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In an earlier work, Sun and Bayen built a Large-Capacity Cell Transmission Model for air
traffic flow management. They formulated an integer programming problem of minimizing
the total travel time of flights in the National Airspace System of the United States subject
to sector capacity constraints. The integer program was relaxed to a linear program for
computational efficiency. In this paper the authors formulate the optimization problem
in a standard linear programming form. We analyze the total unimodular property of
the constraint matrix, and prove that the linear programming relaxation generates an opti-
mal integral solution for the original integer program. It is guaranteed to be optimal and
integral if solved by a simplex related method. In order to speed up the computation, we
apply the Dantzig–Wolfe Decomposition algorithm, which is shown to preserve the total
unimodularity of the constraint matrix. Finally, we evaluate the performances of Sun
and Bayen’s relaxation solved by the interior point method and our decomposition algo-
rithm with large-scale air traffic data.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The National Airspace System (NAS) in the United States is a large-scale, nonlinear dynamic system. The airspace is divided
into 22 Air Route Traffic Control Centers (ARTCCs, or simply, Centers). Each Center is sub-divided into smaller regions, called
Sectors, with at least one air traffic controller responsible for each of them (Nolan, 2003).

The last few decades have witnessed the tremendous growth of air traffic. Since the function of air traffic controllers is to
maintain safe separation between aircraft while guiding them to destinations, an imbalance between the growth of air traffic
and the limited airspace capacity arises. So the design of advanced air traffic management schemes is desired to help.

Optimization techniques have been developed to facilitate Traffic Flow Management (TFM). Current popular TFM schemes
mainly focus on ground delay and/or rerouting flights to accommodate capacitated elements, e.g., en route sectors and air-
ports (Lulli and Odoni, 2007). TFM studies focusing on optimal ground delays have been conducted by many researchers,
from both deterministic and probabilistic perspectives (see Odoni (1987), Terrab and Odoni (1993), Gilbo (1993), Vranas
et al. (1994), Andreatta et al. (1997), Navazio and Romanin-Jacur (1998), Bertsimas and Patterson (1998), Hoffman and Ball
(2000), Dell’Olmo and Lulli (2003), Vossen et al. (2003), Ball and Lulli (2004), Ball et al. (2005), Vossen and Ball (2005, 2006)).
Odoni (1987) formulated the TFM problem using a large number of models and algorithms to detect optimal strategies to
assign ground delays to flights (see in particular Bertsimas et al. (2008)). Helme (1992) was among the first to include en
route capacity restrictions in the TFM problem, which is intuitive to understand but has weak computational performance
as was discussed by Bertsimas et al. (2008). Lindsay et al. (1993) formulated a disaggregate deterministic 0–1 integer
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programming model for deciding ground and airborne holding of individual flights in the presence of both airport and
airspace capacity constraints. A deterministic, open-loop integer programming method was formulated to assign departure
time and sector occupancy time of each aircraft in the work by Bertsimas and Patterson (1998), but the computational com-
plexity of this model has limited its use to a small number of real-world examples as was shown by Grabbe et al. (2007). To
improve the runtime, a method that reduces the number of flights to be optimized was proposed by Rios and Ross (2008);
and more recently, a Dantzig–Wolfe Decomposition method was implemented for the Bertsimas and Patterson model (Rios
and Ross, 2010), which actually motivated several studies (including the work in this paper) using decomposition methods
to solve large-scale TFM problems. The work in Bertsimas and Patterson (1998) was extended to provide a complete repre-
sentation of all the phases of each flights including rerouting strategies (Bertsimas et al., 2008). In Sherali et al. (2002), a bin-
ary integer programming was proposed for a TFM problem, which considers controller workload, airspace safety, and equity
among airlines. Subsequently, the binary integer programming was extended to incorporate rerouting in Sherali et al. (2003,
2006). Research that considers equity or market-based traffic management using aggregate models has been conducted by
Bloem and Sridhar (2008), Waslander et al. (2008a,b). Sridhar et al. (2002) proposed an integrated three-step hierarchical
method for developing deterministic TFM plans consisting of national-level playbook reroutes, miles-in-trail restrictions,
and tactical reroutes to alleviate sector-level congestion. Subsequently, Kopardekar and Green (2005) used a deterministic,
Center-based system to manually identify congested sectors and compare the trade-offs of implementing altitude capping,
local rerouting, departure delays, and time-based metering or miles-in-trail restrictions. Wanke and Greenbaum (2007) pro-
posed a Monte Carlo-based incremental, probabilistic decision making approach for developing en route traffic management
controls. More recently, Grabbe et al. (2009) applied a sequential optimization method to manage air traffic flow under the
uncertainties in airspace capacity and demand.

Sun and Bayen (2008) presented a traffic flow model called the Large-Capacity Cell Transmission Model, in short CTM(L),
which is a variation of the air traffic cell transmission model in Menon et al. (2002) and the original cell transmission model
in Daganzo (1994, 1995). Sun and Bayen applied it to a problem of minimizing the total travel time of all flights in the NAS of
the United States restricted by sector capacity counts, which is an integer program containing billions of variables and con-
straints. It was then relaxed to a linear program (LP) for computational efficiency. Sun et al. (2011) applied the dual decom-
position method to solve the large scale linear program in a computationally tractable manner. However, the authors in Sun
and Bayen (2008) and Sun et al. (2011) found that solving the linear program by large-scale commercial software with or
without decomposition method can possibly result in the fractional optimal solution, which cannot be implemented as
en route holding control in practice. Integer solutions should be guaranteed while the optimum is obtained efficiently. This
is the major motivation of our work.

In this paper we study the solution space structure of the problem and prove that there exists an optimal integral solution
in the linear programming relaxation, which is also the optimal for the original integer program. The solution is guaranteed
to be integral when solved by simplex related methods. Therefore we propose the simplex based Dantzig–Wolfe Decompo-
sition to ensure the integral optimum, while achieving a fast computation speed.

The rest of this paper is organized as follows. The second section introduces the CTM(L) model. The third section formu-
lates the integer programming problem in a standard linear programming form and analyzes its total unimodularity. The
fourth section explains why the interior point method applied in Sun and Bayen (2008) results in the fractional optimal solu-
tion. In Section 5 we apply the Dantzig–Wolfe Decomposition algorithm. Large-scale simulations are performed with histor-
ical data. Section 6 concludes the paper.
2. CTM(L) and its mathematical formulation

The CTM(L) is based on a network flow model built from the historical Aircraft Situation Display to Industry (ASDI) and
Enhanced Traffic Management System (ETMS) data (Bayen et al., 2006).
2.1. Construction of the network

The network flow model is composed of nodes and links. The nodes are created as the entry and exit points at the sector
boundaries as shown in Fig. 1. For any sectors s1, s2 and s3, if s1 and s2 share a boundary and if s2 and s3 are neighbors, two
directed links are created: one from node vfs1 ;s2g to node vfs2 ;s3g and one from node vfs3 ;s2g to node vfs2 ;s1g.

The expected travel time of a flight through a link is computed from ASDI/ETMS data, which is used to determine the
length of the link. Each link is divided into several cells as time interval units (see Fig. 1). A path is defined as a complete
flight route connecting one departure airport and one arrival airport, which usually consists of multiple links. Further details
on constructing the CTM(L) network are described in Sun and Bayen (2008).
2.2. Dynamics

The CTM(L) model is reduced to a linear time-invariant dynamical system. The air traffic flow on link i can be depicted as
the Link Level Model (Sun and Bayen, 2008):



Fig. 1. Construct the CTM(L) network.
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xiðt þ 1Þ ¼ AixiðtÞ þ Bi
1uiðtÞ þ Bi

2fiðtÞ;
yðtÞ ¼ eC 0ixiðtÞ;

ð1Þ
where xiðtÞ ¼ x1
i ðtÞ; . . . ; xNi

i ðtÞ
h i

is the state vector whose elements represent the corresponding aircraft counts in each cell of

link i at time t, and Ni is the number of cells along link i. The forcing scalar input fi(t) denotes the entry count into link i during
time t, and the vector ui (t) represents airborne holding control. The output y(t) is the aircraft count in a user-specified set of

cells at time t. eCi is the user-specified index vector. Ai is an Ni � Ni nilpotent matrix with 1’s on its super-diagonal.

Bi
2 ¼ ½1; 0; . . . ; 0� is the forcing vector with Ni elements, and Bi

1 is the Ni � Ni holding pattern matrix, in which all the non-zero
elements are 1’s on the diagonal and �1’s on the super-diagonal.

Based on the Link Level Model, it is easy to extend it to the Path Level Model and build a Sector Level Model by integrating
all the paths in a sector, e.g. the matrices Ai of different paths in Eq. (1) are put in diagonal blocked matrix A and the vectors xi

are cascaded as x. The NAS-wide model can also be cast in the same procedure.

3. Problem formulation and totally unimodular property

3.1. Integer programming formulation

3.1.1. Path Level Model
According to Sun and Bayen (2008), for a single path with N cells, the initial condition of the model is
xkð0Þ ¼ x0
k ; k ¼ 0;1; . . . ;N � 1; ð2Þ
the boundary conditions are
x0ð0Þ ¼ f ð0Þ þ x0
0;

x0ðtÞ ¼ f ðtÞ þ u0ðt � 1Þ; t ¼ 1;2; . . . ; T � 1;
ð3Þ
and the dynamics are
xkðtÞ ¼ xk�1ðt � 1Þ � uk�1ðt � 1Þ þ ukðt � 1Þ;
k ¼ 1;2; . . . ;N � 1; t ¼ 1;2; . . . ; T � 1;

ð4Þ
where T is the planning horizon.
We cascade all the xk(t) into a vector x in the sequence as below
x ¼ ½x0ð0Þ; . . . ; xN�1ð0Þ; x0ð1Þ; . . . ; xN�1ð1Þ; . . . ; x0ðT � 1Þ; . . . ; xN�1ðT � 1Þ�0: ð5Þ
Similarly, vector u is created of the same length NT as x:
u ¼ ½u0ð0Þ; . . . ;uN�1ðT � 1Þ�0: ð6Þ
We integrate the initial states (2) and boundary states (3) into a vector f of the length NT:
f ¼ ½f ð0Þ þ x0ð0Þ; x1ð0Þ; . . . ; xN�1ð0Þ; f ð1Þ;0; . . . ;0; . . . ; f ðT � 1Þ;0; . . . ;0�0: ð7Þ
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Finally, an equality form is generated by combining Eqs. (5)–(7):
x ¼ Pxþ Quþ f ; ð8Þ
where matrices P and Q are both of dimension NT � NT.
The matrix P is
PðNT�NTÞ ¼

0 0 0 . . . 0 0

Po 0 0 . . . 0 0

0 Po 0 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 0 0

0 0 0 . . . Po 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð9Þ
where 0 and Po are both N � N matrices. The matrix Po is
PoðN�NÞ ¼

0 0 0 . . . 0 0

1 0 0 . . . 0 0

0 1 0 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 0 0

0 0 0 . . . 1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð10Þ
The matrix Q is
Q ðNT�NTÞ ¼

0 0 0 . . . 0 0

Q o 0 0 . . . 0 0

0 Q o 0 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 0 0

0 0 0 . . . Q o 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð11Þ
where 0 and Qo are both N � N matrices. The matrix Qo is
Q oðN�NÞ ¼

1 0 0 . . . 0 0

�1 1 0 . . . 0 0

0 �1 1 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 1 0

0 0 0 . . . �1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð12Þ
Considering both states x and holding controls u are unknown variables, we transform Eq. (8) to
½I � P;�Q �
x

u

� �
¼ f ; ð13Þ
where [x; u] is a vector of variables. Eq. (13) is the dynamic constraint of the model. Restricted by practical physics rules, the
problem has the other three constraints as follows.

Hold Constraint: in each cell k at time t, the number of aircraft to be held is fewer than the current aircraft counts:
u 6 x: ð14Þ
Eq. (14) is incorporated into Eq. (13) in an inequality form as the Dynamics Constraint for a single path:
I � P �Q

P � I Q

�I I

2
64

3
75 x

u

� �
6

f

�f

0

2
64

3
75: ð15Þ
Non-negative Constraint: x and u should be non-negative:
x P 0; u P 0: ð16Þ



P. Wei et al. / Transportation Research Part B 53 (2013) 1–16 5
Integral Constraint: x and u should be integer vectors:
x;u 2 INT ; ð17Þ
where INT is the integer vector domain of dimension NT.

3.1.2. Decoupled Sector Level Model
For the dynamics constraint in Eq. (15) of each path i with Ni cells, we denote the 3NiT � 2NiT matrix as Ai, the 2NiT vector

consisting of x and u as xi, and the 3NiT vector on right-hand side as fi. Thus we obtain the decoupled all-path dynamics con-
straints as
A1

A2

. .
.

AM

2
666664

3
777775

x1

x2

..

.

xM

2
666664

3
777775 6

f1

f2

..

.

fM

2
666664

3
777775; ð18Þ
where the matrix size is 3
PM

i¼1NiT
� �

� 2
PM

i¼1NiT
� �

, vector x has a length of 2
PM

i¼1NiT , and the length of f is 3
PM

i¼1NiT . Eq.

(18) describes the internal dynamics constraints for all paths. All paths are decoupled.

3.1.3. Coupled network level model
In the real air traffic network, multiple paths usually pass through one certain sector with a capacity constraint. To be

more precise, air traffic controllers even set different sector capacity constraints to one sector at different time periods.
The Sector Count Constraint is given by
M

x1

x2

..

.

xM

2
66664

3
77775 6

m1

m2

..

.

mS

2
66664

3
77775; ð19Þ
where
mj ¼ ½mjð0Þ; mjð1Þ; . . . ; mjðT � 1Þ�: ð20Þ
mj(t) is the sector capacity for the jth sector at time period t. m = [m1;m2; . . . ;mS] is TS � 1 and x has a length of 2
PM

i¼1NiT . The
matrix M has a dimension of TS� 2

PM
i¼1NiT, mapping aircraft counts from paths to sectors.

M consists of blocks like Mji mapping aircraft counts from path i to sector j, explained as follows.
M ¼

M11 M12 . . . M1M

M21 M22 . . . M2M

..

. ..
. . .

. ..
.

MS1 MS2 . . . MSM

2
66664

3
77775; ð21Þ
where the structure of block Mji is
Mji ¼

s0ji 00a . . . 00a
00a s0ji . . . 00a

..

. ..
. . .

. ..
.

00a 00a . . . s0ji

�����������
0b

2
666664

3
777775 :¼ Ml

ji

���0b

h i
: ð22Þ
Inside Mji, for each path i with Ni cells, we use a vector sji of length Ni to denote which cells on path i lie in sector j:
sjiðkÞ ¼
1; if the kth cell of path i is in sector j;

0; otherwise:

�
ð23Þ
In this paper, the sector boundaries define all the sectors as convex polygons. As a result, when a path intersects a sector,
there is only one segment lying inside this sector as shown in Fig. 2a. However, in practice the sectors are not necessarily
convex, so there may be two or even more segments from a path falling inside one sector as shown in Fig. 2b. For example,
the vector s0ji for Fig. 2a should be [0,0,1,1,1,1,1,1,1,1,1,0], which contains only one consecutive 1’s series and the vector s0ji
for Fig. 2b is [0,0,1,1,1,0,0,1,1,0], which contains two consecutive 1’s series.

In Eq. (22) 00a is a zero row vector and 0b is a T � NiT all-zero matrix. The matrix Ml
ji to the left of 0b is also T � NiT. The

diagonal blocks consist of the same row vector s0ji because the relationship that cell k in path i belongs to sector j does not
change with time.



Fig. 2. (a) Path j intersects with the convex sector i and (b) Path j intersects with the non-convex sector i.
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We define Ml
i as follow:
Ml
i ¼

Ml
1i

Ml
2i

..

.

Ml
Si

2
666664

3
777775: ð24Þ
Another feature inside matrix M is that the sum of each column in matrix Ml
i is 1, because at each time step t, the kth cell

of path i can only belong to one sector.

3.1.4. Integer programming formulation
We formulate the optimization problem as follows. First we denote
A ¼

A1

A2

. .
.

AM

M11 M12 . . . M1M

M21 M22 . . . M2M

..

. ..
. . .

. ..
.

MS1 MS2 . . . MSM

2
6666666666666664

3
7777777777777775

; b ¼

f1

f2

..

.

fM

m1

m2

..

.

mS

2
6666666666666664

3
7777777777777775

; ð25Þ
and
c ¼ ½c1; 01; c2; 02; . . . ; cM; 0M �; ð26Þ
where ci is all-one and 0i is all-zero. c and x are both vectors of length 2
PM

i¼1NiT.
From (16) and (17), we know that x is required to be non-negative and integral. According to the physics rules of 2, 3 and

20, vector b is also integral. b 2 I
3
PM

i¼1
NiþS

� 	
.

In summary, the original problem is formulated as an integer program as follow:
min c0x;
s:t: Ax 6 b;

x P 0; and x 2 I
2T
PM

i¼1
Ni :

ð27Þ
3.2. Standard linear programming form and total unimodularity

Solving the integer program in formulation (27) is extremely time consuming and sometimes impossible for a large-scale
problem in air traffic management. Sun and Bayen (2008) relaxed (27) to a linear program to achieve better computational
efficiency. In this paper it is written in the Standard Linear Programming Form (Chvatal, 1983):
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min c0x;

s:t: Ax 6 b;

x P 0:
ð28Þ
However, in general the linear relaxation (28) results in fractional solutions (Sun and Bayen, 2008). In order to maintain
the computational efficiency and obtain the integral solution, the total unimodularity of the linear relaxation (28) is studied
in this work.

3.2.1. Total unimodularity and integral optimum

Theorem 1. If A is totally unimodular and the problem (28) is feasible, there exists at least one integral optimum for formulation
(28), which can be found by simplex method.
Proof. The proof contains two parts. First, according to the Hoffman and Kruskal’s theorem described by Schrijver (1998), if
A in formulation (28) is totally unimodular with the fact that vector b is integral, the corner points (extreme points) of the
feasible polyhedron {xjAx 6 b, x P 0} defined in (28) are integral. Second, recall that the simplex method generates the opti-
mal solution by pivoting from one extreme point to another adjacent extreme point around the feasible polyhedron. The
simplex method must provide an integral optimal solution for formulation (28) when A is totally unimodular. h

It is evident that when the optimal solution to the relaxed linear program (28) is integral, this solution is also an optimal
solution to the integer program (27). So the key point is to prove A is totally unimodular.

Lemma 1. If matrix A is full row (column) rank, the total unimodularity of A is preserved under the three elementary row (column)
operations listed in Table 1.

Lemma 1 is obtained by combining both Theorem 19.5 and (43)(ii) in Schrijver (1998).

3.2.2. Total unimodularity of matrix A
Theorem 2. The matrix A in (28) is totally unimodular.
Proof. Since there is no sufficient condition or lemma which can directly prove a matrix is total unimodular, the elementary
row and column operations are used to transform the original matrix A to a recognized or proved total unimodular format.

We start with performing elementary column operations inside each blocked column of matrix A as shown in (25). For
simlicity of illustration, the Mth blocked column is shown as example and note that there are (M � 1) extra zero-blocks on
top of this column omitted in the following example (29):
AM

M1M

M2M

..

.

MSM

2
66666664

3
77777775
¼

I � P �Q

P � I Q

�I I

Ml
1M 0b

Ml
2M 0b

..

. ..
.

Ml
SM 0b

2
6666666666664

3
7777777777775
; ð29Þ
where the form of AM and MjM can be found in (15) and (22) respectively.
Through a series of elementary column operations, we have transformed the upper part AM into several smaller blocks I,

�I and 0. Eq. (29) is changed into the following format (the detailed derivation from (29) and (30) can be found in the
appendix):
I 0
�I 0
0 I

L1M R1M

L2M R2M

..

. ..
.

LSM RSM

2
6666666666664

3
7777777777775
: ð30Þ



Table 1
Elementary row (column) operations.

1. Exchanging two rows (columns)
2. Multiplying a row (column) by �1
3. Adding a row (column) to another row (column)
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From the first three blocked rows above the horizontal line in (30) we know that this matrix is full column rank.
Similar elementary column operations can be performed in other (M � 1) blocked columns of matrix A in (25) and the

resulted matrix is shown in (31):
I 0
�I 0
0 I

I 0
�I 0
0 I

. .
.

I 0
�I 0
0 I

L11 R11 L12 R12 . . . L1M R1M

L21 R21 L22 R22 . . . L2M R2M

..

. ..
. ..

. ..
. ..

. ..
. ..

.

LS1 RS1 LS2 RS2 . . . LSM RSM

2
6666666666666666666666666666664

3
7777777777777777777777777777775

: ð31Þ
The upper part of (31) tells that the matrix (31) after the elementary column operations is full column rank. The elemen-
tary column operations do not change the column rank of a matrix, so the matrix A before these operations is also full col-
umn rank. Thus according to Lemma 1, the elementary column operations we have performed can preserve the total
unimodularity of matrix A. The problem becomes to prove (31) is totally unimodular.

Moreover, based on (43)(v) of Schrijver (1998), if the lower part of (31) is totally unimodular, then the whole matrix (31)
is also totally unimodular. Now we only need to show that (32) is totally unimodular.
L11 R11 L12 R12 . . . L1M R1M

L21 R21 L22 R22 . . . L2M R2M

..

. ..
. ..

. ..
. ..

. ..
. ..

.

LS1 RS1 LS2 RS2 . . . LSM RSM

2
66664

3
77775; ð32Þ
where Lji is a lower triangle blocked matrix with every non-zero block as s0ji and the non-zero block t0ji fills the lower triangle
positions of matrix Rji below the main diagonal as in (33) and (34).
Lji ¼

s0ji 0 0 . . . 0 0
s0ji s0ji 0 . . . 0 0
s0ji s0ji s0ji . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

s0ji s0ji s0ji . . . s0ji 0
s0ji s0ji s0ji . . . s0ji s0ji

2
66666666664

3
77777777775
; ð33Þ

Rji ¼

0 0 0 . . . 0 0
t0ji 0 0 . . . 0 0
t0ji t0ji 0 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

t0ji t0ji t0ji . . . 0 0
t0ji t0ji t0ji . . . t0ji 0

2
66666666664

3
77777777775
: ð34Þ
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In (32) we assume that every sector contains at least one cell from a path. If there is a sector containing no cells, the cor-
responding blocked row can be deleted according to (43)(v) in Schrijver (1998). In that case we actually do not need to
include this sector in our model.

We perform elementary row operations to (32) and get (35):
eL11
eR11

eL12
eR12 . . . eL1M

eR1MeL21
eR21

eL22
eR22 . . . eL2M

eR2M

..

. ..
. ..

. ..
. ..

. ..
. ..

.

eLS1
eRS1

eLS2
eRS2 . . . eLSM

eRSM

2
666664

3
777775; ð35Þ
in which matrices eLji and eRji are:
eLji ¼

s0ji
s0ji

s0ji

. .
.

s0ji
s0ji

2
66666666664

3
77777777775
; ð36Þ

eRji ¼

0
t0ji 0

t0ji 0

. .
. . .

.

t0ji 0
t0ji 0

2
66666666664

3
77777777775
: ð37Þ
As we have assumed previously there must be at least one 1 appearing at certain cell of s0ji in every row of a certain eLji of
each blocked row. If eLi is defined as:
eLi ¼

eL1ieL2i

..

.

eLSi

2
666664

3
777775; ð38Þ
the sum of each column in eLi is 1, which means that the 1 appearing at a certain cell of s0ji cannot show up in another row, in
other words, every row is independent to each other. Since (35) is full row rank, the elementary row operations we have
performed also preserve the total unimodularity. Our next concern is whether (35) is totally unimodular.

Since the column sum of every eLi is 1, according to (43)v in Schrijver (1998), the problem is equivalent to proving (39) is
totally unimodular.
eR11
eR12 . . . eR1MeR21
eR22 . . . eR2M

..

. ..
. ..

. ..
.

eRS1
eRS2 . . . eRSM

2
666664

3
777775: ð39Þ
Appendix A shows that t0ji ¼ s0jiQo. Based on the definition of Qo in Eq. (12), we know that t0ji in (34) and (37) records what
kind of 0–1 changes in every cell in the corresponding s0ji. For example, for s0ji ¼ ½0; 0; 1; 1; 1; 0�, the corresponding
t0ji ¼ ½0; �1; 0; 0; 1; 0�. The �1 at the 2nd cell of t0ji represents a change from 0 to 1 between the 2nd cell and the 3rd cell in s0ji.
The 1 at the 5th cell of t0ji represents a change from 1 to 0 between the 5th cell and the 6th cell in s0ji.

Consider the ith blocked column of matrix in (39), it describes all the 0–1 changing information of the Ni cells of the ith
path in all S sectors. When there is a �1 at a certain cell of a certain t0ji in a certain row, there must be one and only one 1 at
the same cell in a different row. Recall Eqs. (21)–(23). When we find a s0ji ¼ ½. . . 1; 1; 1; 1; 0; 0; 0 . . .�, there must exist a
s0ki ¼ ½. . . 0; 0; 0; 0; 1; 1; 1 . . .� in the same column in Eq. (21) because that is where path i is crossing sector j and sector k.
Furthermore, there will be a corresponding t0ji ¼ ½. . . 0; 0; 0; 1; 0; 0; 0 . . .� and a t0ki ¼ ½. . . 0; 0; 0; �1; 0; 0; 0 . . .� in Eq. (39). In
other words, 1 and �1 must show up in pair in each column. Based on (43)v in Schrijver (1998), the modified matrix (39)
only contains the columns having exactly one 1/�1 pair after deleting all-zero columns in (39), where no 0–1 change
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happens, and removing the last column of each blocked column in (39), where there is only one non-zero item 1 in a certain
row.

According to (18) of Schrijver (1998), the matrix of which each column contains exactly one 1 and exactly one �1 is
totally unimodular.

In summary, since all the operations we have performed can preserve the total unimodularity of a matrix, and the final
transformed matrix has been proved to be totally unimodular, the original matrix A is totally unimodular.

Since matrix A is totally unimodular and vector b is integral, when (28) is feasible, there must exist an integral optimum
for the LP relaxation in (28), which is also the optimal solution for the integer program in (27).

4. The form of the fractional solution

Sun and Bayen (2008) applied the interior point method to solve the problem, which does not guarantee to obtain an inte-
gral optimal solution. The major reason is not because of the low computational round-up error or the inappropriate step-
length but because of the multiple optimal solutions of the LP relaxation. More accurately, there are multiple optimal ex-
treme point solutions in this problem. These multiple optimal extreme points will form an Optimal Polyhedron which is
the subset of the Feasible Polyhedron defined by the constraints.

For instance, in a 2D case as shown in Fig. 3, the feasible polyhedron Pfs is defined by five extreme points A, B, C, D and E.
Suppose under a certain objective function, the two extreme points A and B are both the optimal solutions denoted as opt1

and opt2. The line segment AB connecting these two optimal extreme points is called the optimal polyhedron Popt because all
the points along AB are also optimal as any point of Popt can be written as the linear combination of the two optimal extreme
points q � opt1 + (1 � q) � opt2.

Generally Pfs is the feasible polyhedron defined by constraints while the optimal polyhedron Popt is resulted by multiple
optimal extreme points. Any solution in Popt is a linear combination of the optimal extreme point solutions and can be writ-
ten as

Pjoptj
i qi � opti, with

Pjoptj
i qi ¼ 1, where joptj is the number of optimal extreme point solutions.

Although every optimal vertex solution opti is integral because of total unimodularity, the linear combination of them
cannot be guaranteed integral. There are fractional optimal solutions inside Popt. Since the interior point method starts inside
Pfs and walks toward the boundaries of Pfs instead of the extreme points, an inner point of the subset Popt is usually achieved.
That is why the interior point method gives out the fractional optimum in Sun and Bayen (2008).

5. The Dantzig–Wolfe Decomposition on large-scale study

We decide to choose simplex related methods to find optimal extreme point solutions for large-scale TFM problems. In
order to speed up it by taking advantage of A’s sparsity and the block-angular structure (Chvatal, 1983), we exploit the Dant-
zig–Wolfe Decomposition (DWD) method (Dantzig and Wolfe, 1961). Based on the property of simplex method (Chvatal,
1983), the DWD method guarantees the integral optimum.

5.1. Rearrangement for Dantzig–Wolfe Decomposition

Formulation (25) is rearranged into the canonical form for DWD. We group blocks M1i,M2i, . . . ,MSi in column i into a single
block called Mi for i = 1,2, . . . ,M, and flip the positions of Mi’s and the dynamics constraints Ai’s. The new constraint matrix
ADW and vector bDW are
ADW ¼

M1 M2 . . . MM

A1

A2

. .
.

AM

2
66666664

3
77777775
; bDW ¼

m
f1

f2

..

.

fM

2
66666664

3
77777775
; ð40Þ
where the grouped sector counts capacity is m = [m1;m2; . . . ;mS]. The cost vector cDW in (26) can be written as
cDW ¼ ½cDW1 ; cDW2 ; . . . ; cDWM �; ð41Þ
where cDWi
¼ ½ci; 0i�, with ci and 0i from (26).

This rearranged formulation can be solved by the DW Decomposition, which transforms the original problem into a mas-
ter problem and its subproblems (Chvatal, 1983).

5.2. The Dantzig–Wolfe Decomposition algorithm

For the ith subproblem as below:



Fig. 3. The feasible and optimal polyhedra in a 2-dimension example.
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min c0DWi
xi;

s:t: Aixi 6 fi;
ð42Þ
there are Vi extreme points xðjÞi ; j ¼ 1;2; . . . ;Vi. We denote Pij ¼ Mix
ðjÞ
i and cij ¼ c0DWi

xðjÞi .
The cMP, AMP, bMP of the master problem (Chvatal, 1983) are:
cMP ¼ ½c11 . . . c1V1 c21 . . . c2V2 . . . cM1 . . . cMVM �
0
;

AMP ¼

P1 P2 . . . PM

10c1

10c2

. .
.

10cM

2
6666666664

3
7777777775
; bMP ¼

m

1

1

..

.

1

2
666666664

3
777777775
; ð43Þ
where Pi ¼ ½Pi1; . . . ; PiVi
� and 10ci = [1, . . . ,1] with the length of Vi.

Simplex related methods are used in the DWD method (Dantzig and Wolfe, 1961). We adopt the classical simplex method
and the interior point method with crossover (Anonyms, 2010) as two kernel solvers in our DWD implementation. In these
two simplex related methods, there is a vector of ‘‘prices’’ ½p0; ~p0 �, where p is of length TS and ~p is of M. Each item of the price
vector is associated with one constraint in formulation (43).

Starting from an initial basis, the iterative DWD process begins, where the master problem transfers the price vector to
subproblems while the subproblems provide the entering basic vector which has the minimum negative reduced cost. When
we have a new basis, we update the price vector and transfer it to the subproblems again. The iteration will be terminated
when the master problem converges. The iteractions between the master problem and its subproblems are described in
Fig. 4.

The Initial Basis Generation (IBG) is performed to construct the initial basis. For each path, let the aircraft count in each cell
flow to its next cell, which will obtain the initial basic vectors. Multiple optima were found in Section 4. However, in every
iteration of the decomposition algorithm, only one optimal solution of each subproblem is used to update the basis. In order
to obtain the integral optimal solution, the optimal extreme points in subproblems must be reached by a simplex related
method solver. In this work we adopt the classical simplex method and the interior point method with crossover provided
by CPLEX (Anonyms, 2010). The absolute value of the minimum negative reduced cost is compared to a given convergence
threshold dc as the stopping criterion. When it is less than dc, the algorithm is considered converged. The complete DW
Decomposition is given in Algorithm 1.
Fig. 4. Interactions in DW decomposition.
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Algorithm 1. DW Decomposition Algorithm

1: Run Initial Basis Generation
2: while not converged do
3: Solve the master problem
4: Update the price vector based on current basis
5: for i = 1 to M do
6: Plug p and ~p into each subproblem i
7: Find the optimal solution of subproblem i by a simplex related method
8: if the minimum negative reduced cost < �dc then
9: The basis is updated by the corresponding column
10: end if
11: end for
12: if the basis is not updated then
13: Converged
14: end if
15: end while
5.3. Large-scale simulation

The nationwide air traffic data on May 24, 25, 26, 2010 is utilized to evaluate the performances of Sun and Bayen’s interior
point method without decomposition and Wei, Cao and Sun’s DW Decomposition method with different optimization con-
figurations. A workstation is equipped with a 2.8 GHz 8-processors INTEL i7 CPU and 32G RAM for the single workstation
experiments. The other three workstations have slightly different CPUs and memory sizes. The historical flight trajectories
with 1 min updating rate from Aircraft Situation Display to Industry (ASDI) and Enhanced Traffic Management System
(ETMS) (Volpe National Transportation Center, 2005) are loaded to build the Large-Capacity Cell Transmission Model as de-
scribed in Sun and Bayen (2008). With our optimization tool and parallel computing setup presented in Sun et al. (2011), Cao
and Sun (2011, 2012), the CPLEX (Anonyms, 2010) is used to implement both the interior point method and the DW Decom-
position method in C++. The large-scale nationwide simulations have been performed with 1-h and 2-h planning horizons for
each day. The air traffic during two peak periods, which are from 18:00 to 19:00 and from 18:00 to 20:00 eastern time, are
optimized by a single workstation or multiple workstations. 3419 flight paths (3419 subproblems) are identified in the
decomposition method. The convergence threshold dc is set to 1 � 10�6.

By default the CPLEX starts a ‘‘crossover procedure’’ after the interior point method in order to obtain an optimal extreme
point (basic solution) from the interior point method solution. However, the crossover procedure slows down the optimiza-
tion, especially for large-scale cases. Sun and Bayen (2008) turned off the crossover procedure to increase the optimization
speed. In this section the crossover option in CPLEX is switched on and off to study its influence on the interior point method.
The experiments of nine different optimization configurations are performed, which are listed in Table 2. Configurations 1–5
are all single workstation experiments and Configurations 6–9 are parallel computing experiments with 2 or 4 workstations.
Configuration 1 is the same experiment setup as the one in Sun and Bayen (2008), where no decomposition technique is ap-
plied and the crossover is turned off. In this experiment the optimal solution is fractional. Configuration 2 is implemented to
show the effect of crossover procedure on the large-scale interior point method. The integral optimal solution is guaranteed
by crossover procedure in this experiment. Configuration 3 is expected to have the fastest optimization speed in a single
workstation experiment using the decomposition technique without crossover. However, the integral solution is not guar-
anteed. The DW Decomposition method is implemented in both Configuration 4 and Configuration 5 on a single workstation.
The interior point method with crossover procedure is applied in the DW Decomposition in Configuration 4 and the simplex
method solver is applied in Configuration 5. Both simplex related methods can guarantee the integral optimal solution. In
Configurations 6 and 7 the parallel computing framework (Cao and Sun, 2012) is implemented on 2 workstations with
Table 2
Optimization configurations in the large-scale simulation.

Index Configuration

Configuration 1 Interior point method without crossover. No decomposition
Configuration 2 Interior point method with crossover. No decomposition
Configuration 3 Interior point method without crossover is applied in Algorithm 1
Configuration 4 Interior point method with crossover is applied in Algorithm 1
Configuration 5 Simplex method is applied in Algorithm 1
Configuration 6 2-Workstation parallel computing with Configuration 4
Configuration 7 2-Workstation parallel computing with Configuration 5
Configuration 8 4-Workstation parallel computing with Configuration 4
Configuration 9 4-Workstation parallel computing with Configuration 5



Table 3
Computation times on large-scale case (min).

Configuration Index 1 2 3 4 5 6 7 8 9

May 24 1-h planning 14.93 17.32 13.16 25.08 28.14 16.24 18.89 9.51 11.67
May 25 1-h planning 15.18 18.17 13.53 24.64 28.73 16.65 19.03 9.63 11.75
May 26 1-h planning 15.35 17.76 13.42 24.82 28.78 16.71 19.29 9.86 12.22

May 24 2-h planning 41.47 48.97 38.29 69.21 75.04 38.82 42.32 21.82 28.34
May 25 2-h planning 41.26 48.43 37.84 69.47 75.25 39.11 42.38 21.93 28.18
May 26 2-h planning 42.14 49.24 38.77 69.94 76.13 39.54 42.64 22.17 28.92
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the same configurations as Configurations 4 and 5 respectively. Configurations 8 and 9 are the 4-workstation parallel com-
puting implementation with the same configurations as Configurations 4 and 5 respectively. Computation times of the nine
configurations are listed in Table 3.

In Table 3, Configuration 1 and Configuration 3 fail to offer the integral and optimal solution. Their computation times are
only listed as benchmarks. Configuration 2 shows that the crossover takes considerable time to generate an integral solution
from the interior point method solution. Configuration 4 and Configuration 5 are two DW Decomposition optimization config-
urations for the large-scale computation on a single workstation. Their optimal solutions are guaranteed to be integral. The
computation times of Configuration 4 and Configuration 5 are both longer than the one of only applying the interior point meth-
od with crossover in Configuration 2. In Configuration 4 the crossover procedure is executed in every iteration of the decom-
position method, which slows down the optimization. The simplex method is always slower than the interior point method
with/without the crossover. The DW decomposition with parallel computing further accelerates the optimization speed. The
2-workstation and 4-workstation parallel computing implementations in Configurations 6–9 outperform the computation
speed of Configuration 2. The results show that the DW decomposition method with parallel computing can find the integral
optimal solution of the CTM(L) problem efficiently, i.e., to solve a nationwide large-scale problem with 1-h planning horizon
takes about 10 min with 4 workstations and it takes about 21 min to solve a large-scale problem with 2-h planning horizon.

6. Conclusion

In this paper, the CTM(L) is introduced and an integer programming optimization problem is formulated. We prove that
there exists an integral optimal solution for the corresponding LP relaxation because of its total unimodularity and this solu-
tion is also optimal for the integer program. We demonstrate that the simplex related methods guarantee the integral opti-
mum and apply the Dantzig–Wolfe Decomposition algorithm which takes advantage of matrix A’s special block structure to
speed up the computation. The large-scale experiments are performed to evaluate interior point method and DW Decompo-
sition. The results show that the DW Decomposition with parallel computing can obtain the integral optimal solution with
high computational efficiency.

Appendix A

In this section we show how to obtain (30) from (29), why Lji and Rji are lower triangular and what the structures of s0ji and
t0ji are. For the ease of demonstration, a small size example is used for derivation.
I � P �Q
P � I Q
�I I

Ml
1M 0b

Ml
2M 0b

..

. ..
.

Ml
SM 0b

2
6666666666664

3
7777777777775
¼

I 0
�Po I �Q o 0

�Po I �Q o 0
�Po I �Q o 0

�I 0
Po �I Q o 0

Po �I Qo 0
Po �I Q o 0

�I I
�I I

�I I
�I I

s01M 0 0 0 0
s01M 0 0 0 0

s01M 0 0 0 0
s01M 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

; ð44Þ
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where vector s01M is defined in (22) and (23).
By the definition of Po and Qo in (10) and (12), we obtain Po + Qo = I. In Eq. (44), add the 5th column to the 1st column,

add the 6th column to the 2nd column, add the 7th column to the 3rd column, add the 8th column to the 4th column,
we have:
I 0

�I I �Q o 0

�I I �Q o 0

�I I �Qo 0

�I 0

I �I Q o 0

I �I Q o 0

I �I Q o 0

0 I

0 I

0 I

0 I

s01M 0 0 0 0

s01M 0 0 0 0

s01M 0 0 0 0

s01M 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

: ð45Þ
Based on Eq. (45), add the 4th column to the 3rd column, then add the resulted 3rd column to the 2nd column, then add
the resulted 2nd column to the 1st column, we have:
I 0

I �Q o 0

I �Q o 0

I �Qo 0

�I 0

�I Q o 0

�I Q o 0

�I Q o 0

0 I

0 I

0 I

0 I

s01M 0 0 0 0

s01M s01M 0 0 0 0

s01M s01M s01M 0 0 0 0

s01M s01M s01M s01M 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

: ð46Þ
According to Eq. (46), the 4th column right multiplied by Qo is added to the 7th column, the 3rd column right mul-
tiplied by Qo is added to the 6th column, the 2nd column right multiplied by Qo is added to the 5th column. Now we
have:
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I 0
I 0

I 0
I 0

�I 0
�I 0

�I 0
�I 0

0 I

0 I

0 I

0 I

s01M 0 0 0 0
s01M s01M t01M 0 0 0
s01M s01M s01M t01M t01M 0 0
s01M s01M s01M s01M t01M t01M t01M 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
66666666666666666666666666666666666664

3
77777777777777777777777777777777777775

; ð47Þ
where the row vector t01M is the result of the row vector s01M right multiplied by Qoðt01M ¼ s01MQ oÞ.
From Eq. (47), we can tell that L1M and R1M are lower triangular. Similarly, we know that all of the Lji’s and Rji’s are lower

triangular.
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