Scaling dimensions at small spin

Benjamin Basso
Princeton Center for Theoretical Science Princeton University

March 2, 2012
Great Lakes String Conference, Purdue University
arXiv:1109.3154

Spectral problem and AdS/CFT correspondence

Spectral problem

- Starting point: $\mathcal{N}=4$ Super-Yang-Mills theory is a conformal field theory (CFT)
- It depends on two dimensionless parameters: the 't Hooft coupling $\lambda \equiv g_{Y M}^{2} N_{c}$ and the number of colors N_{c}
- Important observables: spectrum of scaling dimensions Δ of (local) conformal operators \mathcal{O}

AdS/CFT correspondence

(Planar) $\mathcal{N}=4$ SYM theory is equivalent to (free) type IIB superstring on $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ background

$$
\text { string tension }=\sqrt{\lambda} / 2 \pi \quad \text { string coupling } \sim 1 / N_{c}
$$

Dictionary

Spectrum of (planar) scaling dimensions $=$ spectrum of energies of (free) string

Spectral problem and integrability

Main difficulty: How to confront the gauge and string theory?

- Gauge theory is tractable at weak coupling: $\lambda \ll 1$
- String theory is tractable at strong coupling: $\lambda \gg 1$

In most cases, to test the correspondence we need control on the weak/strong coupling interpolation \rightarrow need non-perturbative methods

Important recent progress: Discovery of integrable structures (in the planar limit)
[Minahan, Zarembo'02],[Beisert,Staudacher'03'05]
[Lipatov'98],[Braun,Derkachov,Korchemsky,Manashov'98],[Belitsky'99] [Bena,Polchinski,Roiban'03],[Kazakov,Marshakov,Minahan,Zarembo'04]
[Gromov,Kazakov,Vieira'09],[Gromov,Kazakov,Kozak, Vieira'09], [Bombardelli,Fioravanti, Tateo'09],[Arutyunov, Frolov'09]
\rightarrow Complete solution to spectral problem in the planar limit

Motivations:

- Solving the four-dimensional gauge theory (at least in the planar limit)
- Quantizing the string theory on the curved background
- Testing the AdS/CFT correspondence

Probing the correspondence

Probe: consider (local) operators in the so-called $\mathfrak{s l}(2)$ sector

$$
\mathcal{O}=\operatorname{tr} D^{S} Z^{J}+\text { mixing }
$$

with

- Z a complex scalar field in the adjoint representation of the gauge group
- $D \equiv n^{\mu} D_{\mu}$ a light-cone covariant derivative $n^{2}=0$

They carry spin S and twist J
Spectrum of scaling dimensions

$$
\Delta \equiv \Delta_{S, J}(\lambda)
$$

from Bethe ansatz (TBA/Y-system) equations (for any coupling λ)
Comment: computing Δ in the short string regime, i.e., with $S, J \sim 1$ and $\lambda \gg 1$, is difficult, even with help of integrability

Small spin expansion

- Consider scaling dimension Δ of operator

$$
\mathcal{O} \sim \operatorname{tr} D^{S} Z^{J}+\text { mixing }
$$

- Δ is defined for physical operator (integer spin)

$$
\Delta \equiv \Delta_{J}(S)
$$

as a function of $\operatorname{spin} S$, twist J, and 't Hooft coupling λ

- Perform 'analytical continuation' in the spin S and expand around $S=0$ (BPS point)

$$
\Delta=J+\alpha_{J}(\lambda) S+O\left(S^{2}\right)
$$

- The slope $\alpha_{J}(\lambda)$ is a function of J and λ only, computable at weak and strong coupling

Illustration

- Consider twist-two operator $(J=2)$

$$
\mathcal{O}=\operatorname{tr} D^{S} Z^{2}+\text { mixing }
$$

- Its scaling dimension is given up to one loop as

$$
\Delta_{\text {twist-two }}=2+S+\frac{\lambda}{2 \pi^{2}}(\psi(S+1)-\psi(1))+O\left(\lambda^{2}\right)
$$

with ψ the logarithmic derivative of Euler Gamma function

- Straigthforward expansion at small spin yields
[Kotikov,Lipatov, Onishchenko, Velizhanin]

$$
\alpha_{J=2}(\lambda)=\left.\frac{d \Delta_{\text {twist-two }}}{d S}\right|_{S=0}=1+\frac{\lambda}{12}-\frac{\lambda^{2}}{576}+\frac{\lambda^{3}}{17280}+O\left(\lambda^{4}\right)
$$

Outline

- Small spin expansion using integrability
- Exact formula for the slope
- Application to short string energies

Tool : Integrability

Kinematics

Operators

$$
\mathcal{O}_{\left\{k_{m}\right\}}=\operatorname{tr} D^{k_{1}} Z \ldots D^{k_{J}} Z
$$

$-\operatorname{tr} Z \ldots Z \ldots Z \rightarrow$ vacuum state of the spin chain

- $\operatorname{tr} Z \ldots D Z \ldots Z \rightarrow$ one-particle state of the spin chain (magnon)

Quantum numbers

- Twist $J \rightarrow$ spin chain length
- Lorentz spin $S=k_{1}+\ldots+k_{J} \rightarrow$ number of excitations (magnons) over the vacuum

Spin Chain (Ferromagnetic) Vacuum

Two-Magnon State

Tool : Integrability

Kinematics

Operators

$$
\mathcal{O}_{\left\{k_{m}\right\}}=\operatorname{tr} D^{k_{1}} Z \ldots D^{k_{J}} Z
$$

- $\operatorname{tr} Z \ldots Z \ldots Z \rightarrow$ vacuum state of the spin chain
- $\operatorname{tr} Z \ldots D Z \ldots Z \rightarrow$ one-particle state of the spin chain (magnon)

Quantum numbers

- Twist $J \rightarrow$ spin chain length
- Lorentz spin $S=k_{1}+\ldots+k_{J} \rightarrow$ number of excitations (magnons) over the vacuum

Dynamics

Callan-Symanzik equation

$$
\mu \frac{\partial}{\partial \mu} \mathcal{O}_{\left\{k_{m}\right\}}=-\delta \mathbb{D} \cdot \mathcal{O}_{\left\{k_{m}\right\}}
$$

- Dilatation operator $\delta \mathbb{D} \rightarrow$ Hamiltonian of the spin chain
- Spectrum of anomalous dimensions $\delta \Delta \rightarrow$ spectrum of energies of the spin chain

One-loop example

Mapping with $\mathfrak{s l}(2)$ integrable Heisenberg spin chains
[Lipatov'97],[Braun,Belitsky,Derkachov,Korchemsky,Manashov'98] [Minahan,Zarembo'02], [Beisert,Staudacher'03]

Kinematics : spin-chain Hilbert space $\mathcal{H}=V_{1 / 2}^{\otimes J}$

Dynamics : $\delta \mathbb{D}=$ Hamiltonian of $\mathrm{XXX}_{1 / 2} \mathfrak{s l}(2)$ Heisenberg spin chain
Integrability

- System with J degrees of freedom... and J commuting conserved charges

Liouville definition of a completely integrable system

- The complete family of conserved charges can be diagonalized simultaneously with $\delta \mathbb{D}$ by means of the algebraic Bethe ansatz

Bethe ansatz solution

Solution to mixing problem

- Bethe ansatz equations

$$
\left(\frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}\right)^{J}=\prod_{j \neq k}^{S} \frac{u_{k}-u_{j}-i}{u_{k}-u_{j}+i}
$$

- S magnons $\leftrightarrow S$ rapidities u_{k}
- One-loop scaling dimension

$$
\Delta=J+S+\frac{\lambda}{8 \pi^{2}} \sum_{k=1}^{S} \frac{1}{u_{k}^{2}+1 / 4}+O\left(\lambda^{2}\right)
$$

Problem: how to go away from integer spin values?

Alternative approach

Baxter polynomial

$$
Q(u)=\prod_{k=1}^{S}\left(u-u_{k}\right)
$$

Baxter equation

$$
(u+i / 2)^{J} Q(u+i)+(u-i / 2)^{J} Q(u-i)=t_{J}(u) Q(u)
$$

with $t_{J}(u)$ the so-called (eigenvalue of the) transfer matrix
Scaling dimension

$$
\Delta=J+S+\frac{i \lambda}{8 \pi^{2}}\left[\frac{Q^{\prime}(i / 2)}{Q(i / 2)}-\frac{Q^{\prime}(-i / 2)}{Q(-i / 2)}\right]+O\left(\lambda^{2}\right)
$$

Interesting point

- We can look for non-polynomial solutions and perform the small spin expansion

$$
Q(u)=1+S q(u)+O\left(S^{2}\right)
$$

Illustration

Twist two solution

$$
q(u)=\frac{1}{2}\left(\psi\left(\frac{1}{2}+i u\right)+\psi\left(\frac{1}{2}-i u\right)\right)-\frac{i}{4 \pi} \sinh (2 \pi u)\left(\psi_{1}\left(\frac{1}{2}+i u\right)-\psi_{1}\left(\frac{1}{2}-i u\right)\right)
$$

Scaling dimension

$$
\Delta=J+\alpha_{\text {twist-two }}(\lambda) S+O\left(S^{2}\right)
$$

with

$$
\alpha_{\text {twist-two }}(\lambda)=1+\frac{\lambda}{8 \pi^{2}}\left(q^{\prime}(i / 2)-q^{\prime}(-i / 2)\right)+O\left(\lambda^{2}\right)
$$

and thus

$$
\alpha_{\text {twist-two }}(\lambda)=1+\frac{\lambda}{12}+O\left(\lambda^{2}\right)
$$

Higher loops? Yes with higher-loop Baxter equation

Exact slope

Exact slope in planar $\mathcal{N}=4$ SYM theory

$$
\alpha_{J}(\lambda)=\frac{\sqrt{\lambda}}{J} \frac{I_{J}^{\prime}(\sqrt{\lambda})}{I_{J}(\sqrt{\lambda})}=1+\frac{\sqrt{\lambda}}{J} \frac{I_{J+1}(\sqrt{\lambda})}{I_{J}(\sqrt{\lambda})}
$$

Expressed in terms of the modified Bessel's function $I_{J}(x)$ (and its derivative $\left.I_{J}^{\prime}(x) \equiv d I_{J}(x) / d x\right)$

Proposal: Formula is correct for any twist J and 't Hooft coupling λ

Immediate checks

- Weak coupling expansion

$$
\alpha_{J}(\lambda)=1+\frac{\lambda}{2 J(J+1)}-\frac{\lambda^{2}}{8 J(J+1)^{2}(J+2)}+O\left(\lambda^{3}\right)
$$

OK with previous twist-two expression for $J=2$!

- At large J (and for any λ)

$$
\alpha_{J}(\lambda)=1+\frac{\lambda}{2 J^{2}}+O\left(1 / J^{2}\right)
$$

Correct BMN limit!

Numerical interpolation

Plot of the slope $\alpha_{J}(\lambda)$ as a function of the coupling $\sqrt{\lambda}$

for $J=2$ (blue) to $J=5$ (green)

Strong coupling expansion

Let us reformulate the proposal as

$$
\Delta^{2}=J^{2}+\beta_{J}(\lambda) S+O\left(S^{2}\right)
$$

where

$$
\beta_{J}(\lambda) \equiv 2 J \alpha_{J}(\lambda)=2 \sqrt{\lambda} \frac{I_{J}^{\prime}(\lambda)}{I_{J}(\lambda)}
$$

Motivation: remember the flat-space string theory result

$$
\Delta^{2}=J^{2}+2 \sqrt{\lambda} S
$$

Here we find that at strong coupling $\sqrt{\lambda}$ (i.e., large string tension)

$$
\beta_{J}(\lambda)=2 \sqrt{\lambda}-1+\frac{J^{2}-1 / 4}{\sqrt{\lambda}}+\frac{J^{2}-1 / 4}{\lambda}+O\left(1 / \lambda^{3 / 2}\right)
$$

- Correct flat-space limit!
- Correct one-loop correction!
[Gromov,Serban,Shenderovitch,Volin'11], [Roiban, Tseytlin'11],[Vallilo,Mazzucato'11]

Further check: consider the semiclassical string regime where $\mathcal{J} \equiv J / \sqrt{\lambda}$ is fixed, then

$$
\beta_{J}(\lambda)=2 \sqrt{\lambda} \sqrt{1+\mathcal{J}^{2}}-\frac{1}{1+\mathcal{J}^{2}}+O(1 / \sqrt{\lambda})
$$

Comment: it is in perfect agreement with classical and one-loop string prediction

Physical application I

Apply the formula

$$
\Delta^{2}=J^{2}+\beta_{J}(\lambda) S+\gamma_{J}(\lambda) S^{2}+\delta_{J}(\lambda) S^{3}+O\left(S^{4}\right)
$$

to physical operators (i.e., for finite spin) at strong coupling
Assumption: coefficients of higher spin powers are suppressed by higher powers of $1 / \sqrt{\lambda}$, e.g.,

$$
\beta_{J}(\lambda)=O(\sqrt{\lambda}), \quad \gamma_{J}(\lambda)=O(1), \quad \delta_{J}(\lambda)=O(1 / \sqrt{\lambda}), \quad \ldots
$$

Further assumption: coefficients of small spin expansion can be directly matched against those predicted by the semiclassical string computation

Comments:

- Non-trivial claim since the semiclassical analysis produces an expansion at small semiclassical spin $\mathcal{S} \equiv S / \sqrt{\lambda}$ (possible order of limit issue)
- So far these assumptions have been found to be in good agreement with exact (numerical) predictions from Y-system
[Gromov,Serban,Shenderovitch,Volin'11],[Gromov,Valatka'11]

Physical application II

Under the battery of assumptions

$$
\Delta^{2}=J^{2}+\beta_{J}(\lambda) S+\gamma_{J}(\lambda) S^{2}+\delta_{J}(\lambda) S^{3}+\ldots
$$

applies to physical operators (i.e., for finite spin) at strong coupling, with (up to two loops)

- $\beta_{J}(\lambda)=2 \sqrt{\lambda}-1+\left(J^{2}-1 / 4\right) / \sqrt{\lambda}$
- $\gamma_{J}(\lambda)=3 / 2-b / \sqrt{\lambda}$
- $\delta_{J}(\lambda)=-3 /(8 \sqrt{\lambda})$

Missing piece: the one-loop semiclassical coefficient b, found recently as

$$
b=\frac{3}{8}-3 \zeta_{3}
$$

\rightarrow complete two-loop prediction for (minimal) scaling dimension at strong coupling!
In particular: for the Konishi scaling dimension, i.e., for $S=J=2$, ones find [Gromov,Valatka' 1 1]

$$
\Delta=2 \lambda^{1 / 4}+\frac{2}{\lambda^{1 / 4}}+\frac{1 / 2-3 \zeta_{3}}{\lambda^{3 / 4}}+O\left(1 / \lambda^{5 / 4}\right)
$$

Some interesting features

The expression from the slope hints that

- Weak coupling expansion is convergent

Radius of convergency is finite and fixed by the first non-trivial zero of Bessel's function $I_{J}(\sqrt{\lambda})$

- Strong coupling expansion is asymptotic and non-Borel summable

Strong coupling series determines the exact expression up to exponentially small contributions $\sim \exp (-2 \sqrt{\lambda})$ only

Similar to the situation for the cusp anomalous dimension (as predicted from the BES equation)

Summary and outlook

Main result

- Formula for the slope of minimal scaling dimension at any coupling and twist

Extensions

- Spectrum of short strings?.... small spin expansion for more generic states?
- Can we control higher terms in the small spin expansion?
- Relation to cusp anomalous dimension? Recent result by [Correa,Henn,Maldacena,Sever'12],
[Fiol,Garolera,Lewkowycz'12]

$$
\Gamma_{\text {cusp }}(\lambda, \phi)=-B(\lambda) \phi^{2}+O\left(\phi^{4}\right)
$$

with

$$
B(\lambda)=\frac{\sqrt{\lambda}}{4 \pi^{2}} \frac{I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})}
$$

in striking similarity with the slope

