework abstracts awayMapReduce

implementation details such that it can cover a wide range of workloads to become a capable platform for other large-scale dynamical systems,

which is not tractable on a traditional computational platform. In addition, the speedup result shown in Table 5 is compared with the results from a

standalone computer.

As a cloud-based computational framework, another advantage of Spark is its built-in fault tolerance capability. A test is shown in Fig. 7 where

twoworkers (workers 3 and 6)were purposely shut down during the iterations. The optimization was held up by the shut down. Themaster retried

to schedule the failure tasks to these twoworkers for several times.When themaster detects that theseworkers fail to respond for a preset period of

time, it reschedules the tasks to be reexecuted on other workers so that the job can continue. In the remaining iterations, Spark recalculated the

tasks splits and assigned tasks to the aliveworkers. As a result, the whole optimization was completed without interruptions. Fault tolerance is an

important feature that the non-cloud-based computational framework does not provide.

C. Application

To demonstrate that our model with Spark-based computing framework could help the improvement of air transportation system, we

implemented ourmodel and computing frameworkwith realistic traffic data onNASA’s simulation platform: the FutureATMConcept Evaluation

Tool (FACET) [30]. FACET is a flexible software tool, which provides researchers with a simulation environment for preliminary testing of

advanced ATM concepts. In addition to modeling the airspace system for research, FACET has also successfully transitioned into a valuable tool

for operational use. Federal Aviation Administration traffic flow managers and commercial airline dispatchers have used FACET for real-time

operations planning with live air traffic data.

Figure 8 demonstrates the application framework with live air traffic data. First, a flight plan is fed to the spark-based data process module,

where the flight plan is filed by commercial carriers to the air traffic authority approximately 3 h before departure. Second, the spark-based LAM

optimization module will solve for the optimal flow schedule with the current flight plan, which only takes several minutes with the distributed

Spark-based computing framework. Finally, the optimized result can be validated visually by feeding the optimized result into FACET through its

application program interface. Figure 9 demonstrates the visual validation with FACET, which compared the uncontrolled traffic with optimized

traffic for the same time step. It is clear that the LAM optimization alleviates congestion. Based on the validation, the traffic flow managers can
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Fig. 7 Failure tolerance test when workers 3 and 6 were shut down.

Table 5 Comparison of MapReduce framework and spark framework

Features MapReduce Spark

Code, lines 942 221
Speedup 15.8 19.9
Workload balancing No Yes
Fault tolerance Yes Yes
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easily adjust their operational strategies. More importantly, the faster computational platform with Spark can provide multiple validation
opportunities in the face of disruptions to provide a timely solution, which could have a significant effect on the improvement of air transportation
system.

V. Conclusions

This paper introduces a novel layered aggregatemodel, which is highly adaptable to be customized, depending on different objectives such that
it is more general. To demonstrate the advantage over the previous link transmission model, a customized o-d pairs layered aggregate model
(LAM) is illustrated as an example, which can address flexible rerouting issue in the National Airspace System-wide traffic flow management
(TFM) problem. The large TFM problems based on LAM can be decomposed into smaller subproblems by using Lagrangian methods and
employing the parallel programming model. Notice that a layer does not have to be defined based on o-d pairs. In fact, the concept of a layer is
highly flexible. One could separately definemetroplexes or certain special-use regions of airspace; onemight even be able to modify themodel to
accommodate dynamically changing airspace structure; one might also think of segregating vertically, to model separately unmanned aerial
vehicle operations in low-altitude airspace.

Besides, this paper extends the Hadoop-based air traffic flowmanagement problemwithMapReduce framework to Spark, a cluster computing
platform suitable for large-scale data processing. A customized Spark-based optimization architecture for large-scale integer programming
problems is first proposed and tested. In comparison with the MapReduce framework, traffic flow management problems can be solved more

a) Uncontrolled traffic

b) Optimized traffic
Fig. 9 Traffic simulation in FACET: uncontrolled traffic vs optimized traffic at same time step.

Fig. 8 Application framework with live traffic data.
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efficiently in Spark. Spark’s ability to run computation inmemory saves the unnecessary step of generating output file for each job onMapReduce.
In addition, the unbalancedworkload limitation onMapReduce frameworkwas overcome by Spark’s dynamical schedule allocation feature. As a
result, further speedup was achieved. Besides efficiency, the Spark framework abstracts awayMapReduce implementation details to help reduce
the difficulty of programming (as measured by fewer lines of code), and Spark’s distributed framework also demonstrates runtime fault tolerance.
These features, as demonstrated by our experiments, make the Spark a capable platform that can potentially solve and analyze some large-scale
dynamical systems, which is not tractable on a traditional computational platform.
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