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Abstract While surgeon–scrub nurse collaboration pro-

vides a fast, straightforward and inexpensive method of

delivering surgical instruments to the surgeon, it often

results in ‘‘mistakes’’ (e.g. missing information, ambiguity

of instructions and delays). It has been shown that these

errors can have a negative impact on the outcome of the

surgery. These errors could potentially be reduced or

eliminated by introducing robotics into the operating room.

Gesture control is a natural and fundamentally sound

alternative that allows interaction without disturbing the

normal flow of surgery. This paper describes the develop-

ment of a robotic scrub nurse Gestonurse to support sur-

geons by passing surgical instruments during surgery as

required. The robot responds to recognized hand signals

detected through sophisticated computer vision and pattern

recognition techniques. Experimental results show that

95% of the gestures were recognized correctly. The gesture

recognition algorithm presented is robust to changes in

scale and rotation of the hand gestures. The system was

compared to human task performance and was found to be

only 0.83 s slower on average.

Keywords Surgical robot � Human robot interfaces �
Gesture recognition

Introduction

Motivation

Recent research assessing verbal and non-verbal exchanges

in the operating room (OR) showed that communication

failures are frequent; commands are delayed, incomplete,

or not received at all, and frequently left unresolved [14].

One study found that 31% of all communications in the OR

represent failures [9], a third of which had a negative

impact on the patient. Another study found that 36% of

communication errors were related to equipment use [10].

Some causes of these errors are team instability (nurses and

surgeons who hardly know each other) [7], lack of

resources (minimal staffing) and distractions. Poor com-

munication within the surgical team can result in a higher

likelihood of instrument count discrepancies among the

team, which can indicate surgical instruments retained in

the patient’s body (sponges and towels are the most com-

mon) [8]. Retained instruments can puncture organs and

thus cause internal bleeding. The introduction of robots to

the OR as assistants to the main surgeon during the surgical

procedure has the potential to reduce the number of mis-

communications (and their negative effects).

There are three main obstacles to the adoption of robots

as an adjunct to the surgical scrub tech in the OR, namely:

(1) Communication events can be both verbal and non-

verbal (gestures) [10]. While state-of-the-art speech rec-

ognition methods achieve high recognition accuracy (over

95%) [19], there is no comparable performance for gesture

and body language recognition. (2) Automated anticipatory

responses must be customizable to different surgeons or

procedures. The automatic system should be able to predict

the next surgical instrument required by analyzing context

(experienced scrub techs are also known as ‘‘mind
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readers’’). (3) Gesture-based interfaces have no record in

terms of their performance and limitations in the OR (a

classic case of the known evil, the standard interfaces,

being preferred to the unknown evil that gesture techno-

logy represents). The results of the proposed experiments

will contribute to the development of better robots and

biomedical informatics tools for healthcare environments

by improving the understanding of how natural commu-

nication and interaction affect the surgical team’s perfor-

mance in the operating room.

Validation and adoption of the proposed technology

will enable significant improvements in OR interven-

tions. First, in the case of communication failures, the

robotic scrub nurse will deliver surgical instruments to

the main surgeon through hand gestures and speech

recognition, and will predict the next likely surgical

instrument according to the type of procedure (the con-

text) instead of relying on a subjective and variable

chain of verbal communications. Timely and accurate

instrument delivery to the surgeon can lead to decreased

cognitive load and reduced time and effort for surgeons.

Second, retained surgical instruments will be avoided by

accurate, thorough, and timely monitoring and docu-

mentation of instruments used.

Robotic surgical assistants

The introduction of surgical robots into the OR is feasible

and can be effective [1, 3, 5, 6, 11, 15, 17, 18]. Borenstein

et al. [5] developed a nursing robotic system to assist

bedridden patients with simple tasks; the robot has not been

validated in the healthcare environment. Treat et al. [17]

developed a scrub nurse robot called ‘‘Penelope’’ which

passes surgical instruments to a surgeon based on verbal

commands. ‘‘Penelope’’ can replace instruments that are

unused for a given period of time, can predict the next

surgical instrument needed, and can monitor instrument

usage to avoid retained instruments. Voice recognition was

also used in Carpintero’s [6] robotic scrub nurse. The

instruments and their position are recognized using

machine vision techniques. Both approaches equipped the

robot with an electromagnetic gripper to accurately handle

the grasp and release of the surgical instruments. Agovic

[1] designed a haptic interface and customized gripper for

picking surgical instruments in microsurgery, allowing the

interaction to be focused at the haptic level (the grasp

mechanism mimics the human touch). Yoshimitsu [18]

suggested a robotic scrub nurse applied to laparoscopic

surgeries that identifies surgical instruments through

speech recognition and delivers the instruments according

to recognized surgeon’s intraoperative actions. The most

popular (but expensive) robotic assistant is the da Vinci

Surgical System [11]. It can replace the need for a robotic

scrub nurse in endoscopic/laparoscopic procedures with a

pre-operative plan (not suitable for open/trauma surgery).

Our research takes a novel approach by adopting hand

gestures as the main modality of interaction with the

robotic scrub nurse in the OR. The rationale of using

gestures to interact with the robotic scrub nurse is based on

the fact that gestures are currently used in surgery [4]; in

addition, gesture interaction is intuitive, easy, fast and

touch-less (sterile).

Materials and methods

Overview

Two open surgeries at the Wishard Memorial Hospital

(Indianapolis, IN, USA) were observed by the authors to

gain insights into current features of surgeon–scrub nurse

interaction during surgery and how the use of robotic

technologies could potentially improve the effectiveness of

the interaction while enhancing the quality of the surgeon’s

performance in the OR. The first procedure was a trauma

surgery resulting from a vehicle hitting a young bike-rider,

resulting in vascular ischemic injury. The vascular team

repaired the transected blood vessel in the lower leg and

confirmed intravascular flow with an angiogram. The other

part of the procedure involved the intervention of an

orthopedics team to align a fractured leg. This procedure is

standard and the surgeon and scrub nurse are part of the

same team for most procedures of this type. The scrub

nurse was able to anticipate the surgeon’s needs in most

cases. Only a small set of instruments was required and the

total procedure lasted about 4 h. The second procedure

consisted of an open abdominal aortic aneurysm (AAA)

repair, which is the repair of an overly dilated portion of

the abdominal aorta. The basic procedure included dis-

section and ligation of intervening veins, aneurysm resec-

tion and repair, followed by retroperitoneal and abdominal

incisional wound closure. In the latter procedure, the

number of instruments used was larger, and they were

passed to the two surgeons based upon their requests. To

summarize the observations, it was found that: (a) surgeons

use mostly non-verbal, physical communication (both hand

gestures, body posture eye-contact) to interact with scrub

nurses when passing surgical tools; (b) scrub nurses often

anticipate the needs of the surgeon and assistant when

passing the surgical tools; (c) surgeon’s eyes rarely leave

the surgical site; (d) the time required to pass the instru-

ments is between 2 and 3 s from the request moment (when

it is not predicted by the nurse). The robotic scrub nurse

system Gestonurse (see Fig. 1) developed by the authors

can help the surgical team to receive the surgical instru-

ments in a timely manner, quickly, accurately, and without
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changing the visual focus point from the patient, based on

hand signals [4].

System architecture

The system architecture of the Gestonurse is illustrated

in Fig. 2. The streaming video serves as input for the

gesture analysis module which is composed of the hand

segmentation, fingertip localization and gesture recogni-

tion modules. The recognized gesture is interpreted as a

command which is passed to the robot. An application

module controls the FANUC robotic arm across the

network through the Telnet interface with the tool

delivery module. Finally, the Gestonurse hands the

required surgical instrument to the surgeon and awaits

the next command. The processing modules in the sys-

tem architecture (see Fig. 2) are briefly described in the

following subsections.

Hand segmentation module

A background model of the scene and a hand color model

are first created. The segmentation masks from these

models are combined and morphologically processed. The

mask of the hand is obtained by choosing the largest blob

in the scene and thresholding its area to filter out noise. The

contour and convex hull is extracted from the hand mask

and passed to the fingertip detection module.

Fingertip localization module

The curvature of the contour is computed at different scales

and a point on the contour is accepted as a candidate for a

fingertip if it is a local minima and is less than an empir-

ically determined threshold. Due to contour discretization

and noise, several candidates satisfying the aforementioned

criteria can exist around a fingertip. The candidates close to

the convex hull are retained and are clustered together. The

centroid of each cluster is then designated as the fingertip.

Gesture recognition module

The number of fingertips is bijectively mapped to a set of

surgical instruments. Therefore, once the fingertips have

been localized and counted, we can recognize the static

hand posture performed by the surgeon.

Tool delivery module

The FANUC robot is programmed using KAREL, a

scripted language used to control FANUC robots. The

corresponding KAREL program is selected for the

Fig. 1 The real-time robotic scrub nurse in operation in an OR

Fig. 2 System architecture
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recognized gesture and is executed on the FANUC con-

troller over the Telnet interface.

The robot proceeds to pick the instrument from its

predefined position and pass it to the surgeon and then

returns to the starting position.

Gesture analysis

Hand segmentation

The codebook algorithm [12] is used to model a back-

ground scene based on multiple samples of the background.

The algorithm observes the YUV values of a pixel during

the training phase and creates/expands existing sets in YUV

space to cover the values observed over time. Since the size

of a set is limited, it cannot expand to cover all the possible

values of YUV and thus a new set is created.

The sets or codebook entries constitute the learned

codebook model M which we use to create a mask to

segment the hand from the scene, i.e. a foreground pixel or

a pixel which cannot be explained by M. Let the YUV

values of a pixel x be f(x) such that fY(x), fU(x), and fV(x)

represent the Y, U, and V components of x respectively.

Let a codebook entry be R 2M. A codebook entry is

associated with 6 values, the upper and lower bounds for

each component in f(x), i.e. RY
U and RY

L , respectively for the

Y component. Therefore, R can be defined as the set of

points in YUV space which lie within the aforementioned

bounds for each component of f(x).

R ¼ f xð Þ : Rk
L� f k xð Þ�Rk

U for k 2 Y ;U;Vf g
� �

ð1Þ

Hence, we can generate a mask B for the background

pixels using the codebook model and the YUV values of a

pixel x as follows:

Bðx;MÞ ¼
0 : f xð Þ 62 R8R 2M
1 : otherwise

(

ð2Þ

A foreground mask (see Fig. 3a) based on the hand color

is also generated and stored as a histogram nh. Histogram

back-projection [16] is used to determine the probability

P(x, nh) that a pixel belongs to the hand color histogram nh.

A foreground mask F(x, nh) (see Fig. 3b) is generated by

thresholding this probability with a constant c:

F x; nhð Þ ¼ 1 : p x; nhð Þ[ c
0 : otherwise

�
ð3Þ

The combined hand mask M (see Fig. 3c) is obtained as

follows. (Note that B x;Mð Þ denotes the logical negation of

the output of B.)

M x;M; nhð Þ ¼ B x;Mð Þ\F x; nhð Þ ð4Þ

A morphological closing operation is used to clean M

and remove any spurious mask elements. Additionally, the

largest blob in the scene is selected after its area is

thresholded and the contour C and convex hull H is

computed for use in the fingertip detection subsystem.

Fingertip detection

We build on the finger detection method used by Argyros

et al. [2]. Their curvature measure Kl (P) is modified so that

it lies in the range [0, 1]. Let P1, P and P2 denote successive

points on the contour and let h be the angle between vectors

P1P
�!

and PP2
�!

. Also, let P1, P and P2 be separated by l points.

Then, the curvature measure is defined as:

Kl Pð Þ ¼ 1

2
1þ cos hð Þ ð5Þ

The parameter l is used to detect fingertip candidates

and valleys at several scales by constructing a set L of

detected local minima on the contour in Kl Pð Þ : P 2 C.

Then, the candidate set S of finger tips is created from

local minima, thresholded by the curvature with j:

S ¼ P 2 L : Kl Pð Þ� jf g ð6Þ

Furthermore, the local minima can be effectively

detected by distinguishing valleys between fingers from

the fingertips using the convex hull of the whole hand (see

Fig. 4a).

Fig. 3 a Background mask B. b Foreground F. c M
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We empirically found that the fingertips lie close to the

convex hull H. Let NN(P,H) return the nearest neighbor of

P in H, and let d be the threshold on the Euclidean distance

from the convex hull. We refine the candidate set S based

on the proximity to the convex hull H and define FC as:

FC ¼ P 2 S :k P� NN P;Hð Þ k2 � df g ð7Þ

Discretization of the contour or imperfect hand

segmentation can cause FC to contain several points

around the true fingertip since several local minima satisfy

the criteria in Eqs. 6 and 7. Therefore, points in FC which are

close to each other or whose separation distance is

thresholded by a constant d are clustered together and a

representative point is chosen as the fingertip.

The ordering of points known from the contour C is used

to improve clustering performance. Let Pa and Pa?1 denote

two adjacent points on the contour C and let a set of

contiguous points on C from Pa to Pb inclusive be defined

as:

Pab ¼ Pa; Paþ1; Paþ2; . . .Pb�1; Pbf g : a� bf g ð8Þ

Then, the candidate points are grouped into the set of

clusters T as follows:

T ¼ Pab :k Pi � Piþ1 k2 � d for a� i\bf g ð9Þ

The size of each cluster in T is thresholded and the

representative point for each cluster is its centroid (see

Fig. 4b).

Posture recognition

Figure 5 displays the localized fingertips on a hand con-

tour. The aforementioned algorithm is capable of localizing

fingertips and determining local minima which satisfy the

constraints in Eqs 6–9. Five poses are determined using the

fingertip detection method and are mapped to surgical

instruments (see Table 1).

Tool delivery robotic system

The FANUC LR Mate 200iC (see Fig. 6a) robotic arm is

used to pass surgical instruments to the surgeon. Teach-

pendant (TP) programs were recorded for the delivery of

each surgical instrument. The KAREL program interacts

with the gesture analysis module over the network through

a Telnet interface. The complete system is illustrated in a

flowchart (see Fig. 7). A router is used to connect the PC,

FANUC robot and network camera. Additionally, a latex-

encased magnetic gripper is used in order to maintain

instrument sterility (see Fig. 6b) when the robot hands the

instrument to the surgeon.

Experiments

Experiment 1: instrument picking performance

Forceps, hemostats and scissors-type instruments may be

required in large quantities (300–400) and are usually

placed close together (see Fig. 8). High precision and

reliability is required to accurately deliver instruments

packed close together in small clusters.

This scenario is tested in the following experiment. The

distance between the centerlines of two instruments in a

cluster is defined as k. The performance of the system in

Fig. 4 a Convex hull.

b Clustering of candidate

fingertips

Fig. 5 Fingertips in the gestures for a scalpel, b scissors, c retractor, d forceps, e hemostat
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Table 1 Gesture mapping

Fig. 6 a Gripper with

instrument. b FANUC LR Mate

200iC

Fig. 7 System flowchart Fig. 8 Instrument set-up showing k
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picking different types of surgical instruments clustered in

a small area of the Mayo stand is studied by recording the

picking accuracy of the Gestonurse with respect to k per

instrument type.

The results are displayed in Fig. 9, where a picking and

delivering task is evaluated. The number of trials which

resulted in successful delivery was recorded from ten trials

per instrument. It is counted as an error when the gripper of

the Gestonurse either does not pick the instrument, drops

the instrument before reaching the surgeon’s hand, picks

more than one instrument or picks the wrong instrument.

Experiment 2: gesture analysis performance

The gesture analysis database consists of 300 cluttered

background images (see Fig. 10 for samples) for training

the codebook model, and 1,000 RGB images of size

720 9 480 pixels per gesture performed by a single user.

The dataset used for testing consists of 2 databases cap-

tured from users of different hand color, shape and size.

Each user was instructed to keep their hands parallel to

the image plane and move their hands in the image plane.

This resulted in images of static pose gestures at different

scales, rotations and positions.

The curvature j was varied to obtain the ROC curves

(see Fig. 11) for each gesture and for fingertip detection

across all gestures. The confusion matrix in Table 2 was

generated with j ¼ 0:30 over our database of static hand

pose gestures. We use the / class to represent cases where

zero or more than 5 fingertips were detected. On average,

the recognition accuracy was found to be 94.65%.

Experiment 3: system speed comparison

The speed of the complete system (Gestonurse) was

compared to that of a person passing the instrument

(human) and when a keyboard is used to request the

required instrument from the robot (KRNS). Figure 12

Fig. 9 Instrument picking accuracy versus inter-instrument distance

(k)

Fig. 10 Samples from the database with correct fingertip detection

Fig. 11 ROC curves for different j fingertip detection algorithm
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displays the mean system time for each class for the

aforementioned systems as well as the 95% confidence

intervals (CI).

The experiment was conducted as follows. An arbitrary

sequence of instruments was randomly generated and used

as the test sequence for all the subjects and all the systems

being compared. The name of each instrument from the test

sequence was displayed to the subject who requested the

instrument.

The system time is defined as the time elapsed between

the instrument name and the subject receiving the instru-

ment and was recorded for each system which was com-

pared (Gestonurse, KRNS and human).

The human system was simulated by the subject saying

the name of the instrument out loud and a person handing

over the instrument from the Mayo stand (the person does

not see the displayed name from the test sequence).

The KRNS is the same as the Gestonurse except a

keyboard interface replaces the gesture interface. Each

instrument is represented by an alphabet (most of the time,

the first letter of the instrument name) and the subject sees

the instrument name and presses the appropriate key on the

keyboard.

The test sequence has 25 instruments, and three classes

(novice, intermediate and experienced) of three users per

class were studied. Each class corresponds to the amount of

experience with the Gestonurse. A novice has little

experience with the system and is allowed to test a few

gestures before starting the trials. The intermediate and

experienced users are allowed to ‘‘warm up’’ with a few

gestures as well and have already been tested as a novice

and intermediate user respectively.

Experiment 4: economy of movements

A longitudinal midline incision was performed on the sim-

ulated abdominal wall to enter the peritoneal cavity without

damaging the internal organs. The wound was then closed

using a blunt needle ensuring that no tissue is caught up by

the suture material. All the instruments required to complete

this task were delivered by a robotic surgical manipulator

directly to the surgeon. The instruments were requested

through voice and gesture recognition. The robotic system

used a low-end range sensor camera to extract the hand poses

and for recognizing the gestures. The instruments were

delivered to the vicinity of the patient, at chest height and at a

distance reachable by the surgeon. Task performance mea-

sures for each of three abdominal incision and closure

exercises were measured and compared to a human scrub

nurse instrument delivery action. Having a robotic scrub

nurse deliver the surgical instruments always to the same

position, which is close enough to the surgeon, but not too

close to cause collisions, increases both the habitual move-

ments (movement trajectories designed, through accurate

repetition, to become a habit) and the continuous movements

(movements patterns which are smooth, and avoid drastic

changes in direction). A proxy measure for these parameters

is the variance among the trajectories used to pick the

instrument, or the picking location itself. The purpose of this

experiment is to determine whether a robotic scrub nurse can

deliver the surgical instruments such that the economy of

movement is maximized.

Results

Experiment 1: instrument picking performance

In Experiment 1, it was observed that the robot can reliably

pick the instrument from the Mayo stand and hand it to the

user when instruments are separated by at least 25 mm (see

Table 2 Confusion matrix (%)

for j = 0.30
Scalpel Scissors Retractor Forceps Hemostat /

Scalpel 97.15 2.30 0.25 0 0 0.3

Scissors 3.20 96.75 0.05 0 0 0

Retractor 0 7.30 92.70 0 0 0

Forceps 0 0 8.55 91.40 0.05 0

Hemostat 0.1 0.7 1.65 2.20 95.25 0.1

Fig. 12 Comparison of different systems with the mean and 95% CI
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Fig. 10). Additionally, the magnetic gripper has been

shown to be effective at picking instruments even if they

are stacked close together.

It is apparent that there exists an intuitive relationship

between the degree of packing instruments in a small area of

the Mayo stand (or equivalently the inter-instrument distance

k) and the accuracy of the picking and delivery task. In

addition, there is a link between the shape of the instrument

and the overall performance of the task. It was seen that

picking instruments with smaller areas, like forceps, has

higher accuracy, but the picking performance for the

hemostat type of instrument is worse due to its larger area.

Since larger portions of instruments overlap when

instruments are packed close together, the accuracy of task

delivery was impacted because events such as a falling or

an unpicked instrument occur, thus resulting in interference

between adjacent instruments.

Experiment 2: gesture analysis performance

Experiment 2 showed that the fingertip detection algorithm

achieved a very high average hit rate of 98.17% with a

false positive rate of 0.63% at j ¼ 0:30. The lower average

gesture recognition accuracy of 94.65% is explained by

out-of-plane rotations (see Fig. 13) in the database. Since

the curvature changes dramatically during these rotations,

the fingertip detection algorithm fails to detect the

fingertips.

In practice, users learn to keep dramatic out-of-plane

rotations to a minimum and thus achieve high gesture

recognition accuracy. This is apparent from the decreasing

average system time as users gain more experience (see

Fig. 12).

Experiment 3: system speed comparison

Experiment 3 measured the time elapsed between six

experienced users requesting the instrument and receiving

it. When using the Gestonurse the delay was 4.06 s on

average, as opposed to 3.23 s when a human assistant

passed the instruments (refer to Fig. 12). The robotic sys-

tem is only 0.83 s slower than the human system. This

result shows that further incremental improvements in the

Gestonurse implementation can result in a fully operational

system in the OR.

Experiment 4: economy of movements

We used the following statistical tests to compare the

picking points of the human nurse and the Gestonurse.

Equality of variances

The equality of variances in samples of instrument picking

points was tested. If the resulting P value is less than a critical

value, these tests reject the null hypothesis that the popula-

tion variances are equal and conclude that there is a differ-

ence in the variances in the population. The Euclidean

distances from the center of the cluster is used to determine

the P values for Levene and Brown–Forsythe tests (Table 3).

Analysis of variances (ANOVA)

One-way ANOVA was conducted on the Euclidean dis-

tances from the center of the cluster and was used to

compare the means of distances from the center of each

cluster (see Fig. 14).

Usability tests

An initial prototype of the system was introduced in the

operating room of the Large Animal Hospital at Purdue

University for a validation test. At the time that the experi-

ment was conducted, the prototype only included gesture

recognition and worked at 5% of the current speed. A mock

surgery was performed where the surgeon interacted with an

Fig. 13 Examples of out–of-

plane rotations

Table 3 P values for Levene’s and Brown–Forsythe tests

Statistical test P value

Levene 0.000022

Brown–Forsythe 0.000905

ANOVA 1.2308e-008
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initial prototype of robotic scrub nurse. Three usability tests

were conducted during this mock surgery. The first involved

a contextual interview, where the authors observed and lis-

tened to the main surgeon while he performed the task. The

evidence found indicated that the main surgeon must not be

distracted, his hands need to remain close to the patient, and

errors in communication can result in health risks. The sec-

ond test was an individual interview. The main points found

in a discussion with the surgeon were (a) the need for a faster

robot (the prototype tested was 5 s slower than a nurse);

(b) the need to retrieve numerous different instruments to

give to the surgeon and put instruments back on the Mayo

stand numerous times; (c) speech recognition will increase

the flexibility and naturalness of the interaction. In general

the surgeon recommended a more sophisticated and flexible

system that must perform as well as an experienced scrub

nurse. At the end of the entire operation procedure, the main

surgeon filled in a questionnaire to measure overall satis-

faction and usability. The questionnaire used a five-point

scale to assess overall satisfaction, similar to the ASQ cre-

ated by Lewis [13]. The questionnaire included questions

assessing ease of use, learnability, intuitiveness, precision

and flexibility. The main surgeon found that Gestonurse was

moderately easy to use, remember and learn. He found it

moderately comfortable and safe. He believed the concept

was viable but indicated that the Gestonurse would have to

be more complex and sophisticated to be usable in the OR

room; for example, up to 100 instruments would have to be

managed by the Gestonurse to be effective.

Discussion

A robotic scrub nurse capable of handling and passing

surgical instruments, called Gestonurse, was tested during

a mock surgical procedure at the Large Animal Hospital at

Purdue University. This robot uses real-time hand tracking

and recognition based on fingertip detection and gesture

inference. In an in situ experiment, the robot passed the

surgical instruments to the main surgeon effectively and

safely, without interfering with his focus of attention. In

addition to allowing natural interaction with the surgeon,

Gestonurse provided the following features: (a) ease of

use—the robotic system allowed the main surgeon to use

his hands which are the surgeon’s standard working tool,

(b) natural interaction—nonverbal commands issued

through hand signals are fast and intuitive, therefore the

robot should interact quickly and still be reliable (currently,

Gestonurse can process images in real-time, can recognize

speech commands, and handle the surgical instruments to

the main surgeon within 4 s), (c) an unencumbered inter-

face—the proposed robotic system does not require the

surgeon to wear markers nor to attach microphones, and

(d) reliability—the hand gestures are recognized with an

accuracy of 94.65%, and the robot can pick instruments

when they are as close as 25 mm from each other. The

results of a satisfaction questionnaire and two usability

tests (contextual and individual interviews) showed that

Gestonurse has the potential to be adopted in the OR to

pass surgical instruments to the main surgeon in a safe and

accurate manner, releasing the human scrub nurse from this

arduous and time-consuming task. Future work includes

the prediction of the next surgical instrument to be used,

adoption of dynamic gesture interaction according to

standard signs used in surgery, and consideration of more

powerful features to find the hand, classify the gestures and

increase the capacity to manage numerous instruments. To

decrease the response time, a faster robot will be necessary.

A more exhaustive comparative experiment between our

robotic scrub nurse and a human scrub nurse in the OR

setting is planned for the future.
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