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L —
Spectral problem and AdS/CFT correspondence

Spectral problem
> Starting point: N = 4 Super-Yang-Mills theory is a conformal field theory (CFT)

> It depends on two dimensionless parameters: the 't Hooft coupling A = g%,MNc and the
number of colors N,

> Important observables: spectrum of scaling dimensions A of (local) conformal operators O

AdS/CFT correspondence

(Planar) N' = 4 SYM theory is equivalent to (free) type IIB superstring on AdSs x S°
background

string tension = \A/27‘r string coupling ~ 1/N.

Dictionary

Spectrum of (planar) scaling dimensions = spectrum of energies of (free) string
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Spectral problem and integrability

Main difficulty: How to confront the gauge and string theory?

> Gauge theory is tractable at weak coupling: A < 1
> String theory is tractable at strong coupling: A > 1

In most cases, to test the correspondence we need control on the weak/strong coupling
interpolation — need non-perturbative methods

Important recent progress: Discovery of integrable structures (in the planar limit)
[Minahan,Zarembo’02], [Beisert,Staudacher’03’05]
[Lipatov’98],[Braun, Derkachov,Korchemsky,Manashov’98],[Belitsky’99]
[Bena,Polchinski,Roiban’03],[Kazakov,Marshakov,Minahan,Zarembo’04]
[Gromov,Kazakov, Vieira’09],[Gromov,Kazakov,Kozak, Vieira’09],
[Bombardelli,Fioravanti,Tateo’09],[Arutyunov,Frolov’09]

— Complete solution to spectral problem in the planar limit

Motivations:

> Solving the four-dimensional gauge theory (at least in the planar limit)

» Quantizing the string theory on the curved background
» Testing the AdS/CFT correspondence




Probing the correspondence

Probe: consider (local) operators in the so-called s[(2) sector
0 =tD%z7 + mixing

with

» Z a complex scalar field in the adjoint representation of the gauge group

> D =nktD, alight-cone covariant derivative n2=0
They carry spin S and twist J
Spectrum of scaling dimensions

A= AS’J ()\)

from Bethe ansatz (TBA/Y-system) equations (for any coupling \)

Comment: computing A in the short string regime, i.e., with S, J ~ 1 and A > 1, is difficult,
even with help of integrability
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Small spin expansion

» Consider scaling dimension A of operator

O ~trDSz7 + mixing

v

A is defined for physical operator (integer spin)
A=A;(S)
as a function of spin S, twist J, and 't Hooft coupling A
> Perform ‘analytical continuation’ in the spin S and expand around S = 0 (BPS point)

A=J+asN)S+0(S?)

v

The slope ay(A) is a function of J and A only, computable at weak and strong coupling
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Tlustration

> Consider twist-two operator (J = 2)
O=trD%22 + mixing
> Its scaling dimension is given up to one loop as
A .
A(,wisl—l,wo =2+ S + ﬁ(w(s + 1) - w(l)) + O()‘Z)

with v the logarithmic derivative of Euler Gamma function
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» Straigthforward expansion at small spin yields [Kotikov,Lipatov,Onishchenko, Velizhanin]
AdA twist-two A A2 3
a]:z()\) _ twist-two -1 + 2 + + O(}\4)
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e
Outline

> Small spin expansion using integrability

» Exact formula for the slope

» Application to short string energies




e —
Tool : Integrability

Kinematics
Operators

Oy} =tr DM Z. DM 7

> tr Z...Z...Z — vacuum state of the spin chain
> trZ...DZ...Z — one-particle state of the spin chain (magnon)
Quantum numbers

» Twist J — spin chain length

> Lorentz spin S = k1 + ... + kj — number of excitations (magnons) over the vacuum




e —
Tool : Integrability

Kinematics
Operators
Oy, =tr DM Z. DM 7
> trZ...Z...Z — vacuum state of the spin chain
> trZ...DZ...Z — one-particle state of the spin chain (magnon)

Quantum numbers
» Twist J — spin chain length

> Lorentz spin S = k1 + ... + kj — number of excitations (magnons) over the vacuum

Dynamics
Callan-Symanzik equation

o]
—O0 =-6D-0O
'u‘au {km} {km}

» Dilatation operator D — Hamiltonian of the spin chain

» Spectrum of anomalous dimensions d A — spectrum of energies of the spin chain
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One-loop example

Mapping with s[(2) integrable Heisenberg spin chains
[Lipatov’97],[Braun,Belitsky, Derkachov,Korchemsky, Manashov'98]
[Minahan,Zarembo’02],[Beisert,Staudacher’03]

Kinematics : spin-chain Hilbert space H = VS‘QI

Dynamics : 6 = Hamiltonian of XXX /3 5((2) Heisenberg spin chain

Integrability

» System with J degrees of freedom... and J commuting conserved charges

Liouville definition of a completely integrable system

» The complete family of conserved charges can be diagonalized simultaneously with JD by
means of the algebraic Bethe ansatz
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Bethe ansatz solution

Solution to mixing problem

» Bethe ansatz equations

Up — Uj — 1

(SIES
N——
<
—

uk-I—v
U —

> S magnons < S rapidities uy

]-;ékuk*“j‘i’i

Nl

> One-loop scaling dimension

S
A 1
A=J+S5+ 5> ————+0N
* +87r2kz::1ui+1/4+ A%

Problem: how to go away from integer spin values?
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Alternative approach

Baxter polynomial

Baxter equation

(u+1/2)” Qu+ ) + (u—1i/2)" Qu — i) = t; (w)Q(u)

with ¢;(u) the so-called (eigenvalue of the) transfer matrix

Scaling dimension

- DD Qi)
A=TH5 e QU Qi)

+0(\2%)

Interesting point

» We can look for non-polynomial solutions and perform the small spin expansion

Q(u) =14 Sq(u) + O(5?)
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Tlustration

Twist two solution

g(u) = % (z/}(% + iu) + w(% —iu)) — i sinh (2mu) (1/;1(% + du) — dn(% — iu))

Scaling dimension

A=J+ atwistftwo()‘)s + O(SZ)

with

Qgwist-two () = 1+ (¢'(i/2) — d'(=i/2)) + O(N?)

82
and thus

A
O‘twist—two(A) =1+ E + O(>‘2)

Higher loops? Yes with higher-loop Baxter equation [Belitsky’09],[BB,Belitsky’11]

ing dimensiorn nall spin



Exact slope

Exact slope in planar A’ =4 SYM theory [BB'11]
I (VX
as(\) = Q 5(V) :1+£M
J 15(VX) J o 1;(VA)

Expressed in terms of the modified Bessel’s function I;(z) (and its derivative
I')(z) = dIj(x)/dx)

Proposal: Formula is correct for any twist J and ’t Hooft coupling A
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Immediate checks

» Weak coupling expansion

A A2
2J(J+1) 8J(J+1)2(J+2)

ay(\) =1+ +0(\?)

OK with previous twist-two expression for J = 2!
> At large J (and for any \)

A
ay(\) =1+ oz T o(1/J%)

Correct BMN limit!

small spin



Numerical interpolation
Plot of the slope as(\) as a function of the coupling v/A
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Strong coupling expansion
Let us reformulate the proposal as

A? = T2+ B;(N)S + O(S?)

where

5N

Br(\) =2Jas(A )_2f 0

Motivation: remember the flat-space string theory result
A% = J% +2VAS
Here we find that at strong coupling VA (i.e., large string tension)

J2—-1/4 J%2-1/4
/ /Jr

_ _ /
Br(AN) =2VA—1+ 7 +— O(1/23/2)

» Correct flat-space limit!

» Correct one-loop correction! [Gromov,Serban,Shenderovitch, Volin’11],
[Roiban,Tseytlin’11],[Vallilo,Mazzucato’11]

Further check: consider the semiclassical string regime where J = J/ﬁ is fixed, then
Bs(N) =2VAV1+ 72 — 0(1/V)

Comment: it is in perfect agreement with classical and one-loop string prediction
[Frolov,Eseytlin®02],[Gromov,Valatka 11]
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Physical application I

Apply the formula
A? = T2+ B (NS +v5(N)S% +6,(V)S? + O(SY)
to physical operators (i.e., for finite spin) at strong coupling
Assumption: coefficients of higher spin powers are suppressed by higher powers of 1/v/X, e.g.,

BsA) =0(VA), ) =0(1), &) =0(1/VX),

Further assumption: coefficients of small spin expansion can be directly matched against those
predicted by the semiclassical string computation
Comments:

» Non-trivial claim since the semiclassical analysis produces an expansion at small
semiclassical spin S = S/v/A (possible order of limit issue)

> So far these assumptions have been found to be in good agreement with exact (numerical)
predictions from Y-system [Gromov,Serban,Shenderovitch,Volin’11],[Gromov, Valatka’11]
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Physical application IT

Under the battery of assumptions
A2 =T+ B5(NS + 75N+ 68, (N)S% + ...
applies to physical operators (i.e., for finite spin) at strong coupling, with (up to two loops)
> Bs(N) =2VX— 1+ (J2—1/4)/VA
> y7(\) =3/2—b/V/A
> 57(N) = =3/(8V)

Missing piece: the one-loop semiclassical coefficient b, found recently as [Gromov,Valatka’11]
3
b=--3
3 3

— complete two-loop prediction for (minimal) scaling dimension at strong coupling!
In particular: for the Konishi scaling dimension, i.e., for S = J = 2, ones find [Gromov,Valatka’11]

A:2A1/4+L+M

i/ S5/ +O(1/X%/%)
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Some interesting features

The expression from the slope hints that

» Weak coupling expansion is convergent
Radius of convergency is finite and fixed by the first non-trivial zero of Bessel’s function
I;(VX)

» Strong coupling expansion is asymptotic and non-Borel summable

Strong coupling series determines the exact expression up to exponentially small
contributions ~ exp (—2v/A) only

Similar to the situation for the cusp anomalous dimension (as predicted from the BES
equation) [Beisert,Eden,Staudacher’06],[Basso,Korchemsky, Kotanski’07]
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Summary and outlook

Main result

» Formula for the slope of minimal scaling dimension at any coupling and twist

Extensions
> Spectrum of short strings?.... small spin expansion for more generic states?
» Can we control higher terms in the small spin expansion?

» Relation to cusp anomalous dimension? Recent result by [Correa,Henn,Maldacena,Sever’12],
[Fiol,Garolera, Lewkowycz'12]

I‘cus,p()\, (i)) = 7B(>‘)¢2 + O(¢4)

with
VA (VDY)
PV L

in striking similarity with the slope
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