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Superconductivity

BCS theory of superconductivity uses a spontaneously
broken gauge symmetry

[picture from Gubser group]

2nd order phase transition at TC

conductance contains delta function and is gapped
Meissner Effect

I electron pairing at weak coupling
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Hich TC

BCS theory is known to work well up to TC ∼ 20K
−→ perhaps higher? - MgB2 at 40K

New(er) Materials
cuprates, TC ∼ 1.5× 100K
iron pnictides TC ∼ .5× 100K

superconducting phase difficult to describe
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High TC superconductors

Theoretical Difficulties. . .
Perturbatve struggles with coupling
Numerical simulation produces negative probabilities

time dependent path integral
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AdS/CFT

some features found via gravitational duals
I allows for calculation of transport properties

σ, gap, Meissner [Hartnoll, Herzog, Horowitz, . . . ]

Nernst effect [Hartnoll, Kovtun, Muller, Sachdev]

Differences
global vs local symmetry
breaking
large N limit?
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AdS/CFT

some features found via gravitational duals
I allows for calculation of transport properties

σ, gap, Meissner [Hartnoll, Herzog, Horowitz, . . . ]

Nernst effect [Hartnoll, Kovtun, Muller, Sachdev]

Similarities
finite chemical potential,
charge density
DC superconductivity
gap, ωg ∼ 8TC (large q)

Gap Measurement [Gomes, et al.]
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Hairy black hole

Approach
top-down: stringy solutions [ Denef, Hartnoll, Gubser, . . . ]

bottom-up: pick a supergravity solution, assume it
works (for the time being) and analyze

we use a gravity with ΛAdS, scalar field φ of mass m and
charge q coupled to U(1) vector potential Aµ

S =

∫
d4x
√
−g
[

R + 6/L2

16πG
− 1

4
FµνFµν − |Dµφ|2 −m2|φ|2

]
with

Dµ = ∂µ − iqAµ , φ =
1√
2
ψeiqθ

SΨ =
1
2

∫
d4x
√
−g
[
∂µΨ∂µΨ + q2Ψ2(∂µθ − Aµ)2 −m2Ψ2

]
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Hairy black hole

Ansatz:

ds2 =
1
z2

[
−g(z)e−χ(z)dt2 + d~x2 +

dz2

g(z)

]
,

A0 = Φ(z), ψ = Ψ(z)

use scaling symmetries: zH = 1, with z ∈ [0,1]
−→ AdS boundary at z = 1
Temperature:

T = −g′(1)

4π
e−χ(1)/2

I look at only scale invariant quantities
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Hairy black hole

Equations of Motion

Ψ′′ +

[
g′

g
−
χ′

2
−

2
z

]
Ψ′ +

[
q2Φ2eχ

g2
−

m2

z2g

]
Ψ = 0,

Φ′′ +
χ′

2
Φ′ −

2q2Ψ2

z2g
Φ = 0,

−χ′ + zΨ′
2

+
zq2Φ2Ψ2

g2
eχ = 0,

g
2

Ψ′
2

+
z2

4
Φ′

2eχ −
g′

z
+

3(g − 1)

z2
+

m2Ψ2

2z2
+

q2Ψ2Φ2eχ

2g
= 0

[HHH]

in general these must be solved numerically
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Hairy black hole

Asymptotics
To keep AdS boundary we require as z → 0

χ(0)→ 0 , g → 1 ⇒ Ψ ∼ Ψ±z∆± , Φ ∼ µ− ρz

∆± =
3
2
±
√

9
4

+ m2

- chemical potential, µ and charge density, ρ
- 〈O∆±〉 =

√
2Ψ±

Horizon
as z → 1

Φ→ 0 , g → 0
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Hairy black hole

Analytic solution: Reissner-Nordstrom-AdS

g(z) = 1−
(

1 +
ρ2

4

)
z3+

ρ2

4
z4, Φ(z) = ρ (1− z) , χ = 0 = Ψ

Mechanism for Instability - I
scalar develops effective mass

LΨ = |∂r Ψ|2 −
(

m2 + gttq2Φ2
)
|Ψ|2

→ m2
eff = m2 + gttq2Φ2 = m2 − 2q2

[Gubser]

- Breitenlohner-Freedman bound near z ∼ 1

m2
eff < m2

BF ,3+1 = −9/4
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Hairy black hole

Analytic solution: Reissner-Nordstrom-AdS

g(z) = 1−
(

1 +
ρ2

4

)
z3+

ρ2

4
z4, Φ(z) = ρ (1− z) , χ = 0 = Ψ

Mechanism for Instability - II

Extremal black holes near horizon exhibit AdS2 × R2

effective mass can be below 2D m2
BF

m2
eff = m2 − 2q2 < m2

BF ,1+1 = −1/4
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Hairy black hole

Analytic solution: Reissner-Nordstrom-AdS

g(z) = 1−
(

1 +
ρ2

4

)
z3+

ρ2

4
z4, Φ(z) = ρ (1− z) , χ = 0 = Ψ

picture from Hartnoll

instability for q2 ≥ 3+2m2

4 → including q2 = 0
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Probe limit

Start with the probe limit via

g = g0 +
1
q2 g1 + . . . , χ = χ0 +

1
q2χ1 + . . .

Ψ =
1
q

Ψ0 +
1
q3 Ψ1 + . . . , Φ =

1
q

Φ0 +
1
q3 Φ1 + . . .

q →∞
Ψ condenses at some TC ∝ ρ

picture from HHH
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Probe limit

turn on a gauge field perturbation
Ax ∼

(
A(0)

x + zA(1)
x + . . .

)
e−iωt

σ =
〈Jx〉
−∂tAx

=
A(1)

x

iωA(0)
x

picture from Gubser group

δ function
from =σ

ωC ∼ 8TC
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Free energy

Hair is Favored
condensate

〈O〉 ∼ (TC − T )1/2, T . TC

free energy

∆F = FHbh − FRN < 0, T < TC

> 0, T > TC
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Low temperatures

I must move beyond probe limit to see T → 0
quantum critical point
hard gap? [Horowitz, Roberts]

S, ρ,C [Basu]
Fermi surfaces [Faulkner, Liu, McGreevy, Vegh, . . .

emergent scaling symmetry

Small scalar charge

HHH
look at |q2| . 1
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Goal

Critical point in q?

instability qualitatively changes between q � 1 and q2 . 0
quantum critical point in q?

search in conjunction with small Temperature
critical temperature TC → solve wave equation for Ψ

Ψ′′ +

[
g′

g
− χ′

2
− 2

z

]
Ψ′ +

[
q2Φ2eχ

g2 − m2

z2g

]
Ψ = 0

in two regions
far from horizon, 1− z & ε

near horizon, 1− z .
√
ε
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Ψ

Away from horizon, use extremal background

ρ2 = 12 , T = 0
far solution

Ψfar = C
z

z − z0

(
z − z∗0
z − z0

) 2
√

2−i
2
√

3
q ( 1− z

z − z0

)δ+

F
(
{δ−, q}; 2z2

0
1− z
z − z0

)
+ c.c.

Near horizon, let z = 1− ε
6ζ −→ T = ε/4π

ζ(1 + ζ)Ψ′′ + (2ζ + 1)Ψ′ +
1
3

[
1 + q2 ζ

1 + ζ

]
Ψ = 0

near solution

Ψnear = A(1 + ζ)−iq/
√

3F ({δ−, q};−ζ)
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Matching

match z → 1 with ζ →∞ (ε� 1)

C(1− z0)δ−
(

1− z∗0
1− z0

) 2
√

2−i
2
√

3
q

(1− z)δ+ + c.c.

= A Γ(−1− 2δ−)

Γ(−δ− − iq√
3

)Γ(−δ− − iq√
3

)
ζδ+ + c.c. (1)

the phase of C is fixed by regularity at the horizon
I also choose condensed operator by falloff for ∆ = 2

Ψfar (z → 0) ∼ 0 · z + ( )z2
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Matching

constraint on ε→ TC

m2 = −2
T ∆=2

C√
ρ

= 1.7×10−4 ,
T ∆=1

C√
ρ

= .024 , TC = 0,q2 = q2
c = −1

4

∆ = 1 ∆ = 2
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Trial function

compare matching result with a trial function (α parameter):

Ψ ∼ z∆

(
1− αz2
√

z+ − z

)
z+ > 1 is the outer horizon
I instability in action at T = 0 for

q2
c =

2m2 + 3
4

otherwise
S admits instability for q2 > q2

c

no instability for q2 < q2
c
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Trial function

Trial vs Matching

∆ = 1 ∆ = 2

good agreement for q2 ∼ q2
c
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Trial function

Trial vs Numeric

∆ = 1 ∆ = 2

excellent agreement with numerics
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Below TC

Expand the fields as

g = g0 + 〈O∆〉2g1 + . . . , χ = χ0 + 〈O∆〉2χ1 + . . .

Ψ = 〈O∆〉Ψ0 + 〈O∆〉3Ψ1 + . . . , Φ = Φ0 + 〈O∆〉2Φ1 + . . . (2)

correction to temperature

T
√
ρ

=
T0√
ρ

[
1− 〈O∆〉2T1

]
, T1 = −

g′1
g′0

+
1
2
χ1 +

ρ1

2ρ0

∣∣
z=1

ρ1 is determined from first order correction to Ψ
equation ∫ 1

0

dz
z2 g0Ψ0H1Ψ0 = 0
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Condensate at low temperature

Near the critical temperature

〈O∆〉 =
1√
T1

√
1− T

TC

at T = 0, to first order, we obtain the energy gap

〈O∆〉1/∆

TC
=

1

T0T
1/2∆

1

Energy gap

∆ = 1 ∆ = 1.5 ∆ = 1.7
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Condensate at low temperature

Near the critical temperature

〈O∆〉 =
1√
T1

√
1− T

TC

at T = 0, to first order, we obtain the gap

〈O∆〉1/∆

TC
=

1

T0T
1/2∆

1

continuous across
q2 = 0

diverges as q2 → q2
c
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Conductivity

add Ax ,gtx ∼ e−iωt perturbation

−d2Ax

dz2
∗

+ VAx = ω2Ax , V = g
(

2q2 Ψ2

z2 e−χ + z2Φ′2
)

∆ = 2

q2 = −1/8 q2 = 0 q2 = 1/4

Clear deviation from previous ωg ∝ 〈qO∆〉1/∆

⇒ ω ∝ 〈O∆〉1/∆
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Summary

gravity provides tools to strongly coupled
superconductors
At low temperature, understand how to vary q

matching and trial function TC
energy gap
conductance

no discontinuities at q2 → 0 or any other (small) q2

energy gap diverges at q2
c

work to be done
⇒ spatial dependence, lattice, . . .
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