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Overview: Mirror Symmetry

D = 3, N = 4 Supermultiplets and R-Symmetry

N = 4 supersymmetry in D = 3 has 8 real supercharges, which are
doublets of Spin(2, 1) ∼ SL(2,R) and transform as (2, 2) under the
R-symmetry group, SU(2)L × SU(2)R .

Under the R-symmetry group SU(2)L × SU(2)R ,
Vector multiplet:(3⊕ 1, 1) + (2, 2)
Half-hyper multiplet:(1, 2) + (2, 1)
The half-hypers transform in pseudo-real representation of the gauge
group. A N = 4 hypermultiplet in three dimensions consists of two
copies of half-hypers.

Matter content in these supermultiplets is not symmetric with respect
to the exchange SU(2)R ↔ SU(2)L – “twisted” multiplets where
SU(2)R and SU(2)L are exchanged.
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Overview: Mirror Symmetry

Mirror Symmetry

Strictly IR duality between two theories which exchanges the Coulomb
and the Higgs branches:
MA

C =MB
H

MA
H =MB

C

The hypermultiplet masses appear as deformation parameters of the
Coulomb branch metric while FI parameters appear as deformation
parameters of the Higgs branch - exchanged under duality.

The precise transformation is captured in a linear map - mirror map
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String/M-theory Description

String Theory Description: Type IIB

Consider D3 branes in a Type IIB background
M = R2,1 × L× R3

~X
× R3

~Y
, wrapping R2,1 × L - L compact

N = 4,D = 3 quiver gauge theories can be realized as world-volume
theories on a stack of D3 branes endowed with some 1/2-BPS
boundary conditions at y = 0 and y = R, where y ∈ L = [0,R]

A large class of such boundary conditions can be understood as D3
branes ending on NS5 or D5 branes and/or orbifold/orientifold
5-planes.

Mirror Symmetry ⇐⇒ S-duality of boundary conditions
=⇒ Exchange of NS5 and D5 branes, D3 invariant.
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String/M-theory Description

M-Theory Description

k M2 branes in the background geometry M : R2,1 × C2/Γ1 × C2/Γ2.
Γ1,2 are discrete subgroups of SU(2) and have an A− D − E
classification.

M → M1 : R2,1 × ALF1 × C2/Γ2
IIA−−→ k D2 branes in a background of D6 branes wrapping C2/Γ2. For
the D2 world-volume theory (A), gA

YM ∝ RALF1
∞ .

M → M2 : R2,1 × C2/Γ1 × ALF2
IIA−−→ k D2 branes in a different background of D6 branes wrapping
C2/Γ1. For the D2 world-volume theory (B), gB

YM ∝ RALF2
∞ .

In the IR limit, when gA
YM , g

B
YM →∞, A and B are described by the

same M-theory background M : R2,1 × C2/Γ1 × C2/Γ2 . This is the
statement of mirror symmetry.
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Classification of Mirror Pairs

Γ1 = Zn,Γ2 = Zm

A Model: U(k)m gauge theory with bifundamental hypers and n
fundamental hypers.

B Model: U(k)n gauge theory with bifundamental hypers and m
fundamental hypers.
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Classification of Mirror Pairs

Γ1 = Zn,Γ2 = Trivial

A Model: U(k) gauge theory with one adjoint hyper and n
fundamental hypers.

B Model: U(k)n gauge theory with bifundamental hypers and 1
fundamental hyper.
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Classification of Mirror Pairs

Γ1 = Dn,Γ2 = Trivial

A-model:U(k)4 × U(2k)n−3 gauge theory with bifundamental hypers
and 1 fundamental hypers.

Sp(k) gauge theory with n fundamental hypers and one hyper in the
anti-symmetric representation of Sp(k) .
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Classification of Mirror Pairs

Γ1 = Zn,Γ2 = Dm (n even)

A-model:U(k)4 × U(2k)n−3 gauge theory with bifundamental hypers
and n fundamental hypers.

B-model:Sp(k)×U(2k)
n
2
−1 × Sp(k) gauge theory with bifundamental

hypers and m fundamental hypers .
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Classification of Mirror Pairs
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Classification of Mirror Pairs

Γ1 = Zn,Γ2 = Dm (n odd)

A-model:U(k)4 × U(2k)n−3 gauge theory with bifundamental hypers
and n fundamental hypers.

B-model: Sp(k)× U(2k)
n−1

2 gauge theory with bifundamental
hypers,m fundamental hypers and 1 antisymmetric hyper of U(2k).
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Classification of Mirror Pairs

Γ1 = Dn,Γ2 = Dm (n,m even)

A-model:Sp(k)2 × SO(4k)
m
2
−1 × Sp(2k)

m
2
−2 × Sp(k)2 gauge theory,

with bi-fundamental half-hypers and n fundamental hypers.

B-model:Sp(k)2 × SO(4k)
n
2
−1 × Sp(2k)

n
2
−2 × Sp(k)2 gauge

theory,with bi-fundamental half-hypers and m fundamental hypers.
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Classification of Mirror Pairs

Γ1 = Dn,Γ2 = Dm (n odd,m even)

A-model:Sp(k)2 × SO(4k)
m
2
−1 × Sp(2k)

m
2
−2 × Sp(k)2 gauge theory,

with bi-fundamental half-hypers and n fundamental hypers.

B-model:Sp(k)2× SO(4k)
n−3

2 × Sp(2k)
n−3

2 ×U(2k) gauge theory,with
bi-fundamental half-hypers (one hyper)and m fundamental hypers.
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Localization and Partition Function Computation

Checking the Duality

Computing the dimensions of the Coulomb and the Higgs branches
and the number of independent FI and mass parameters on both sides.

Comparing supersymmetric observables (like the partition function)
on both sides as functions of FI parameters and masses and hence
obtain the mirror map.

Checking the duality via the latter route requires understanding:
A recipe to write down the partition function of a given quiver gauge
theory in 3 dimension.
A prescription for implementing S-duality at the level of the partition
function.
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Localization and Partition Function Computation

Checking the Duality (Continued)

The recipe for writing down the partition function for a
three-dimensional N = 4 gauge theory with matter on S3 was given
by Kapustin and collaborators (later extended to N = 2), using
localization methods. Localization forces all bosonic fields to vanish
except for a real adjoint scalar σ

Z =

∫
dσ0 exp Scl [σ0]Z1−loop[σ0]

For elliptical theories (compact direction S1) with only NS5 and D5
branes, the partition function has a nice decomposition into ”NS5”
and ”D5” contributions, leading to a straightforward implementation
of S-duality.
For more complicated boundary conditions, the action of S-duality is
not obvious. Our goal is to understand this action for the
Γ1 = Zn, Γ2 = Dm(neven) duals, where the boundary conditions
involve orbifold/orientifold 5-planes.
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Localization and Partition Function Computation

Example Γ1 = Zn, Γ2 = Dm Mirror Duals (n even)
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Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Γ1 = Zn, Γ2 = Dm

ZA can be recast in the form:

ZA =

∫
(
∑
ρ

(−1)ρ
∏

i sinhπτ i∏
i coshπτ i

exp 2πiτ i (σ
′i
n
2

+1 − σ
k+ρ(i)
n
2

+1 ))

× (

n
2

+1∏
a=1

∑
ρa

(−1)ρa
∏
p

exp 2πiτ
′p
a (σ

′p
a − σ

′ρa(p)
a−1 )

Ia(σ′ , τ ′)
)

× (
∏

β=0,1,..,m−3

∑
ρβ

(−1)ρβ
∏
p

exp 2πi τ̃pβ (σ̃pβ − σ̃
ρβ(p)
β+1 + mβ)

coshπτ̃pβ
)

× (
∑
ρ′

(−1)ρ
′
∏

i sinhπτ
′i∏

i coshπτ ′i
exp 2πiτ

′i (σ
′i
m−2 − σ

k+ρ(i)
m−2 ))

×
∏
α

e2πiηα
∑

i σ
i
α

∏
β

e2πi η̃β
∑

p σ̃
p
β
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Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Γ1 = Zn, Γ2 = Dm

For elliptic models, the transformation σ
′p ↔ −τ ′p, σ̃p ↔ −τ̃p

implements S-duality.

Correct S-duality in this picture is found to be a simple generalization
of Kapustin’s prescription:
σ
′p ↔ −τ ′p, σ̃p ↔ −τ̃p; τ, τ̃ remaining invariant.

Z̃A = ZB , provided the masses and FI parameters of the A-model
satisfy:
η1 = η2; η3 = η4 and mf

1,a = mf
2,a (along with bifundamental masses)

→ A discrete gauge symmetry in the A-model.

The number of independent FI and mass parameters in the A-model
are (m − 1) and (n/2− 1), while those for the B-model are (n/2− 1)
and (m − 1) -check for the duality.
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of Kapustin’s prescription:
σ
′p ↔ −τ ′p, σ̃p ↔ −τ̃p; τ, τ̃ remaining invariant.

Z̃A = ZB , provided the masses and FI parameters of the A-model
satisfy:
η1 = η2; η3 = η4 and mf

1,a = mf
2,a (along with bifundamental masses)

→ A discrete gauge symmetry in the A-model.

The number of independent FI and mass parameters in the A-model
are (m − 1) and (n/2− 1), while those for the B-model are (n/2− 1)
and (m − 1) -check for the duality.
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Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation Z̃A = ZB :

mbif = −(η + η1 + η3)

M f
a = −(η + η3 −

a∑
m−3

ηβ) = −(
a−1∑

1

ηβ + η3); a = 1, 2, ...,m − 3

M f
m−2 = −(η + η3),M f

m−1 = 0,M f
m = 0

η̃1 = mf
2, η

B
β = mf

β+1 −mf
β, β = 2, ...,

n

2
− 1

Agrees with the general expectations from the Type IIB brane
constructions of these theories.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 20 / 21



Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation Z̃A = ZB :

mbif = −(η + η1 + η3)

M f
a = −(η + η3 −

a∑
m−3

ηβ) = −(
a−1∑

1

ηβ + η3); a = 1, 2, ...,m − 3

M f
m−2 = −(η + η3),M f

m−1 = 0,M f
m = 0

η̃1 = mf
2, η

B
β = mf

β+1 −mf
β, β = 2, ...,

n

2
− 1

Agrees with the general expectations from the Type IIB brane
constructions of these theories.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 20 / 21



Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation Z̃A = ZB :

mbif = −(η + η1 + η3)

M f
a = −(η + η3 −

a∑
m−3

ηβ) = −(
a−1∑

1

ηβ + η3); a = 1, 2, ...,m − 3

M f
m−2 = −(η + η3),M f

m−1 = 0,M f
m = 0

η̃1 = mf
2, η

B
β = mf

β+1 −mf
β, β = 2, ...,

n

2
− 1

Agrees with the general expectations from the Type IIB brane
constructions of these theories.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 20 / 21



Localization and Partition Function Computation

Introducing Orbifold/Orientifold: Mirror Map

The Mirror Map can now be read off from the equation Z̃A = ZB :

mbif = −(η + η1 + η3)

M f
a = −(η + η3 −

a∑
m−3

ηβ) = −(
a−1∑

1

ηβ + η3); a = 1, 2, ...,m − 3

M f
m−2 = −(η + η3),M f

m−1 = 0,M f
m = 0

η̃1 = mf
2, η

B
β = mf

β+1 −mf
β, β = 2, ...,

n

2
− 1

Agrees with the general expectations from the Type IIB brane
constructions of these theories.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 20 / 21



Conclusion

Conclusion

We have catalogued a large class of 3D mirror duals from the
M-theory description of mirror symmetry, obtaining new dual pairs in
the process. We have checked the duality for a subset of new theories
by comparing their partition functions.

The check provides a direct way to compute the mirror map - difficult
to do from moduli space analysis for most dual pairs.

The computation provides a way to specify the dual theories more
accurately - for example, predicting discrete gauge symmetries.

Future direction: Extending the calculation to include S-duals of
generic boundary conditions.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 21 / 21



Conclusion

Conclusion

We have catalogued a large class of 3D mirror duals from the
M-theory description of mirror symmetry, obtaining new dual pairs in
the process. We have checked the duality for a subset of new theories
by comparing their partition functions.

The check provides a direct way to compute the mirror map - difficult
to do from moduli space analysis for most dual pairs.

The computation provides a way to specify the dual theories more
accurately - for example, predicting discrete gauge symmetries.

Future direction: Extending the calculation to include S-duals of
generic boundary conditions.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 21 / 21



Conclusion

Conclusion

We have catalogued a large class of 3D mirror duals from the
M-theory description of mirror symmetry, obtaining new dual pairs in
the process. We have checked the duality for a subset of new theories
by comparing their partition functions.

The check provides a direct way to compute the mirror map - difficult
to do from moduli space analysis for most dual pairs.

The computation provides a way to specify the dual theories more
accurately - for example, predicting discrete gauge symmetries.

Future direction: Extending the calculation to include S-duals of
generic boundary conditions.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 21 / 21



Conclusion

Conclusion

We have catalogued a large class of 3D mirror duals from the
M-theory description of mirror symmetry, obtaining new dual pairs in
the process. We have checked the duality for a subset of new theories
by comparing their partition functions.

The check provides a direct way to compute the mirror map - difficult
to do from moduli space analysis for most dual pairs.

The computation provides a way to specify the dual theories more
accurately - for example, predicting discrete gauge symmetries.

Future direction: Extending the calculation to include S-duals of
generic boundary conditions.

Anindya Dey (Theory Group, UT Austin) On Three-Dimensional Mirror Symmetry March 3, 2012 21 / 21


	Overview: Mirror Symmetry
	String/M-theory Description
	Classification of Mirror Pairs
	Localization and Partition Function Computation
	Conclusion

