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Spectral problem and AdS/CFT correspondence

Spectral problem

I Starting point: N = 4 Super-Yang-Mills theory is a conformal field theory (CFT)

I It depends on two dimensionless parameters: the ’t Hooft coupling λ ≡ g2Y MNc and the
number of colors Nc

I Important observables: spectrum of scaling dimensions ∆ of (local) conformal operators O

AdS/CFT correspondence

(Planar) N = 4 SYM theory is equivalent to (free) type IIB superstring on AdS5 × S5

background

string tension =
√
λ/2π string coupling ∼ 1/Nc

Dictionary

Spectrum of (planar) scaling dimensions = spectrum of energies of (free) string
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Spectral problem and integrability

Main difficulty: How to confront the gauge and string theory?

I Gauge theory is tractable at weak coupling: λ≪ 1

I String theory is tractable at strong coupling: λ≫ 1

In most cases, to test the correspondence we need control on the weak/strong coupling
interpolation → need non-perturbative methods

Important recent progress: Discovery of integrable structures (in the planar limit)
[Minahan,Zarembo’02],[Beisert,Staudacher’03’05]

[Lipatov’98],[Braun,Derkachov,Korchemsky,Manashov’98],[Belitsky’99]
[Bena,Polchinski,Roiban’03],[Kazakov,Marshakov,Minahan,Zarembo’04]

[Gromov,Kazakov,Vieira’09],[Gromov,Kazakov,Kozak,Vieira’09],
[Bombardelli,Fioravanti,Tateo’09],[Arutyunov,Frolov’09]

→ Complete solution to spectral problem in the planar limit

Motivations:

I Solving the four-dimensional gauge theory (at least in the planar limit)

I Quantizing the string theory on the curved background

I Testing the AdS/CFT correspondence
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Probing the correspondence

Probe: consider (local) operators in the so-called sl(2) sector

O = trDSZJ + mixing

with

I Z a complex scalar field in the adjoint representation of the gauge group

I D ≡ nµDµ a light-cone covariant derivative n2 = 0

They carry spin S and twist J

Spectrum of scaling dimensions
∆ ≡ ∆S,J (λ)

from Bethe ansatz (TBA/Y-system) equations (for any coupling λ)

Comment: computing ∆ in the short string regime, i.e., with S, J ∼ 1 and λ≫ 1, is difficult,
even with help of integrability
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Small spin expansion

I Consider scaling dimension ∆ of operator

O ∼ trDSZJ + mixing

I ∆ is defined for physical operator (integer spin)

∆ ≡ ∆J (S)

as a function of spin S, twist J , and ’t Hooft coupling λ

I Perform ‘analytical continuation’ in the spin S and expand around S = 0 (BPS point)

∆ = J + αJ (λ)S +O(S2)

I The slope αJ (λ) is a function of J and λ only, computable at weak and strong coupling
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Illustration
I Consider twist-two operator (J = 2)

O = trDSZ2 + mixing

I Its scaling dimension is given up to one loop as

∆twist-two = 2 + S +
λ

2π2
(ψ(S + 1) − ψ(1)) +O(λ2)

with ψ the logarithmic derivative of Euler Gamma function
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I Straigthforward expansion at small spin yields [Kotikov,Lipatov,Onishchenko,Velizhanin]

αJ=2(λ) =
d∆twist-two

dS
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Outline

I Small spin expansion using integrability

I Exact formula for the slope

I Application to short string energies
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Tool : Integrability

Kinematics

Operators
O{km} = trDk1Z...DkJZ

I trZ...Z...Z → vacuum state of the spin chain

I trZ...DZ...Z → one-particle state of the spin chain (magnon)

Quantum numbers

I Twist J → spin chain length

I Lorentz spin S = k1 + ...+ kJ → number of excitations (magnons) over the vacuum

Z
Z Z

ZZ

Z

Z Z

Z

Spin Chain (Ferromagnetic) Vacuum Two−Magnon State

Z Z

Z Z

DZ Z

Z DZ
Z
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Tool : Integrability

Kinematics

Operators
O{km} = trDk1Z...DkJZ

I trZ...Z...Z → vacuum state of the spin chain

I trZ...DZ...Z → one-particle state of the spin chain (magnon)

Quantum numbers

I Twist J → spin chain length

I Lorentz spin S = k1 + ...+ kJ → number of excitations (magnons) over the vacuum

Dynamics

Callan-Symanzik equation

µ
∂

∂µ
O{km} = −δD · O{km}

I Dilatation operator δD → Hamiltonian of the spin chain

I Spectrum of anomalous dimensions δ∆ → spectrum of energies of the spin chain
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One-loop example

Mapping with sl(2) integrable Heisenberg spin chains
[Lipatov’97],[Braun,Belitsky,Derkachov,Korchemsky,Manashov’98]

[Minahan,Zarembo’02],[Beisert,Staudacher’03]

Kinematics : spin-chain Hilbert space H = V ⊗J
1/2

Dynamics : δD = Hamiltonian of XXX1/2 sl(2) Heisenberg spin chain

Integrability

I System with J degrees of freedom... and J commuting conserved charges

Liouville definition of a completely integrable system

I The complete family of conserved charges can be diagonalized simultaneously with δD by
means of the algebraic Bethe ansatz
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Bethe ansatz solution

Solution to mixing problem

I Bethe ansatz equations
 

uk + i
2

uk − i
2

!J

=
S
Y

j ̸=k

uk − uj − i

uk − uj + i

I S magnons ↔ S rapidities uk

I One-loop scaling dimension

∆ = J + S +
λ

8π2

S
X

k=1

1

u2
k + 1/4

+O(λ2)

Problem: how to go away from integer spin values?
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Alternative approach

Baxter polynomial

Q(u) =
S
Y

k=1

(u− uk)

Baxter equation

(u+ i/2)JQ(u+ i) + (u− i/2)JQ(u− i) = tJ (u)Q(u)

with tJ (u) the so-called (eigenvalue of the) transfer matrix

Scaling dimension

∆ = J + S +
iλ

8π2

»

Q′(i/2)

Q(i/2)
−
Q′(−i/2)

Q(−i/2)

–

+O(λ2)

Interesting point

I We can look for non-polynomial solutions and perform the small spin expansion

Q(u) = 1 + Sq(u) +O(S2)
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Illustration

Twist two solution

q(u) =
1

2

`

ψ( 1
2

+ iu) + ψ( 1
2
− iu)

´

−
i

4π
sinh (2πu)

`

ψ1( 1
2

+ iu) − ψ1( 1
2
− iu)

´

Scaling dimension
∆ = J + αtwist-two(λ)S +O(S2)

with

αtwist-two(λ) = 1 +
λ

8π2

`

q′(i/2) − q′(−i/2)
´

+O(λ2)

and thus

αtwist-two(λ) = 1 +
λ

12
+O(λ2)

Higher loops? Yes with higher-loop Baxter equation [Belitsky’09],[BB,Belitsky’11]
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Exact slope

Exact slope in planar N = 4 SYM theory [BB’11]

αJ (λ) =

√
λ

J

I′J (
√
λ)

IJ (
√
λ)

= 1 +

√
λ

J

IJ+1(
√
λ)

IJ (
√
λ)

Expressed in terms of the modified Bessel’s function IJ (x) (and its derivative
I′J (x) ≡ dIJ (x)/dx)

Proposal: Formula is correct for any twist J and ’t Hooft coupling λ
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Immediate checks

I Weak coupling expansion

αJ (λ) = 1 +
λ

2J(J + 1)
−

λ2

8J(J + 1)2(J + 2)
+O(λ3)

OK with previous twist-two expression for J = 2!

I At large J (and for any λ)

αJ (λ) = 1 +
λ

2J2
+O(1/J2)

Correct BMN limit!
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Numerical interpolation

Plot of the slope αJ (λ) as a function of the coupling
√
λ
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for J = 2 (blue) to J = 5 (green)
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Strong coupling expansion
Let us reformulate the proposal as

∆2 = J2 + βJ (λ)S +O(S2)

where

βJ (λ) ≡ 2JαJ (λ) = 2
√
λ
I′J (λ)

IJ (λ)

Motivation: remember the flat-space string theory result

∆2 = J2 + 2
√
λS

Here we find that at strong coupling
√
λ (i.e., large string tension)

βJ (λ) = 2
√
λ− 1 +

J2 − 1/4
√
λ

+
J2 − 1/4

λ
+O(1/λ3/2)

I Correct flat-space limit!

I Correct one-loop correction! [Gromov,Serban,Shenderovitch,Volin’11],
[Roiban,Tseytlin’11],[Vallilo,Mazzucato’11]

Further check: consider the semiclassical string regime where J ≡ J/
√
λ is fixed, then

βJ (λ) = 2
√
λ
p

1 + J 2 −
1

1 + J 2
+O(1/

√
λ)

Comment: it is in perfect agreement with classical and one-loop string prediction
[Frolov,Tseytlin’02],[Gromov,Valatka’11]
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Physical application I

Apply the formula

∆2 = J2 + βJ (λ)S + γJ (λ)S2 + δJ (λ)S3 +O(S4)

to physical operators (i.e., for finite spin) at strong coupling

Assumption: coefficients of higher spin powers are suppressed by higher powers of 1/
√
λ, e.g.,

βJ (λ) = O(
√
λ) , γJ (λ) = O(1) , δJ (λ) = O(1/

√
λ) , · · ·

Further assumption: coefficients of small spin expansion can be directly matched against those
predicted by the semiclassical string computation

Comments:

I Non-trivial claim since the semiclassical analysis produces an expansion at small
semiclassical spin S ≡ S/

√
λ (possible order of limit issue)

I So far these assumptions have been found to be in good agreement with exact (numerical)
predictions from Y-system [Gromov,Serban,Shenderovitch,Volin’11],[Gromov,Valatka’11]
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Physical application II

Under the battery of assumptions

∆2 = J2 + βJ (λ)S + γJ (λ)S2 + δJ (λ)S3 + . . .

applies to physical operators (i.e., for finite spin) at strong coupling, with (up to two loops)

I βJ (λ) = 2
√
λ− 1 + (J2 − 1/4)/

√
λ

I γJ (λ) = 3/2 − b/
√
λ

I δJ (λ) = −3/(8
√
λ)

Missing piece: the one-loop semiclassical coefficient b, found recently as [Gromov,Valatka’11]

b =
3

8
− 3ζ3

→ complete two-loop prediction for (minimal) scaling dimension at strong coupling!

In particular: for the Konishi scaling dimension, i.e., for S = J = 2, ones find [Gromov,Valatka’11]

∆ = 2λ1/4 +
2

λ1/4
+

1/2 − 3ζ3

λ3/4
+O(1/λ5/4)
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Some interesting features

The expression from the slope hints that

I Weak coupling expansion is convergent

Radius of convergency is finite and fixed by the first non-trivial zero of Bessel’s function
IJ (

√
λ)

I Strong coupling expansion is asymptotic and non-Borel summable

Strong coupling series determines the exact expression up to exponentially small
contributions ∼ exp (−2

√
λ) only

Similar to the situation for the cusp anomalous dimension (as predicted from the BES
equation) [Beisert,Eden,Staudacher’06],[Basso,Korchemsky,Kotanski’07]
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Summary and outlook

Main result

I Formula for the slope of minimal scaling dimension at any coupling and twist

Extensions

I Spectrum of short strings?.... small spin expansion for more generic states?

I Can we control higher terms in the small spin expansion?

I Relation to cusp anomalous dimension? Recent result by [Correa,Henn,Maldacena,Sever’12],
[Fiol,Garolera,Lewkowycz’12]

Γcusp(λ, ϕ) = −B(λ)ϕ2 +O(ϕ4)

with

B(λ) =

√
λ

4π2

I2(
√
λ)

I1(
√
λ)

in striking similarity with the slope
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