Great Lakes Strings 2012

Alsup

Introductic BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Holographic superconductors at low temperature

James Alsup

Computer Science, Engineering and Physics University of Michigan-Flint

March 4, 2012 / - Great Lakes Strings Conference

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

work in collaboration with G. Siopsis, J. Therrien

Outline

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatur Motivation Critical Temp.

Below T_C

Summary

1 Introduction

- BCS
- High T_C
- AdS/CFT

2

AdS/CFT Model

- Bulk Geometry
- Instability
- Probe Limit

3 Low Temperatures

- Motivation
- Critical Temp.
- Below T_C
- Conductivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Superconductivity

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometr

Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

BCS theory of superconductivity uses a spontaneously broken gauge symmetry

- 2nd order phase transition at T_C
- conductance contains delta function and is gapped
- Meissner Effect

	Hich T _C
Great Lakes Strings 2012 Alsup	
ntroduction BCS High T _C AdS/CFT	BCS theory is known to work well up to $T_C \sim 20K$ \longrightarrow perhaps higher? - MgB_2 at $40K$
AOS/CFT Model Bulk Geometry	New(er) Materials
Instability Probe Limit	• cuprates, $T_C \sim 1.5 \times 100 K$

LOW Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

superconducting phase difficult to describe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• iron pnictides $T_C \sim .5 \times 100 K$

High T_C superconductors

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperature Motivation Critical Temp.

Below T_C

Summary

Theoretical Difficulties...

- Perturbatve struggles with coupling
- Numerical simulation produces negative probabilities
 - time dependent path integral

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AdS/CFT

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

some features found via gravitational duals

- allows for calculation of transport properties
 - σ, gap, Meissner [Hartnoll, Herzog, Horowitz, ...]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Nernst effect [Hartnoll, Kovtun, Muller, Sachdev]

Differences

- global vs local symmetry breaking
- large N limit?

AdS/CFT

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

some features found via gravitational duals

- allows for calculation of transport properties
 - σ, gap, Meissner [Hartnoll, Herzog, Horowitz, ...]
 - Nernst effect [Hartnoll, Kovtun, Muller, Sachdev]

Similarities

- finite chemical potential, charge density
- DC superconductivity
- gap, $\omega_g \sim 8T_C$ (large q)

Gap Measurement [Gomes, et al.]

(日)

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Approach

- top-down: stringy solutions [Denef, Hartnoll, Gubser, ...]
- bottom-up: pick a supergravity solution, assume it works (for the time being) and analyze

we use a gravity with Λ_{AdS} , scalar field ϕ of mass *m* and charge *q* coupled to *U*(1) vector potential A_{μ}

$$S = \int d^4x \sqrt{-g} \left[\frac{R + 6/L^2}{16\pi G} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - |D_{\mu}\phi|^2 - m^2 |\phi|^2 \right]$$

with

$$\mathcal{D}_{\mu}=\partial_{\mu}-\mathit{iq}\mathcal{A}_{\mu}\;,\;\;\phi=rac{1}{\sqrt{2}}\psim{e}^{\mathit{iq} heta}$$

$$S_{\Psi} = \frac{1}{2} \int d^4x \sqrt{-g} \left[\partial_{\mu} \Psi \partial^{\mu} \Psi + q^2 \Psi^2 (\partial_{\mu} \theta - A_{\mu})^2 - m^2 \Psi^2 \right]$$

Ansatz:

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

$$ds^{2} = \frac{1}{z^{2}} \left[-g(z)e^{-\chi(z)}dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{g(z)} \right],$$

$$A_{0} = \Phi(z), \ \psi = \Psi(z)$$

use scaling symmetries: $z_H = 1$, with $z \in [0, 1]$ \longrightarrow AdS boundary at z = 1Temperature:

$$T = -rac{g'(1)}{4\pi}e^{-\chi(1)/2}$$

look at only scale invariant quantities

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Hairy black hole

Equations of Motion

$$\begin{split} \Psi'' + \left[\frac{g'}{g} - \frac{\chi'}{2} - \frac{2}{z}\right]\Psi' + \left[\frac{q^2\Phi^2e^{\chi}}{g^2} - \frac{m^2}{z^2g}\right]\Psi &= 0, \\ \Phi'' + \frac{\chi'}{2}\Phi' - \frac{2q^2\Psi^2}{z^2g}\Phi &= 0, \\ -\chi' + z\Psi'^2 + \frac{zq^2\Phi^2\Psi^2}{g^2}e^{\chi} &= 0, \\ \frac{g}{2}{\Psi'}^2 + \frac{z^2}{4}{\Phi'}^2e^{\chi} - \frac{g'}{z} + \frac{3(g-1)}{z^2} + \frac{m^2\Psi^2}{2z^2} + \frac{q^2\Psi^2\Phi^2e^{\chi}}{2g} &= 0 \end{split}$$
[HHH]

in general these must be solved numerically

Asymptotics

Great Lakes Strings 2012

Alsup

Introductior BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

To keep AdS boundary we require as $z \to 0$ $\chi(0) \to 0$, $g \to 1 \Rightarrow \Psi \sim \Psi^{\pm} z^{\Delta_{\pm}}$, $\Phi \sim \mu - \rho z$ $\Delta_{\pm} = \frac{3}{2} \pm \sqrt{\frac{9}{4} + m^2}$

- chemical potential, μ and charge density, ρ - $\langle {\cal O}_{\Delta_+} \rangle = \sqrt{2} \Psi^\pm$

Horizon

as $z \rightarrow 1$

$$\Phi
ightarrow 0 \;, \quad g
ightarrow 0$$

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Analytic solution: Reissner-Nordstrom-AdS

$$g(z) = 1 - \left(1 + rac{
ho^2}{4}\right) z^3 + rac{
ho^2}{4} z^4, \ \Phi(z) =
ho \left(1 - z\right), \ \chi = 0 = \Psi$$

Mechanism for Instability - I

scalar develops effective mass

$$\mathcal{L}_{\Psi} = |\partial_r \Psi|^2 - \left(m^2 + g^{tt}q^2\Phi^2\right)|\Psi|^2
onumber \ o m_{eff}^2 = m^2 + g^{tt}q^2\Phi^2 = m^2 - 2q^2$$

[Gubser]

- Breitenlohner-Freedman bound near $z \sim 1$

$$m_{eff}^2 < m_{BF,3+1}^2 = -9/4$$

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Analytic solution: Reissner-Nordstrom-AdS

$$g(z) = 1 - \left(1 + rac{
ho^2}{4}
ight) z^3 + rac{
ho^2}{4} z^4, \ \Phi(z) =
ho \left(1 - z
ight), \ \chi = 0 = \Psi$$

Mechanism for Instability - II

Extremal black holes near horizon exhibit $AdS_2 \times \mathbb{R}^2$

effective mass can be below 2D m²_{BF}

$$m_{eff}^2 = m^2 - 2q^2 < m_{BF,1+1}^2 = -1/4$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Analytic solution: Reissner-Nordstrom-AdS

$$g(z) = 1 - \left(1 + \frac{\rho^2}{4}\right) z^3 + \frac{\rho^2}{4} z^4, \ \Phi(z) = \rho(1 - z), \ \chi = 0 = \Psi$$

picture from Hartnoll

instability for $q^2 \ge \frac{3+2m^2}{4} \to \text{including } q^2 = 0$

Probe limit

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Start with the probe limit via

$$g = g_0 + \frac{1}{q^2}g_1 + \dots, \quad \chi = \chi_0 + \frac{1}{q^2}\chi_1 + \dots$$
$$\Psi = \frac{1}{q}\Psi_0 + \frac{1}{q^3}\Psi_1 + \dots, \quad \Phi = \frac{1}{q}\Phi_0 + \frac{1}{q^3}\Phi_1 + \dots$$
$$q \to \infty$$

 Ψ condenses at some $T_C \propto \rho$

Probe limit

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometry Instability

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

turn on a gauge field perturbation $A_x \sim \left(A_x^{(0)} + zA_x^{(1)} + \dots\right) e^{-i\omega t}$ $\sigma = \frac{\langle J_x \rangle}{-\partial_t A_x} = \frac{A_x^{(1)}}{i\omega A_x^{(0)}}$

Free energy Great Lakes Strings 2012 Alsup Hair is Favored condensate $\langle O \rangle \sim (T_C - T)^{1/2}, \ T \lesssim T_C$ free energy $\Delta F = F_{Hbh} - F_{RN} < 0, T < T_C$ $> 0, T > T_C$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Low temperatures

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

- \blacktriangleright must move beyond probe limit to see $\mathcal{T} \rightarrow 0$
 - quantum critical point
 - hard gap? [Horowitz, Roberts]
 - *S*, *ρ*, *C* [Basu]
 - Fermi surfaces [Faulkner, Liu, McGreevy, Vegh, ...
 - emergent scaling symmetry

Small scalar charge

Goal

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Critical point in q?

instability qualitatively changes between $q \gg 1$ and $q^2 \lesssim 0$ • quantum critical point in q?

search in conjunction with small Temperature critical temperature $T_C \rightarrow$ solve wave equation for Ψ

$$\Psi'' + \left[\frac{g'}{g} - \frac{\chi'}{2} - \frac{2}{z}\right]\Psi' + \left[\frac{q^2\Phi^2e^{\chi}}{g^2} - \frac{m^2}{z^2g}\right]\Psi = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

in two regions

- far from horizon, $1 z \gtrsim \epsilon$
- near horizon, $1 z \lesssim \sqrt{\epsilon}$

ψ

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Away from horizon, use extremal background

$$\rho^2 = 12$$
, $T = 0$

far solution

$$\Psi_{far} = C \frac{z}{z - z_0} \left(\frac{z - z_0^*}{z - z_0} \right)^{\frac{2\sqrt{2} - i}{2\sqrt{3}}q} \left(\frac{1 - z}{z - z_0} \right)^{\delta_+} F\left(\{\delta_-, q\}; 2z_0^2 \frac{1 - z}{z - z_0} \right) + c.c.$$

Near horizon, let $z = 1 - \frac{\epsilon}{6}\zeta \longrightarrow T = \epsilon/4\pi$

$$\zeta(1+\zeta)\Psi''+(2\zeta+1)\Psi'+\frac{1}{3}\left[1+q^2\frac{\zeta}{1+\zeta}\right]\Psi=0$$

near solution

$$\Psi_{\textit{near}} = \mathcal{A}(1+\zeta)^{-\textit{iq}/\sqrt{3}} F\left(\{\delta_{-},q\};-\zeta
ight)$$

Matching

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometr

Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

match $z \rightarrow 1$ with $\zeta \rightarrow \infty$ ($\epsilon \ll 1$)

ι

$$\mathcal{C}(1-z_0)^{\delta_-} \left(\frac{1-z_0^*}{1-z_0}\right)^{\frac{2\sqrt{2}-i}{2\sqrt{3}}q} (1-z)^{\delta_+} + c.c.$$

= $\mathcal{A} \frac{\Gamma(-1-2\delta_-)}{\Gamma(-\delta_--\frac{iq}{\sqrt{3}})\Gamma(-\delta_--\frac{iq}{\sqrt{3}})} \zeta^{\delta_+} + c.c.$ (1)

the phase of C is fixed by regularity at the horizon
 ▶ also choose condensed operator by falloff for Δ = 2

$$\Psi_{\it far}(z
ightarrow 0)\sim 0\cdot z+(\)z^2$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matching

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometr Instability Probe Limit

Low Temperature Motivation Critical Temp. Below T_C Conductivity

Summary

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Trial function

compare matching result with a trial function (α parameter):

$$\Psi \sim z^{\Delta} \left(1 - rac{lpha z^2}{\sqrt{z_+ - z}}
ight)$$

 $z_+ > 1$ is the outer horizon • instability in action at T = 0 for

$$q_c^2 = \frac{2m^2 + 3}{4}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

otherwise

- *S* admits instability for $q^2 > q_c^2$
- no instability for $q^2 < q_c^2$

Great Lakes Strings 2012

Alsup

Introductic BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometr Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Trial function

• good agreement for $q^2 \sim q_c^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Trial function

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model Bulk Geometr Instability

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Trial vs Numeric

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

excellent agreement with numerics

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometr Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Below T_C

Expand the fields as

$$g = g_0 + \langle \mathcal{O}_{\Delta} \rangle^2 g_1 + \dots , \quad \chi = \chi_0 + \langle \mathcal{O}_{\Delta} \rangle^2 \chi_1 + \dots$$
$$\Psi = \langle \mathcal{O}_{\Delta} \rangle \Psi_0 + \langle \mathcal{O}_{\Delta} \rangle^3 \Psi_1 + \dots , \quad \Phi = \Phi_0 + \langle \mathcal{O}_{\Delta} \rangle^2 \Phi_1 + \dots$$
(2)

correction to temperature

$$\frac{T}{\sqrt{\rho}} = \frac{T_0}{\sqrt{\rho}} \left[1 - \langle \mathcal{O}_\Delta \rangle^2 \mathcal{T}_1 \right], \ \mathcal{T}_1 = -\frac{g_1'}{g_0'} + \frac{1}{2}\chi_1 + \frac{\rho_1}{2\rho_0} \big|_{z=1}$$

 ρ₁ is determined from first order correction to Ψ
 equation

$$\int_0^1 \frac{dz}{z^2} g_0 \Psi_0 \mathcal{H}_1 \Psi_0 = 0$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Condensate at low temperature

Near the critical temperature

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

$\langle \mathcal{O}_\Delta angle = rac{1}{\sqrt{\mathcal{T}_1}} \sqrt{1 - rac{\mathcal{T}}{\mathcal{T}_C}}$

at T = 0, to first order, we obtain the energy gap

$$\frac{\langle \mathcal{O}_{\Delta} \rangle^{1/\Delta}}{T_C} = \frac{1}{T_0 \mathcal{T}_1^{1/2\Delta}}$$

Condensate at low temperature

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

Near the critical temperature

√<0₂>

2000

1500

0.00

0.02

0.04

-0.04

-0.02

$$\langle \mathcal{O}_{\Delta}
angle = rac{1}{\sqrt{\mathcal{T}_1}} \sqrt{1 - rac{\mathcal{T}}{\mathcal{T}_C}}$$

at T = 0, to first order, we obtain the gap

$$\frac{\langle \mathcal{O}_{\Delta} \rangle^{1/\Delta}}{T_C} = \frac{1}{T_0 \mathcal{T}_1^{1/2\Delta}}$$

continuous across $q^2 = 0$

diverges as
$$q^2
ightarrow q_c^2$$

(4日)(4日)(4日)(4日)(日)(900)

Conductivity

Great Lakes Strings 2012

Alsup

Introductio BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometr Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

• add $A_x, g_{tx} \sim e^{-i\omega t}$ perturbation

$$-\frac{d^{2}A_{x}}{dz_{*}^{2}} + VA_{x} = \omega^{2}A_{x}, \ V = g\left(2q^{2}\frac{\Psi^{2}}{z^{2}}e^{-\chi} + z^{2}\Phi'^{2}\right)$$

Clear deviation from previous $\omega_g \propto \langle q \mathcal{O}_{\Delta} \rangle^{1/\Delta}$ $\Rightarrow \omega \propto \langle \mathcal{O}_{\Delta} \rangle^{1/\Delta}$

Summary

Great Lakes Strings 2012

Alsup

Introduction BCS High T_C AdS/CFT

AdS/CFT Model

Bulk Geometry Instability Probe Limit

Low Temperatures Motivation Critical Temp. Below T_C Conductivity

Summary

• gravity provides tools to strongly coupled superconductors

• At low temperature, understand how to vary q

- matching and trial function T_C
- energy gap
- conductance
- no discontinuities at $q^2
 ightarrow 0$ or any other (small) q^2
- energy gap diverges at q²_c

work to be done \Rightarrow spatial dependence, lattice, ...