
Optimal Flight Trajectory to Minimize Noise During

Landing

Janav P. Udani,∗ Kshitij Mall,† Michael J. Grant,‡ and Dengfeng Sun§

Purdue University, West Lafayette, IN, 47907

Generally, aircraft performance is judged on the basis of fuel consumption, range, or time
criteria, and hence, most optimization studies are carried out on these attributes. With
that in mind, any flight event can be segmented into three distinct stages: take-off, cruise
and landing. Noise generated by an aircraft during its landing phase is considerably high
and, hence, has a significant impact on the population surrounding the airport. While one
way to reduce the perceived noise is by reducing the engine noise itself, this study focuses
on trajectory optimization to design noise-minimal flight trajectories. In this study, the
relationship of the aircraft with its environment during the terminal descent phase has been
studied, and optimal control theory and a state of the art trajectory solver, GPOPS-II, have
been used to construct noise minimal flight trajectories. The concept of trignomerization
is used to implicitly limit the controls and preliminary results solving the 3 degree-of-
freedom noise minimization problem are presented. To showcase the impact of population
distribution around an airport on the effective perceived noise, an example scenario with a
simplistic population distribution function is studied. The higher fidelity problem is solved
using optimal control theory and validated through GPOPS-II. The impact of population is
reflected by a change in the noise-minimal landing trajectory adopted by the aircraft in this
scenario. Additionally, comparisons have been drawn with the flight trajectory simulated
using the currently accepted constant descent approach and the cumulative perceived noise
is found to be lower for the optimal trajectory. This is the first time optimal control theory
has been used to optimize a 3 DOF aircraft landing trajectory problem with three bounded
controls.

Nomenclature

ATS Air Transportation System
BVP Boundary value problem
CDA Continuous descent approach
DOF Degree-of-freedom
EPNL Effective Perceived Noise Level
EU European Union
IEPNL Integral Effective Perceived Noise Level
OCP Optimal control problem
OCT Optimal control theory
PDF Population distribution function
PMP Pontryagin’s Minimum Principle
TPBVP Two point boundary value problem
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D Drag force magnitude, N
G Terminal cost
H Hamiltonian
J Cost functional
LCOST Path cost
L Lift force magnitude, N
T Thrust, N
TTRIG Trigonometric thrust control, rad
W Weight, N

g Earth’s gravitational acceleration, m/s2

m Vehicle mass, kg
u Control vector
t Time, s
tf Final time, s
uTRIG Trigonometric control
v Velocity magnitude, m/s
x State vector
x Downrange, m
y Crossrange, m

z Altitude, m

α Angle of attack, rad
αTRIG Trigonometric angle of attack, rad
γ Flight path angle, rad
λ Costate vector
λγ Flight path angle costate, dB/rad
λψ Heading costate, dB/rad
λv Velocity costate, dB.s/m
λx Downrange costate, dB/m
λy Crossrange costate, dB/m
λz Altitude costate, dB/m
Φ Terminal constraints
φ Bank angle, rad
φTRIG Trigonometric bank angle, rad
Ψ Initial constraints
ψ Heading angle

I. Introduction

Optimization of flight trajectories is an area of vital importance in air traffic management from the
operations point of view. Generally, studies under this topic aim to define optimal flight paths that

ultimately lead to energy-efficient flights.1 Noise of commercial aircraft has been a cause of serious concern
for the population around airports.2 This problem is manifested during night-time operations when an
aircraft significantly disturbs the surrounding area. While constant descent approach (CDA) is a possible
solution,3 many countries impose night flying restrictions wherein the airport is closed and no aircraft
operations can take place. Hence, if an aircraft is scheduled to land at a particular airport, the flight either
has to be cancelled at the airport of origin, or the aircraft has to be diverted to the nearest airport that
is open for night-time operations. Such laws become a serious impediment, especially in the European
Union (EU) where almost all airports do not permit night-time operations.4 The cost incurred due to these
impediments is likely to be high.

Improvement of engine characteristics as well as development of new flight paths are two solutions that
reduce aircraft noise.1,5 The goal of this investigation is to maintain the high safety standards of flight
operations when designing new flight paths that minimize noise.2 To this end, an optimal control problem
(OCP) is formulated and solved to minimize the noise of an aircraft during landing. A system of ordinary
differential equations is used to represent the flight dynamics of an aircraft along with some safety and
comfort constraints that are used in general practice to satisfy public transport requirements.6,7 A real
world noise minimal aircraft landing problem is simulated and solved by imposing realistic bounds on the
controls using the concept of trigonomerization, which has not been done before.8 Previously, a 2 degree-of-
freedom (DOF) study was carried out on noise minimization aircraft trajectories whereas this study focuses
on a more complicated and realistic 3 DOF case. Subsequently, a cost functional is defined which aims to
minimize the noise index of an aircraft landing event.2,5, 9

Section II outlines the concepts used in this study. An example 3 DOF landing problem is solved to
minimize noise in Section III and a simplistic population distribution function (PDF) is discussed in Section
IV. Additionally, in Section IV, initial comparisons are drawn between the proposed trajectory and the
trajectory generated by simulating CDA.
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II. Preliminaries

II.A. Necessary Conditions of Optimality using Calculus of Variations

OCPs involve the calculation of the time-history of the control variable(s) associated with a system that
optimizes a given performance index while satisfying problem-specific constraints at the initial point, terminal
point, and interior points as well as path constraints. An OCP is generally expressed in the form given in
Eq. (1). J is the cost functional, with G being the terminal cost and

∫ tf
t0
LCOST(x,u, t) dt being the path cost.

There are also initial and terminal constraints, Ψ and Φ respectively, that are to be satisfied simultaneously.

Min J = G(x(tf ), tf ) +

∫ tf

t0

LCOST(x,u, t)dt (1)

Subject to:
t0 = 0

ẋ = f(x,u, t) (2)

Ψ(x(t0), t0) = 0 (3)

Φ(x(tf ), tf ) = 0 (4)

Indirect methods optimize the cost functional J shown in Eq. (1) by formulating a Two-Point Boundary
Value Problem (TPBVP) that represents the necessary conditions of optimality. If these boundary conditions
are satisfied, the solution will be locally optimal in the design space. In order to do this, the dynamic
equations of the system are augmented with a set of costates, and the necessary conditions of optimality are
formulated by applying the Euler-Lagrange equation.10

The Hamiltonian is defined as shown in Eq. (5), where λ is the costate vector with its corresponding
dynamic equations defined in Eq. (6). The optimal control law, u(t), is obtained as a function of the states
and costates by solving Eq. (7). The initial and terminal boundary conditions on the costates are specified
in Eqs. (8) and (9), where ν0 and νf are sets of undetermined parameters which are used to adjoin these
boundary conditions to the cost functional. The time of flight of the trajectory is determined by the free
final time condition shown by Eq. (10). The necessary conditions of optimality are defined by Eqs. (6–10),
and they form a well-defined TPBVP that can be solved using BVP solvers.

H = L(x,u, t) + λT (t)f(x,u, t) (5)

λ̇ = −∂H
∂x

(6)

∂H

∂u
= 0 (7)

λ(t0) = νT0
∂Ψ

∂x(t0)
(8)

λ(tf ) =

(
∂G

∂x(tf )
+ νTf

∂Φ

∂x(tf )

)
(9)(

H +
∂G

∂t
+ νTf

∂Φ

∂t

)
t=tf

= 0 (10)

II.B. Pontryagin’s Minimum Principle

When more than one option exists after solving Eq. (7), the optimal control is chosen using Pontryagin’s
Minimum Principle (PMP) as shown in Eq. (11), where * refers to the optimal value.10 It states that the
optimal control will minimize the Hamiltonian, H, for all admissible values of control.10

H(t,x∗(t),u∗(t),λ∗(t)) ≤ H(t,x∗(t),u(t),λ∗(t)) (11)
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II.C. Trigonomerization of Bounded Control Problems

The concept of trigonomerization8 is used to express the control in the form of trigonometric functions, which
are bounding in nature. This concept is applicable for any bounded control problem.11 Trigonomerization
can be applied to OCPs where the Hamiltonian is given by Eq. (12), where f(u) is a non-linear function of
u.

H = H0(t, x, λ) +H1(t, x, λ)f(u) (12)

Suppose the control for an OCP is represented originally as u. If u is bounded, it can be rewritten
in a bounded form using trigonomerization as shown in Eqs. (13), where uLowerBound and uUpperBound are
the lower and upper bounds on u, respectively. This trigonometric reformulation greatly simplifies problem
formulation and solution process for OCPs.

u1 =
uUpperBound − uLowerBound

2
(13a)

u0 =
uUpperBound + uLowerBound

2
(13b)

u = u1 sinuTRIG + u0 (13c)

Trigonomerization also avoids solving a multi-point boundary value problem by allowing the problem to
remain a TPBVP. This significantly reduces the effort required for problem formulation and solution process.
Moreover, this investigation warrants the use of three controls that require realistic bounding for obtaining
noise minimal flight trajectories.

III. Noise-Minimal 3 DOF Trajectory Optimization

To design minimal noise trajectories, a suitable noise index must be selected. The general aircraft noise
indices, which effectively describe the noise during an aircraft landing event, are Sound Exposure Level,
Overall Sound Pressure Level,12 Effective Perceived Noise Level (EPNL), and Equivalent Noise Level.2

Minimization of the EPNL (i.e., the noise perceived by a person standing at a fixed distance from the
aircraft) is chosen for this problem. In any aircraft landing event,5 it is necessary to consider the person who
is nearest to the aircraft as it is that person who is affected most by the aircraft’s noise. Hence, the noise
index is a function of the altitude, z. This function represents the zoning-plan of the community surrounding
the airport and can be approximated as (z+50).5

It is also necessary to consider the duration for which the noise lasts. Hence, minimization of the EPNL5

is chosen. Thus, the cost functional is to minimize the EPNL over the entire trajectory. It is termed as
Integral Effective Perceived Noise Level (IEPNL) and is shown in Eq. (14a).5 The equations of motion
describing a 3 DOF trajectory of an aircraft are used for this problem as shown in Eqs. (14b)-(14g).6 The
lift force, L, and the drag force, D, are approximated as shown in Eq. (14h) and Eq. (14i), respectively.1,5

Minimize:

J =

∫ tf

0

18.73 T 5.2

v(z + 50)2.5
cos γ dt (14a)
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Subject to:

ẋ = v cos γ cosψ (14b)

ẏ = v cos γ sinψ (14c)

ż = v sin γ (14d)

v̇ =
T cosα−D

m
− g sin γ (14e)

ψ̇ =
(T sinα+ L) sinφ

mv cos γ
(14f)

γ̇ =
(T sinα+ L) cosφ

mv
− g cos γ

v
(14g)

L = W = mg (14h)

D = c1v
2 +

c2
v2

(14i)

In the above equation, J is the noise minimization cost functional, x is the downrange, y is the crossrange,
z is the altitude, v is the velocity, ψ is the heading angle, γ is the flight path angle, m is the mass of the
vehicle, D is the drag force magnitude, L is the lift force magnitude, φ is the bank angle, α is the angle of
attack, and T is the thrust force magnitude. The constants used in this problem, as shown in Table 1, are
the weight of the aircraft, W, the acceleration due to Earth’s gravity, g, and constants related to the drag
force, c1 and c2. This problem is particularly difficult to solve because the general tendency to minimize
noise based on the cost function (as shown in Eq. (14a)) would be to fly at high altitudes with low thrust and
high velocity. While considering a landing event, not only the altitude but also the velocity must decrease
to satisfy operational constraints, which would inevitably lead to an increase in the noise level.9

Table 1: Parameters for aircraft’s noise-minimal trajectory problem.

Parameter (Unit) Value

c1 (kg/m) 0.226

c2 (kg m3/s4) 5.2e6

W (N) 7180

g (m/s2) 9.81

Using trigonomerization, the bank angle and the angle of attack are written as shown in Eqs. (15a) and
(15b), respectively. The bounds on the bank angle and angle of attack are chosen as ±60◦ (±π/3) and ±15◦

(±π/12), respectively. Thrust can similarly be trigonomerized as shown in (15c) with a lower bound of 300
N and an upper bound of 3420 N.5

φ =
π

3
sinφTRIG (15a)

α =
π

12
sinαTRIG (15b)

T = 1560 sinTTRIG + 1860 (15c)

The Hamiltonian for this problem can be written as shown in Eq. (16). The equations of motion corre-
sponding to the costates can then be evaluated using Eqs. (6) and are shown in Eq. (17).

H =
18.73 T 5.2

v(z + 50)2.5
cos γ + λx(v cos γ cosψ) + λy(v cos γ sinψ) + λz(v sin γ) + λv

(
T cosα−D

m
− g sin γ

)
+ λψ

(
(T sinα+ L) sinφ

mv cos γ

)
+ λγ

(
(T sinα+ L) cosφ

mv
− g cos γ

v

)
(16)
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λ̇x = 0 (17a)

λ̇y = 0 (17b)

λ̇z =
46.825 T 5.2

v(z + 50)3.5
cos γ (17c)

λ̇v =
18.73 T 5.2

v2(z + 50)2.5
cos γ − λx(cos γ cosψ) − λy(cos γ sinψ) − λz(sin γ)

+ 2λv

(
c1v

4 − c2
mv3

)
+ λψ

(
(T sinα+ L) sinφ

mv2 cos γ

)
+ λγ

(
(T sinα+ L) cosφ

mv2
− g cos γ

v2

)
(17d)

λ̇ψ = λx(v cos γ sinψ) − λy(v cos γ cosψ) (17e)

λ̇γ =
18.73 T 5.2

v(z + 50)2.5
sin γ + λx(v sin γ cosψ) + λy(v sin γ sinψ) − λz(v cos γ)

+ λvg cos γ − λψ

(
(T sinα+ L) sinφ sin γ

mv cos2 γ

)
− λγ

g sin γ

v
(17f)

Using OCT, the optimal control options obtained for this problem are shown in Eqs. (18), (19), and (20)
for bank angle, angle of attack, and thrust control, respectively. PMP as described in Eq. (11) can then be
used to choose the optimal combination of controls from among these options. Preliminary results obtained
for an example case are presented in the next section.

φ∗TRIG =



−π
2

arcsin

arctan

(
λψ

λγ cos γ

)
π
3


arcsin

arctan

(
λψ

λγ cos γ

)
+ π

π
3


π

2

(18)

α∗
TRIG =



−π
2

arcsin

arctan

(
λψ sinφ

vλv cos γ
+
λγ cosφ

vλv

)
π
12


arcsin

arctan

(
λψ sinφ

vλv cos γ
+
λγ cosφ

vλv

)
+ π

π
12


π

2

(19)

T ∗
TRIG =



−π
2

arcsin


(
v(z + 50)2.5

97.396 cos γ

(
−λv cosα

m
− λψ sinα sinφ

mv cos γ
− λγ sinα cosφ

mv

)) 1

4.2 − 1860

1560


π

2

(20)

6 of 13

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
Fe

br
ua

ry
 7

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

11
80

 



It can be seen in Eqs. (19) that the optimal values of bank angle, φ*TRIG, are required to evaluate the
optimal values of the angle of attack, α*

TRIG. Similarly, φ*TRIG and α*
TRIG are necessary to evaluate

optimal thrust control, T ∗
TRIG, as shown in Eqs. (20). Thus, it is mandatory to evaluate the optimal bank

angle first, followed by the optimal angle of attack and lastly the optimal value of thrust. It can also be
seen that there are four options for optimal bank angle, four options for optimal angle of attack and three
options for optimal thrust, resulting in a total of 48 optimal control options to select from using PMP.

III.A. Preliminary Results

An example scenario is presented and solved for the initial and final conditions enforced upon the aircraft
trajectory as shown in Table 2. The values in this table are derived from a 2 DOF problem described in Ref.
5 as a benchmark.

Table 2: Initial and final conditions for aircraft’s noise-minimal trajectory problem.

Attribute Initial Value Final Value

Time (s) 0 free

Downrange (km) 0 5.4

Crossrange (km) 0 4.6

Altitude (km) 1.197 0

Velocity (m/s) 124 77.5

Heading Angle (◦) 0 45

Flight Path Angle (◦) 0 0

The results have been obtained using OCT by satisfying necessary conditions of optimality and also
by using a state of the art trajectory optimizer based on pseudospectral method, GPOPS-II.13 The 3D
trajectory plot and the noise generated by the aircraft are shown in Fig. 1. The IEPNL generated by the
aircraft is found to be 6395 dB-s.1,5 The time histories of the states are shown in Fig. 2. The velocity along
the trajectory is within the acceptable range for comfort and safety of the passengers.
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Figure 1: 3D trajectory and noise history for the aircraft.

The control history plots for the bank angle, the angle of attack, and the thrust are shown in Fig. 3. It
can be seen that these controls stay within the required bounds. Fig. 4 shows that the magnitudes of the
costates are extremely high, thus highlighting the need to scale the problem under consideration. However,
no scaling has been employed to solve this problem in its current form, which goes to show the robustness of
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Figure 2: Time histories of states.

the solver employed. It should also be noted that a different combination of costates from GPOPS-II results
in the same optimal controls, and, hence, there is a difference in the costates between OCT and GPOPS-II
as shown in Fig. 4.
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Figure 3: Time histories of controls.
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Figure 4: Time histories of costates.

This is the first time that an aerospace problem with six states and three bounded controls, as presented
in this study, has been solved using trigonomerization. This sets the confidence to increase the fidelity of
the noise minimization functional by incorporating a population model, thus accounting for a more realistic
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perceived noise, as described in the next section.

IV. Higher Fidelity Population Model

In the prior example, the cost functional minimized is the IEPNL as perceived by the person nearest to
the aircraft. In order to model and simulate a realistic scenario, it is important to incorporate the population
distribution around the airport. If the latitudinal and the longitudinal coordinate data corresponding to the
area around the airport is available, a polynomial function can be used to model the population data. This
equation, when multiplied with the noise model, yields a weighted cost functional that is representative of
the noise perceived by the total number of people in an area rather than the noise perceived when considering
unit population distribution. Such a weighted cost functional will ensure that minimum number of people
are affected by the aircraft’s noise during its terminal descent. The modified cost functional is given by
Eq. (21), which is essentially the product of Eq. (14a) and the PDF.

J =

∫ tf

0

(PDF)
18.73 T 5.2

v(z + 50)2.5
cos γ dt (21)

Due to unavailability of the aforementioned coordinate data for the population model, we have employed
a general polynomial function as shown in Eq. (22) which is representative of a population change as the
aircraft flies towards the airport. This non-linear function models the population variation based on the
changes in the crossrange.

PDF =
4600

y + 1
(22)

The problem formulation is similar to Sec.III except the objective functional is given by Eq. (21), where
the PDF is as shown in Eq. (22). The optimal control law is modified only for thrust and is shown in Eq. (23).
Also, the modified equations of motion for the costates for this scenario are shown in Eqs.(24a)-Eqs. (24d).
It should be noted that the costates for downrange, x, and heading angle, ψ, remain unmodified.

T ∗
TRIG =



−π
2

arcsin


(
v(1 + y)(z + 50)2.5

448021.6 cos γ

(
−λv cosα

m
− λψ sinα sinφ

mv cos γ
− λγ sinα cosφ

mv

)) 1

4.2 − 1860

1560


π

2
(23)

λ̇y =
86158 T 5.2

v(1 + y)2(z + 50)2.5
cos γ (24a)

λ̇z =
215395 T 5.2

v(1 + y)(z + 50)3.5
cos γ (24b)

λ̇v =
86158 T 5.2

v2(1 + y)(z + 50)2.5
cos γ − λx(cos γ cosψ) − λy(cos γ sinψ) − λz(sin γ)

+ 2λv

(
c1v

4 − c2
mv3

)
+ λψ

(
(T sinα+ L) sinφ

mv2 cos γ

)
+ λγ

(
(T sinα+ L) cosφ

mv2
− g cos γ

v2

)
(24c)

λ̇γ =
86158 T 5.2

v(1 + y)(z + 50)2.5
sin γ + λx(v sin γ cosψ) + λy(v sin γ sinψ) − λz(v cos γ)

+ λvg cos γ − λψ

(
(T sinα+ L) sinφ sin γ

mv cos2 γ

)
− λγ

g sin γ

v
(24d)
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A comparison is drawn between the results obtained while considering the effect of the PDF given by
Eq. (22) and the results obtained in Sec. III. The 3D trajectory and noise history plots as shown in Fig. 5
indicate a different flight path adopted by the aircraft resulting in a higher noise. The IEPNL obtained is
6860 dB-s. This is expected as the PDF in this scenario has significantly higher magnitudes than the uniform
population distribution investigated previously.
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Figure 5: Comparison of 3D trajectory and noise history for the aircraft.

Since the population is very high initially in the crossrange direction, the aircraft flies a higher altitude
trajectory to minimize the total perceived noise. This can be easily seen in the state history plots as shown
in Fig. 6. Given the final state constraints, the aircraft is forced to utilize extremal controls to follow the
optimal trajectory as seen in Fig. 7. OCT requires the costates to be of high magnitudes in order to obtain
such extremal controls. The costates history plots as shown in Fig. 8 are consistent with the expected results.
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Figure 6: Comparison of time histories of states.

10 of 13

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
Fe

br
ua

ry
 7

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

11
80

 



0 20 40 60 80
−10

0

10

20

30

40

50

60

Bank Angle History

B
a
n

k
 A

n
g

le
 [

d
e
g

]

Time [s]

 

 

PDF = 1

PDF = 4600/(y+1)

0 20 40 60 80
−10

−5

0

5

10

15

Angle of Attack History

A
n

g
le

 o
f 

A
tt

a
c
k
 [

d
e
g

]

Time [s]

 

 

PDF = 1

PDF = 4600/(y+1)

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

Thrust History

T
h

ru
s
t 

[N
]

Time [s]

 

 

PDF = 1

PDF = 4600/(y+1)

Figure 7: Comparison of time histories of controls.
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Figure 8: Comparison of time histories of costates.

Additionally, to study the practicability of the proposed method it is interesting to draw comparisons
with the currently accepted CDA. The flight trajectory employing CDA has been simulated using equations
of motion as described in Eqs.(14b)-Eqs. (14f) and the constant parameters as described in Table 3. The
optimal noise trajectory reduces the IEPNL by approximately 7% over CDA. The simulated CDA trajectory
and corresponding noise history are compared with the optimal results in Fig. 9.

Table 3: Constant parameters for CDA.

Parameter Value

Angle of attack (◦) 10

Bank angle (◦) 12.5

Thrust (N) 1700

Flight path angle (◦) -8.5
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Figure 9: Comparison of 3D trajectory and noise history of the aircraft between optimal approach and CDA.

V. Conclusion

A 3 DOF flight trajectory problem to find minimal noise trajectories for an aircraft during its terminal
descent phase is presented and solved. OCT along with trignomerization is used to find the solution as
OCT is based on satisfying necessary conditions of optimality, thus guaranteeing a high-quality solution.
State of the art software, GPOPS-II, which is based on the pseudo-spectral method, has also been used to
find the solution, and an excellent agreement is observed between the results found by the two solvers. To
demonstrate the effect of variable population on the noise optimal trajectories of the aircraft, an example
scenario has been presented with a simplistic PDF. The considered scenario is solved using OCT and yields
a relatively different 3D trajectory to the original problem that does not take population into account while
calculating total perceived noise. Comparisons drawn with the CDA trajectory reveal that the IEPNL
is indeed minimized. Thus, this study lays the foundation for assessing the practicability of constrained
night time operations, especially cargo operations. This study gains high relevance in the current scenario
where the NextGen air transportation system (ATS) is being developed, part of which aims to reduce noise
pollution.

VI. Future Work

The ultimate goal of this study involves proposing and assessing the practicability of new noise-minimal
flight paths for an aircraft during the terminal descent phase around real world airports. One such airport
is Hartsfield-Jackson international airport in Atlanta and the population distribution around this airport is
shown in Fig. 10.

The population data is retrieved from Ref.14 and is based on the 2010 census.15 Interesting flight
trajectories circumnavigating high population zones are expected around such an airport to minimize the
total perceived noise. The current research is undertaken to explore optimal solutions without very strict
restrictions on the state variables. The future work also involves incorporating enhanced constraints on the
state variables imposed by taking passenger comfort into account as required by NextGen ATS.
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Figure 10: Population distribution model for Hartsfield-Jackson airport, Atlanta.
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