On Three-Dimensional Mirror Symmetry Based on arxiv: 1109.0407

Anindya Dey
Theory Group, UT Austin

March 3, 2012
(1) Overview: Mirror Symmetry
(2) String/M-theory Description
(3) Classification of Mirror Pairs
(4) Localization and Partition Function Computation
(5) Conclusion

$D=3, \mathcal{N}=4$ Supermultiplets and R-Symmetry

- $\mathcal{N}=4$ supersymmetry in $D=3$ has 8 real supercharges, which are doublets of $\operatorname{Spin}(2,1) \sim S L(2, \mathbb{R})$ and transform as $(2,2)$ under the R-symmetry group, $S U(2)_{L} \times S U(2)_{R}$.

$D=3, \mathcal{N}=4$ Supermultiplets and R-Symmetry

- $\mathcal{N}=4$ supersymmetry in $D=3$ has 8 real supercharges, which are doublets of $\operatorname{Spin}(2,1) \sim S L(2, \mathbb{R})$ and transform as $(2,2)$ under the R-symmetry group, $S U(2)_{L} \times S U(2)_{R}$.
- Under the R-symmetry group $S U(2)_{L} \times S U(2)_{R}$, Vector multiplet: $(3 \oplus 1,1)+(\mathbf{2}, \mathbf{2})$ Half-hyper multiplet: $(1,2)+(\mathbf{2}, \mathbf{1})$
The half-hypers transform in pseudo-real representation of the gauge group. A $\mathcal{N}=4$ hypermultiplet in three dimensions consists of two copies of half-hypers.

$D=3, \mathcal{N}=4$ Supermultiplets and R-Symmetry

- $\mathcal{N}=4$ supersymmetry in $D=3$ has 8 real supercharges, which are doublets of $\operatorname{Spin}(2,1) \sim S L(2, \mathbb{R})$ and transform as $(2,2)$ under the R-symmetry group, $S U(2)_{L} \times S U(2)_{R}$.
- Under the R-symmetry group $S U(2)_{L} \times S U(2)_{R}$, Vector multiplet: $(3 \oplus 1,1)+(\mathbf{2}, \mathbf{2})$ Half-hyper multiplet: $(1,2)+(\mathbf{2}, \mathbf{1})$
The half-hypers transform in pseudo-real representation of the gauge group. A $\mathcal{N}=4$ hypermultiplet in three dimensions consists of two copies of half-hypers.
- Matter content in these supermultiplets is not symmetric with respect to the exchange $S U(2)_{R} \leftrightarrow S U(2)_{L}$ - "twisted" multiplets where $S U(2)_{R}$ and $S U(2)_{L}$ are exchanged.

Mirror Symmetry

- Strictly IR duality between two theories which exchanges the Coulomb and the Higgs branches:
$\mathcal{M}_{C}^{A}=\mathcal{M}_{H}^{B}$
$\mathcal{M}_{H}^{A}=\mathcal{M}_{C}^{B}$

Mirror Symmetry

- Strictly IR duality between two theories which exchanges the Coulomb and the Higgs branches:
$\mathcal{M}_{C}^{A}=\mathcal{M}_{H}^{B}$
$\mathcal{M}_{H}^{A}=\mathcal{M}_{C}^{B}$
- The hypermultiplet masses appear as deformation parameters of the Coulomb branch metric while FI parameters appear as deformation parameters of the Higgs branch - exchanged under duality.

Mirror Symmetry

- Strictly IR duality between two theories which exchanges the Coulomb and the Higgs branches:
$\mathcal{M}_{C}^{A}=\mathcal{M}_{H}^{B}$
$\mathcal{M}_{H}^{A}=\mathcal{M}_{C}^{B}$
- The hypermultiplet masses appear as deformation parameters of the Coulomb branch metric while FI parameters appear as deformation parameters of the Higgs branch - exchanged under duality.
- The precise transformation is captured in a linear map - mirror map

String Theory Description: Type IIB

- Consider D3 branes in a Type IIB background $\mathcal{M}=\mathbb{R}^{2,1} \times L \times \mathbb{R}_{\vec{X}}^{3} \times \mathbb{R}_{\vec{\gamma}}^{3}$, wrapping $\mathbb{R}^{2,1} \times L-L$ compact

String Theory Description: Type IIB

- Consider D3 branes in a Type IIB background $\mathcal{M}=\mathbb{R}^{2,1} \times L \times \mathbb{R}_{\vec{X}}^{3} \times \mathbb{R}_{\vec{Y}}^{3}$, wrapping $\mathbb{R}^{2,1} \times L-L$ compact
- $\mathcal{N}=4, D=3$ quiver gauge theories can be realized as world-volume theories on a stack of D3 branes endowed with some $1 / 2-\mathrm{BPS}$ boundary conditions at $y=0$ and $y=R$, where $y \in L=[0, R]$

String Theory Description: Type IIB

- Consider D3 branes in a Type IIB background $\mathcal{M}=\mathbb{R}^{2,1} \times L \times \mathbb{R}_{\vec{X}}^{3} \times \mathbb{R}_{\vec{\gamma}}^{3}$, wrapping $\mathbb{R}^{2,1} \times L-L$ compact
- $\mathcal{N}=4, D=3$ quiver gauge theories can be realized as world-volume theories on a stack of D3 branes endowed with some $1 / 2-\mathrm{BPS}$ boundary conditions at $y=0$ and $y=R$, where $y \in L=[0, R]$
- A large class of such boundary conditions can be understood as D3 branes ending on NS5 or D5 branes and/or orbifold/orientifold 5-planes.

String Theory Description: Type IIB

- Consider D3 branes in a Type IIB background $\mathcal{M}=\mathbb{R}^{2,1} \times L \times \mathbb{R}_{\vec{X}}^{3} \times \mathbb{R}_{\vec{\gamma}}^{3}$, wrapping $\mathbb{R}^{2,1} \times L-L$ compact
- $\mathcal{N}=4, D=3$ quiver gauge theories can be realized as world-volume theories on a stack of D3 branes endowed with some $1 / 2-\mathrm{BPS}$ boundary conditions at $y=0$ and $y=R$, where $y \in L=[0, R]$
- A large class of such boundary conditions can be understood as D3 branes ending on NS5 or D5 branes and/or orbifold/orientifold 5-planes.
- Mirror Symmetry \Longleftrightarrow S-duality of boundary conditions \Longrightarrow Exchange of NS5 and D5 branes, D3 invariant.

M-Theory Description

- $k M 2$ branes in the background geometry $M: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times \mathbb{C}^{2} / \Gamma_{2}$.
$\Gamma_{1,2}$ are discrete subgroups of $S U(2)$ and have an $A-D-E$ classification.

M-Theory Description

- $k M 2$ branes in the background geometry $M: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times \mathbb{C}^{2} / \Gamma_{2}$.
$\Gamma_{1,2}$ are discrete subgroups of $S U(2)$ and have an $A-D-E$ classification.
- $M \rightarrow M_{1}: \mathbb{R}^{2,1} \times A L F_{1} \times \mathbb{C}^{2} / \Gamma_{2}$
$\xrightarrow{\text { IIA }} k D 2$ branes in a background of D6 branes wrapping $\mathbb{C}^{2} / \Gamma_{2}$. For the D2 world-volume theory (A), $g_{Y M}^{A} \propto R_{\infty}^{A L F_{1}}$.

M-Theory Description

- $k M 2$ branes in the background geometry $M: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times \mathbb{C}^{2} / \Gamma_{2}$.
$\Gamma_{1,2}$ are discrete subgroups of $S U(2)$ and have an $A-D-E$ classification.
- $M \rightarrow M_{1}: \mathbb{R}^{2,1} \times A L F_{1} \times \mathbb{C}^{2} / \Gamma_{2}$
$\xrightarrow{\text { IIA }} k D 2$ branes in a background of D6 branes wrapping $\mathbb{C}^{2} / \Gamma_{2}$. For the D2 world-volume theory (A), $g_{Y M}^{A} \propto R_{\infty}^{A L F_{1}}$.
- $M \rightarrow M_{2}: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times A L F_{2}$
$\xrightarrow{\text { IIA }} k D 2$ branes in a different background of D6 branes wrapping $\mathbb{C}^{2} / \Gamma_{1}$. For the D2 world-volume theory (B), $g_{Y M}^{B} \propto R_{\infty}^{A L F_{2}}$.

M-Theory Description

- $k M 2$ branes in the background geometry $M: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times \mathbb{C}^{2} / \Gamma_{2}$.
$\Gamma_{1,2}$ are discrete subgroups of $S U(2)$ and have an $A-D-E$ classification.
- $M \rightarrow M_{1}: \mathbb{R}^{2,1} \times A L F_{1} \times \mathbb{C}^{2} / \Gamma_{2}$
$\xrightarrow{\text { IIA }} k D 2$ branes in a background of D6 branes wrapping $\mathbb{C}^{2} / \Gamma_{2}$. For the D2 world-volume theory $(\mathrm{A}), g_{Y M}^{A} \propto R_{\infty}^{A L F_{1}}$.
- $M \rightarrow M_{2}: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times A L F_{2}$
$\xrightarrow{\text { IIA }} k D 2$ branes in a different background of D6 branes wrapping $\mathbb{C}^{2} / \Gamma_{1}$. For the D2 world-volume theory (B), $g_{Y M}^{B} \propto R_{\infty}^{A L F_{2}}$.
- In the IR limit, when $g_{Y M}^{A}, g_{Y M}^{B} \rightarrow \infty, \mathrm{~A}$ and B are described by the same M-theory background $\mathcal{M}: \mathbb{R}^{2,1} \times \mathbb{C}^{2} / \Gamma_{1} \times \mathbb{C}^{2} / \Gamma_{2}$. This is the statement of mirror symmetry.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=\mathbb{Z}_{m}$

w_{4}

$$
\sum_{i} w_{i}=n
$$

(a)

(b)

- A Model: $U(k)^{m}$ gauge theory with bifundamental hypers and n fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=\mathbb{Z}_{m}$

$$
\sum_{i} w_{i}=n
$$

(a)

(b)

- A Model: $U(k)^{m}$ gauge theory with bifundamental hypers and n fundamental hypers.
- B Model: $U(k)^{n}$ gauge theory with bifundamental hypers and m fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=$ Trivial

- A Model: $U(k)$ gauge theory with one adjoint hyper and n fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=$ Trivial

- A Model: $U(k)$ gauge theory with one adjoint hyper and n fundamental hypers.
- B Model: $U(k)^{n}$ gauge theory with bifundamental hypers and 1 fundamental hyper.

$\Gamma_{1}=D_{n}, \Gamma_{2}=$ Trivial

(b)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and 1 fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=$ Trivial

(b)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and 1 fundamental hypers.
- $S p(k)$ gauge theory with n fundamental hypers and one hyper in the anti-symmetric representation of $\operatorname{Sp}(k)$.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$ (n even)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and n fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$ (n even)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and n fundamental hypers.
- B-model: $S p(k) \times U(2 k)^{\frac{n}{2}-1} \times S p(k)$ gauge theory with bifundamental hypers and m fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}(n$ odd $)$

(b)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and n fundamental hypers.

$\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}(n$ odd $)$

(b)

- A-model: $U(k)^{4} \times U(2 k)^{n-3}$ gauge theory with bifundamental hypers and n fundamental hypers.
- B-model: $S p(k) \times U(2 k)^{\frac{n-1}{2}}$ gauge theory with bifundamental hypers, m fundamental hypers and 1 antisymmetric hyper of $U(2 k)$.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n, m$ even $)$

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m}{2}-1} \times S p(2 k)^{\frac{m}{2}-2} \times S p(k)^{2}$ gauge theory, with bi-fundamental half-hypers and n fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n, m$ even $)$

(a)

(b)

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m}{2}-1} \times S p(2 k)^{\frac{m}{2}-2} \times S p(k)^{2}$ gauge theory, with bi-fundamental half-hypers and n fundamental hypers.
- B-model: $S p(k)^{2} \times S O(4 k)^{\frac{n}{2}-1} \times S p(2 k)^{\frac{n}{2}-2} \times S p(k)^{2}$ gauge theory, with bi-fundamental half-hypers and m fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n$ odd,m even $)$

(b)

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m}{2}-1} \times S p(2 k)^{\frac{m}{2}-2} \times S p(k)^{2}$ gauge theory, with bi-fundamental half-hypers and n fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n$ odd,m even $)$

(b)

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m}{2}-1} \times S p(2 k)^{\frac{m}{2}-2} \times S p(k)^{2}$ gauge theory, with bi-fundamental half-hypers and n fundamental hypers.
- B-model: $S p(k)^{2} \times S O(4 k)^{\frac{n-3}{2}} \times S p(2 k)^{\frac{n-3}{2}} \times U(2 k)$ gauge theory, with bi-fundamental half-hypers (one hyper)and m fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n, m$ odd $)$

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m-3}{2}} \times S p(2 k)^{\frac{m-3}{2}} \times U(2 k)$ gauge theory, with bi-fundamental half-hypers(1 hyper) and n fundamental hypers.

$\Gamma_{1}=D_{n}, \Gamma_{2}=D_{m}(n, m$ odd $)$

- A-model: $S p(k)^{2} \times S O(4 k)^{\frac{m-3}{2}} \times S p(2 k)^{\frac{m-3}{2}} \times U(2 k)$ gauge theory, with bi-fundamental half-hypers(1 hyper) and n fundamental hypers.
- B-model: $S p(k)^{2} \times S O(4 k)^{\frac{n-3}{2}} \times S p(2 k)^{\frac{n-3}{2}} \times U(2 k)$ gauge theory, with bi-fundamental half-hypers (1 hyper) and m fundamental hypers.

Checking the Duality

- Computing the dimensions of the Coulomb and the Higgs branches and the number of independent FI and mass parameters on both sides.

Checking the Duality

- Computing the dimensions of the Coulomb and the Higgs branches and the number of independent FI and mass parameters on both sides.
- Comparing supersymmetric observables (like the partition function) on both sides as functions of FI parameters and masses and hence obtain the mirror map.

Checking the Duality

- Computing the dimensions of the Coulomb and the Higgs branches and the number of independent FI and mass parameters on both sides.
- Comparing supersymmetric observables (like the partition function) on both sides as functions of FI parameters and masses and hence obtain the mirror map.
- Checking the duality via the latter route requires understanding: A recipe to write down the partition function of a given quiver gauge theory in 3 dimension.
A prescription for implementing S-duality at the level of the partition function.

Checking the Duality (Continued)

- The recipe for writing down the partition function for a three-dimensional $\mathcal{N}=4$ gauge theory with matter on S^{3} was given by Kapustin and collaborators (later extended to $\mathcal{N}=2$), using localization methods. Localization forces all bosonic fields to vanish except for a real adjoint scalar σ

$$
Z=\int d \sigma_{0} \exp S_{c l}\left[\sigma_{0}\right] Z_{1-\text { loop }}\left[\sigma_{0}\right]
$$

Checking the Duality (Continued)

- The recipe for writing down the partition function for a three-dimensional $\mathcal{N}=4$ gauge theory with matter on S^{3} was given by Kapustin and collaborators (later extended to $\mathcal{N}=2$), using localization methods. Localization forces all bosonic fields to vanish except for a real adjoint scalar σ

$$
Z=\int d \sigma_{0} \exp S_{c l}\left[\sigma_{0}\right] Z_{1-\text { loop }}\left[\sigma_{0}\right]
$$

- For elliptical theories (compact direction S^{1}) with only NS5 and D5 branes, the partition function has a nice decomposition into "NS5" and "D5" contributions, leading to a straightforward implementation of S-duality.

Checking the Duality (Continued)

- The recipe for writing down the partition function for a three-dimensional $\mathcal{N}=4$ gauge theory with matter on S^{3} was given by Kapustin and collaborators (later extended to $\mathcal{N}=2$), using localization methods. Localization forces all bosonic fields to vanish except for a real adjoint scalar σ

$$
Z=\int d \sigma_{0} \exp S_{c l}\left[\sigma_{0}\right] Z_{1-\text { loop }}\left[\sigma_{0}\right]
$$

- For elliptical theories (compact direction S^{1}) with only NS5 and D5 branes, the partition function has a nice decomposition into "NS5" and "D5" contributions, leading to a straightforward implementation of S-duality.
- For more complicated boundary conditions, the action of S-duality is not obvious. Our goal is to understand this action for the $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}($ neven $)$ duals, where the boundary conditions involve orbifold/orientifold 5-planes.

Example $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$ Mirror Duals (n even)

(a)

Introducing Orbifold/Orientifold: $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$

- Z_{A} can be recast in the form:

$$
\begin{aligned}
& Z_{A}=\int\left(\sum_{\rho}(-1)^{\rho} \frac{\prod_{i} \sinh \pi \tau^{i}}{\prod_{i} \cosh \pi \tau^{i}} \exp 2 \pi i \tau^{i}\left(\sigma_{\frac{n}{2}+1}^{\prime i}-\sigma_{\frac{n}{2}+1}^{k+\rho(i)}\right)\right) \\
& \times\left(\prod_{a=1}^{\frac{n}{2}+1} \sum_{\rho_{a}}(-1)^{\rho_{a}} \prod_{p} \frac{\exp 2 \pi i \tau_{a}^{\prime p}\left(\sigma_{a}^{\prime p}-\sigma_{a-1}^{\prime \rho_{a}(p)}\right)}{l_{a}\left(\sigma^{\prime}, \tau^{\prime}\right)}\right) \\
& \times\left(\prod_{\beta=0,1, . ., m-3} \sum_{\rho_{\beta}}(-1)^{\rho_{\beta}} \prod_{p} \frac{\exp 2 \pi i \tilde{\tau}_{\beta}^{p}\left(\tilde{\sigma}_{\beta}^{p}-\tilde{\sigma}_{\beta+1}^{\rho_{\beta}(p)}+m_{\beta}\right)}{\cosh \pi \tilde{\tau}_{\beta}^{p}}\right) \\
& \times\left(\sum_{\rho^{\prime}}(-1)^{\rho^{\prime}} \frac{\prod_{i} \sinh \pi \tau^{\prime i}}{\prod_{i} \cosh \pi \tau^{\prime i}} \exp 2 \pi i \tau^{\prime i}\left(\sigma_{m-2}^{\prime i}-\sigma_{m-2}^{k+\rho(i)}\right)\right) \\
& \times \prod_{\alpha} e^{2 \pi i \eta_{\alpha} \sum_{i} \sigma_{\alpha}^{i}} \prod_{\beta} e^{2 \pi i \tilde{\eta}_{\beta} \sum_{p} \tilde{\sigma}_{\beta}^{p}}
\end{aligned}
$$

Introducing Orbifold/Orientifold: $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$

- For elliptic models, the transformation $\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p}$ implements S-duality.

Introducing Orbifold/Orientifold: $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$

- For elliptic models, the transformation $\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p}$ implements S-duality.
- Correct S-duality in this picture is found to be a simple generalization of Kapustin's prescription:
$\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p} ; \tau, \tilde{\tau}$ remaining invariant.

Introducing Orbifold/Orientifold: $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$

- For elliptic models, the transformation $\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p}$ implements S-duality.
- Correct S-duality in this picture is found to be a simple generalization of Kapustin's prescription:
$\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p} ; \tau, \tilde{\tau}$ remaining invariant.
- $\tilde{Z}_{A}=Z_{B}$, provided the masses and FI parameters of the A-model satisfy:
$\eta_{1}=\eta_{2} ; \eta_{3}=\eta_{4}$ and $m_{1, a}^{f}=m_{2, a}^{f}$ (along with bifundamental masses)
\rightarrow A discrete gauge symmetry in the A-model.

Introducing Orbifold/Orientifold: $\Gamma_{1}=\mathbb{Z}_{n}, \Gamma_{2}=D_{m}$

- For elliptic models, the transformation $\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p}$ implements S-duality.
- Correct S-duality in this picture is found to be a simple generalization of Kapustin's prescription:
$\sigma^{\prime p} \leftrightarrow-\tau^{\prime p}, \tilde{\sigma}^{p} \leftrightarrow-\tilde{\tau}^{p} ; \tau, \tilde{\tau}$ remaining invariant.
- $\tilde{Z}_{A}=Z_{B}$, provided the masses and FI parameters of the A-model satisfy:
$\eta_{1}=\eta_{2} ; \eta_{3}=\eta_{4}$ and $m_{1, a}^{f}=m_{2, a}^{f}$ (along with bifundamental masses) \rightarrow A discrete gauge symmetry in the A-model.
- The number of independent FI and mass parameters in the A-model are $(m-1)$ and $(n / 2-1)$, while those for the B-model are $(n / 2-1)$ and $(m-1)$-check for the duality.

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation $\tilde{Z}_{A}=Z_{B}$:

$$
m_{b i f}=-\left(\eta+\eta_{1}+\eta_{3}\right)
$$

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation $\tilde{Z}_{A}=Z_{B}$:

$$
m_{b i f}=-\left(\eta+\eta_{1}+\eta_{3}\right)
$$

$$
\begin{gathered}
M_{a}^{f}=-\left(\eta+\eta_{3}-\sum_{m-3}^{a} \eta_{\beta}\right)=-\left(\sum_{1}^{a-1} \eta_{\beta}+\eta_{3}\right) ; a=1,2, \ldots, m-3 \\
M_{m-2}^{f}=-\left(\eta+\eta_{3}\right), M_{m-1}^{f}=0, M_{m}^{f}=0
\end{gathered}
$$

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation $\tilde{Z}_{A}=Z_{B}$:

$$
m_{b i f}=-\left(\eta+\eta_{1}+\eta_{3}\right)
$$

$$
\begin{gathered}
M_{a}^{f}=-\left(\eta+\eta_{3}-\sum_{m-3}^{a} \eta_{\beta}\right)=-\left(\sum_{1}^{a-1} \eta_{\beta}+\eta_{3}\right) ; a=1,2, \ldots, m-3 \\
M_{m-2}^{f}=-\left(\eta+\eta_{3}\right), M_{m-1}^{f}=0, M_{m}^{f}=0 \\
\tilde{\eta}_{1}=m_{2}^{f}, \eta_{\beta}^{B}=m_{\beta+1}^{f}-m_{\beta}^{f}, \beta=2, \ldots, \frac{n}{2}-1
\end{gathered}
$$

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation $\tilde{Z}_{A}=Z_{B}$:

$$
m_{b i f}=-\left(\eta+\eta_{1}+\eta_{3}\right)
$$

$$
\begin{gathered}
M_{a}^{f}=-\left(\eta+\eta_{3}-\sum_{m-3}^{a} \eta_{\beta}\right)=-\left(\sum_{1}^{a-1} \eta_{\beta}+\eta_{3}\right) ; a=1,2, \ldots, m-3 \\
M_{m-2}^{f}=-\left(\eta+\eta_{3}\right), M_{m-1}^{f}=0, M_{m}^{f}=0 \\
\tilde{\eta}_{1}=m_{2}^{f}, \eta_{\beta}^{B}=m_{\beta+1}^{f}-m_{\beta}^{f}, \beta=2, \ldots, \frac{n}{2}-1
\end{gathered}
$$

- Agrees with the general expectations from the Type IIB brane constructions of these theories.

Conclusion

- We have catalogued a large class of 3D mirror duals from the M-theory description of mirror symmetry, obtaining new dual pairs in the process. We have checked the duality for a subset of new theories by comparing their partition functions.

Conclusion

- We have catalogued a large class of 3D mirror duals from the M-theory description of mirror symmetry, obtaining new dual pairs in the process. We have checked the duality for a subset of new theories by comparing their partition functions.
- The check provides a direct way to compute the mirror map - difficult to do from moduli space analysis for most dual pairs.

Conclusion

- We have catalogued a large class of 3D mirror duals from the M-theory description of mirror symmetry, obtaining new dual pairs in the process. We have checked the duality for a subset of new theories by comparing their partition functions.
- The check provides a direct way to compute the mirror map - difficult to do from moduli space analysis for most dual pairs.
- The computation provides a way to specify the dual theories more accurately - for example, predicting discrete gauge symmetries.

Conclusion

- We have catalogued a large class of 3D mirror duals from the M-theory description of mirror symmetry, obtaining new dual pairs in the process. We have checked the duality for a subset of new theories by comparing their partition functions.
- The check provides a direct way to compute the mirror map - difficult to do from moduli space analysis for most dual pairs.
- The computation provides a way to specify the dual theories more accurately - for example, predicting discrete gauge symmetries.
- Future direction: Extending the calculation to include S-duals of generic boundary conditions.

