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= Consider quantum mechanics with Hamiltonian dependent on an external parameter A,
]YX:::}J(ﬁaf;A)‘

The dynamics of the system induced by variation in A is well-understood:

= For a stationary state |n> with energy F,, = hw,,, the slow changes in A, i.e.,
dIn \(t)
Wy dt
energy E,, = E,, (\(t)) tracing the change in .

= A fast (abrupt) change in A, i.e., dlndi‘(t) =C- 5(75) results in the evolution of the

< 1, are adiabatic: the system continues to be in the state |n) with time-dependent

wave-function v,, of |n) for t > 0 as a mixed state of quenched Hamiltonian

H)\ — HeC-A .



What about QFT?



The behavior of quantum quenches in QFT is a much more difficult question, i.e., the
dynamics of the four dimensional quantum field theory under time-dependent variation of one

of its coupling constants,

Lo = Lx=Ly+A1)O.

Here, L is the undeformed Lagrangian of the theory, and )\(t) IS a time-dependent coupling
constant of a relevant operator O in the theory. A textbook example in QFT — an interaction
picture — is when L is a Lagrangian of a free theory, and the (small) coupling constant A is

turned-on adiabatically so that

0.

1
lim A(t) =0, lim dinA _

t—— 00 t—+oo dt

Description of qguantum quenches in strongly interactive systems, or with non-adiabatic profile

of a coupling constant, has been studied to a lesser extent.



Some questions one can be interested in:
e How transition between the adibatic and non-adiabatic regimes occur?
e What are the observables of a non-stationary QFTs?
e Are instantanuous quenches in QFT well-defined?
e How does a system relaxes as a result of a quench?
e |s there a difference in relaxtion of one-point and many-point correlation functions?

e How does non-local obsevables (Wilson lines) relax?



Outline of the talk:

e Description of the model
e Holographic renormalization and ambiguities

e Results:

typical response of the system to a quench;

= non-abiabaticity of the quench;

= NO instantanuous quenches;

= renormalization scheme-dependence and divergences in (7},,,) and Oa;
= renormalization scheme-dependence and the relaxation time;

m contsructing renormalization scheme-independent observables.

e Future directions



Consider quenching the coupling A in the deformation of large-N SU(N) N = 4
supersymmetric Yang-Mills by a (gauge invariant) relevant operator O a

Loy — Lsynv +Aa0A .

= We focus on two cases when A = 2, 3
= The initial state is a thermal state of the gauge theory plasma.
= We discussed perturbative quenches, i.e., during the quench the coupling constant Aa is

always small compare to the temperature of the initial state /;:

YN
s < 1.

7

= We allow for non-perturbative rates of change of Aa = Aa(%):

1 1 t

l.e., , we do not restrict values of .
m \We are interested in the basic gauge invariant observables of the theory undergoing the

guantum quench: the stress-energy tensor Tij and the VEV of OAx.



The gravitational dual to the above quench:

1 1
Sy = /d%/— R+12——(8gb) —om’ ¢+ 0(¢%)
167TG5
with
2 —3, <= corresponding operator O3,

—4, <= corresponding operator O .

Since our quenches are homogeneous and isotropic in the boundary spatial directions, we
assume that both the background metric and the scalar field depend only on a radial

coordinate r and a time v. With the background ansatz

dsg — —A(’U, T) dUQ —+ E(‘U, T)2 (df)Q + 2d?°d’0, ¢ — gb(‘l), T) ’



From the effective gravitational action we obtain the following:

= evolution equations:

. . 1
0=2(X) +22'% — 282 + —m?¢p*¥?

12
0=A"— ;—222’2 +4+¢¢— 1m2¢2
0-2re Bos o

= the constraint equations:
0=>— %A’Z + éz(q'sf
0=%"+ 123(¢’)2
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In above, for any function h(r, v),

- 1
h' =0.h, h = 0,h + §A6’Th.



When m? = —3,

1 1 1 1 1 -
6= P+ 3 (po) + T—3(p2 — (—pé”r —po> ln'f“) +O(r~*Inr)

r 2 6
N=r4+0@1)
1 1 1 1 1 B
A=r2_— Ep?’ + = <a4 + <6p0p6’ + 36p0 — é(p(’) ) lan“) + O(r 31n7“)

where {pg, p2, a4} are functions of v.

In addition, a constraint equation implies:

5 2 2 ]‘ AN/ 4 111

+ — — — — +
27290]90 3p0p2 pop2 PoPo 9p0p0

0= —2ay, + 5 9



Physical meaning of {pg, p2, a4 }:

m g ’'source’ [non-normalizable component],

Po O A3

= a ’response’ [normalizable compotent]

p2 ~ O3

= Note that in the absence of the source/response the constraint implies
ay =0 = energy density = constant

In general, the constraint equation can be integrated to quantify the change of £ during the

guench:

5 5

a1 = C om0 o (o) P g (0)(e) ~ gpnlelpa(e) s [ dspols) (o)

where C is a constant, related to the energy density in the infinite past.



Comment on numerical procedure (all to quadratic order in the source inclusive):
= Numerically solve the PDE for the scalar qb(’u, fr) for a given profile of the non-normalizable

component
Po = po(’U)

= Numerical solution determines normalizable component

P2 = p2(’0)

= Given {po,pg} we can integrate the constraint equation to obtain

ay = a4(v)

= Once {po, D2, a4} are determined, we translate them in QFT observables:

E=Ew), P=Pw), O3=0;©)



To compute correlation functions of gauge-invariant observables, the theory has to be

regularized and renormalized:

_ qodivergent finite
SCt — Sct + Sct

. 1 1 1 |
divergent __ d4 / = 42 41 — ~AUA. o 1
SCt 167TG5 LM5,l:e ’ 7(6—'_ 2¢ N 12¢ e 2 8Z¢aj¢ He
1
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—|—12R 0 lne>
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where we have separated the counterterm which diverges in the limit € = % — 0 from the

finite counterterms.

The finite counterterms are parametrized by:



Once the theory is renormalized, we can compute 1-point correlation functions:

3 1 1 1 1 7

8rlGy & = —— ()2 22 - 1 4 ga,mbiguity
mGrs 54— 75 (Po)” + gpoai — gpop2 + Spopo + 5oobo +
1 1 1 1 7 o
8¢ = —— — —(ph)? — _ 1/ 4 ambiguity
Q 57) 20/4 36 (pO) T 6p0p2 18]70]90 + 864p0 + 7)
1 7 1 3 / 1 2 ambiguity
167G (O3) = §p0 — Epo — 2a1py + §p0a1 — 2py + O4

where we employ the label *"?%9%Y g denote renormalization scheme ambiguities:

S 1 1
g — ~51pf + 562 (9h)?

. 1 1
Pty — —265(pp)? — 203p0(pg) — 5511’3 - 552 (Po)°



Note that for arbitrary 0;, the following (diffeomorphism) Ward identity,
0;(T35) = —(Os) 9;po

IS equivalent to the constraint

5 9 9 1 4
0=—2d, + ﬁpgpg + gPop2 = Popy = gPoPo + PoPy’

— We focus on the quences of the type

li = tant
T_l)Ij{loopo(T) constan

so, provided that the same is true for p2(7), i.e.,

li =
lim p2(T) = constant

(numerically we verified that this is indeed the case), we have a thermal equilibrium state in

the infinite past, and a thermal equilibrium state in the infinite future.



For example, if

lim pyg =0, lim pg=1

T—r—00 T—r+00

l.e., we quench from a thermal state of a CFT to a thermal state of a massive gauge theory,

| T 1 9 02 04
E = §7T2N2Ti4 (1—(2a4+—(p6)2 lnﬂ +—(p6)2—|——pop2>( f> +O <( f> >>
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where
1 1
52:§1DA2, 53:E1DA3

Note that the number of ambiguities in renormalization scheme is precisely what is needed to

make sense of ln(T) terms once the gravity data is translated into gauge theory data.



Similarly, we can analyse the quenches

lim py=1, lim pg =0
T——00 T—+00

l.e., we quench from a thermal state of a massive gauge theory to a thermal state of a CFT.

Another interesting observables are:
4

T (3 1 m9)2 m9)4

L1y (26 L) 7 o (00))
3n2 2 2T, T;
oT (3 4 m0)2 m0 )4
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7o (o (55 ) o (1)

where



Consider quenches of the type

1—|—1t hﬂTi’r
= — + —tan
Po=575% o

where T is the initial temperature.

= For @ > 1 the quenches are slow compare to a characteristic thermal scale o< % we

expect an “adiabatic” response

4
(2
p2(T) - (é) po(T)
adiabatic i
— note that for the adiabative response, from
2 2 1 4
0 = —2a) + —pop2 — =PoPs — =PoPy + =popy. =  a, =04+ O(a™?)

3 3 9 9

=

Ty _ ()’ oy () (m)*
%<1+<i s+ 0 )> W2fTi2 +O< = >>

1

and similarly for £ , P



Typical response of the system:
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Figure 1: Evolution of the normalizable component ps during the quench with a« = 1. The

dashed red lines represent the adiabatic response.



More evolutions:

—oa=1 L
---—-a=0.5 L
o —— a=0.1 OV
/2 T TS o =0.05
s\ -— a=0.01 0.1
://',y’\i\\ -—--- o =0.005 r
7,00 R adiabatic 02l
~
< o3F
! -0.4-
W L ——a=25
\\III _ | oa=1
‘t/, O'5k ....... adiabatic
| | | | | | | | |
2 0 2 4 -6 -4 -2 0
T/a T/a
10
r — a=0.5 1
s- 1 a=0.1 a
--- a=0.05
H --0=0.01 <
— - -~ a=0.005
= 0 g - o=0.001 -
=y
£ 5
-10




Recall:

- In

—> Note that quenches always results in pumping energy into the system



Fit

slow :  In(—a3’y) = —2.46(5) — 1.0(2) Ina,
red,dashed
Fit

fast :  In(—a3%) = —2.17(0) — 2.0(2) Ina,
red,dashed

Above asymptotic behaviour translates into

mO 2
AT| |T,-T [ < iU s
T - T - X 1 (m?")Q

o

a > 1

a <1

and similarly for the relative change in the energy density £ and the pressure P.

— Note that infinitely sharp quenches
a— 0

are not allowed



In general, quenching the coupling Aa of Oa as

Aa(t) = A% (% + %tanh L t)

0%

results in the following scaling of physical observables for fast &« << 1 quenches:

(l)|2A_4| ,  |2A — 4| = integer # 0

o

(—Ina),  otherwise



Comment on scheme-independent observables:

= while the following observables are scheme-dependent,

3 1 7T, 1 2 (m$)?

g _ = 2N2T-4 1—( 2 (2 1 7 (N2 J
87T 7 ( ( a’4+3(p0) 1 A2 +9(p0> +3p0p2 7T2T,L-2
V2 212 0 L., 1. 7 , (m?‘"

= the following combination is renormalization-scheme independent:

(5<T>—m—9‘ | asmi0:)




Open questions:
Fully-nonlinear quenches, not necessarily of thermal states
Sound waves in quenches
Quenches in various dimensions
Non-local observables during quenches
Quenches of SUSY couplings

Quenches accross the phase transitions



