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Physical Model.

Spacetime M = R3,1 × X , X 6 dimensional and compact

S =

∫
d10x

√
−g
(
∂ixµ∂ ixµ + ψ̄µΓν∂νψ

µ + λ̄aΓν∂νλ
a+

+Rµν̄ab̄ψ
µψ̄νλaλ̄b + . . .

)
ψµ right-handed fermions in TX ; λa left-handed fermions
living in gauge bundle E ; a gauge index, ψµ superpartner
of xµ, (0,2) SUSY
In an E6 heterotic, matter fits into 27, 2̄7, singlet multiplets
Yukawa couplings 273, 2̄73

If E = TX (i.e. (2,2) SUSY), 273 and 2̄73 Yukawa
couplings can be computed exactly by techniques of
algebraic geometry (only tree level couplings)
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Quantum cohomology

What makes this work so well: (2,2) theory can be twisted
to become topological (A model)
Fermions take values in simpler bundles (trivial and
canonical)
In topological sector, worldsheet vertex operators are
identified with cohomology H∗(X )

Operator products computed in terms of three point
couplings, define quantum cohomology, and the algebra
H∗(X ) still closes after quantum corrections
Oa ∗ Ob = 〈Oa,Ob,Oc〉Oc

Three point couplings in twisted theory coincide with
Yukawa couplings in physical theory
We want to do this in (0,2) theory, but we can’t
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Half-twisted (0, 2) theories

However, we can half-twist (right handed fermions only)
Not topological, but have a finite-dimensional
quasi-topological sector
Three point couplings in half-twisted theory coincide with
Yukawa couplings in the physical theory
These theories are closely related to gauged linear sigma
models (and sometimes coincide)
Many other motivations from mathematics, especially
algebraic geometry
The rest of the talk will focus on (0,2) GLSMs
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(0, 2) GLSM

The (0,2) GLSM is a 2-dimensional gauge theory with
(0,2) supersymmetry Witten

Gauge group G = U(1)r

Chiral fields Φ1, . . . ,Φn, D̄Φi = 0, lowest component scalar
Fermi superfields Υa, lowest component left-handed
fermion
D̄Υa = Ea(Φ), Ea holomorphic
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Prior work.

First studied in this context by Adams, Basu, and Sethi ,
who computed by mirror symmetry
Direct computation of quantum cohomology ring done for a
fixed (0,2) deformation by Guffin-K-Sharpe
All (0,2) deformations of P1 × P1 model computed by
Guffin-K
General form for linear deformations conjectured by
McOrist-Melnikov
We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Prior work.

First studied in this context by Adams, Basu, and Sethi ,
who computed by mirror symmetry
Direct computation of quantum cohomology ring done for a
fixed (0,2) deformation by Guffin-K-Sharpe
All (0,2) deformations of P1 × P1 model computed by
Guffin-K
General form for linear deformations conjectured by
McOrist-Melnikov
We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Prior work.

First studied in this context by Adams, Basu, and Sethi ,
who computed by mirror symmetry
Direct computation of quantum cohomology ring done for a
fixed (0,2) deformation by Guffin-K-Sharpe
All (0,2) deformations of P1 × P1 model computed by
Guffin-K
General form for linear deformations conjectured by
McOrist-Melnikov
We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Prior work.

First studied in this context by Adams, Basu, and Sethi ,
who computed by mirror symmetry
Direct computation of quantum cohomology ring done for a
fixed (0,2) deformation by Guffin-K-Sharpe
All (0,2) deformations of P1 × P1 model computed by
Guffin-K
General form for linear deformations conjectured by
McOrist-Melnikov
We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Prior work.

First studied in this context by Adams, Basu, and Sethi ,
who computed by mirror symmetry
Direct computation of quantum cohomology ring done for a
fixed (0,2) deformation by Guffin-K-Sharpe
All (0,2) deformations of P1 × P1 model computed by
Guffin-K
General form for linear deformations conjectured by
McOrist-Melnikov
We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Vacuum Moduli Space

The moduli space of vacua is a toric variety
Qi
α charge of Φi under αth U(1)

FI terms
∑

Qi
α|Φi |2 − rα=0

Gauge equivalence classes give moduli space
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Pn

G = U(1)

n + 1 charged chiral superfields Φ0, . . . ,Φn, all charge 1∑
|Φi |2 − r = 0

Mvac = {φ|
∑
|φi |2 = r}/(φi ∼ eiθφi)

This is complex projective n space Pn
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Language of Algebraic Geometry

Complex projective space CPn = Pn:
Described by homogeneous coordinates:

(x0, . . . xn) ∼ (λx0, . . . , λxn)

Have holomorphic line bundles O(k) on Pn whose
holomorphic sections are homogeneous degree k
polynomials f (x0, . . . , xn)
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Identification of Vacuum Moduli Space by Algebraic
Geometry

Mvac ' Pn

(φ0, . . . , φn) 7→ (φ0, . . . , φn)

(φ0, . . . , φn) 7→ 1√
r

(φ0, . . . , φn)
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Instanton Contributions

Fix the worldsheet as S2 = P1. Fix a gauge instanton
background with c1 = d
DΦi = 0 implies ∂̄φi = 0
φi is a holomorphic section of OP1(d), a degree d
polynomial
These are identified with degree d holomorphic maps
(worldsheet instantons)

φ : P1 → Pn, φ(x0, x1) = (φ0(x0, x1), . . . , φn(x0, x1))

This gives the gauge theory/string theory dictionary: gauge
instantons↔ worldsheet instantons

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Instanton Contributions

Fix the worldsheet as S2 = P1. Fix a gauge instanton
background with c1 = d
DΦi = 0 implies ∂̄φi = 0
φi is a holomorphic section of OP1(d), a degree d
polynomial
These are identified with degree d holomorphic maps
(worldsheet instantons)

φ : P1 → Pn, φ(x0, x1) = (φ0(x0, x1), . . . , φn(x0, x1))

This gives the gauge theory/string theory dictionary: gauge
instantons↔ worldsheet instantons

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Instanton Contributions

Fix the worldsheet as S2 = P1. Fix a gauge instanton
background with c1 = d
DΦi = 0 implies ∂̄φi = 0
φi is a holomorphic section of OP1(d), a degree d
polynomial
These are identified with degree d holomorphic maps
(worldsheet instantons)

φ : P1 → Pn, φ(x0, x1) = (φ0(x0, x1), . . . , φn(x0, x1))

This gives the gauge theory/string theory dictionary: gauge
instantons↔ worldsheet instantons

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Instanton Contributions

Fix the worldsheet as S2 = P1. Fix a gauge instanton
background with c1 = d
DΦi = 0 implies ∂̄φi = 0
φi is a holomorphic section of OP1(d), a degree d
polynomial
These are identified with degree d holomorphic maps
(worldsheet instantons)

φ : P1 → Pn, φ(x0, x1) = (φ0(x0, x1), . . . , φn(x0, x1))

This gives the gauge theory/string theory dictionary: gauge
instantons↔ worldsheet instantons

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

Instanton Contributions

Fix the worldsheet as S2 = P1. Fix a gauge instanton
background with c1 = d
DΦi = 0 implies ∂̄φi = 0
φi is a holomorphic section of OP1(d), a degree d
polynomial
These are identified with degree d holomorphic maps
(worldsheet instantons)

φ : P1 → Pn, φ(x0, x1) = (φ0(x0, x1), . . . , φn(x0, x1))

This gives the gauge theory/string theory dictionary: gauge
instantons↔ worldsheet instantons

Sheldon Katz (0, 2) Quantum Cohomology



Background
(0, 2) Gauged Linear Sigma Model

(0, 2) Quantum Cohomology

P1 × P1

Now consider G = U(1)2, charged chirals Φ1, . . . ,Φ4

Charge matrix

Q =

(
1 1 0 0
0 0 1 1

)

|Φ1|2 + |Φ2|2 = r1, |Φ3|2 + |Φ4|2 = r2

After gauge equivalence, this is P1 × P1

In general, Mvac is a toric variety
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The (0, 2) Deformation

For the rest of this talk, we specialize to the case where the
Υi are in one to one correspondence with the Φi , same
charges, i.e. E is a deformation of the tangent bundle
Convenient to let W be 2-dimensional vector space
containing the lattice of charges (in P1 × P1 case)
W also generates the ring of operators (arising in the
gauge sector)
Since Υi and E i(Φ) have the same charges, we must have
for aij , ãij ∈W
E1(Φ) = a11Φ1 + a12Φ2, E2(Φ) = a21Φ1 + a22Φ2,
E3(Φ) = ã11Φ3 + ã12Φ4, E4(Φ) = ã21Φ1 + ã22Φ4
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Bundle E .

The bundle E on P1 × P1 determined by the Υi is the
quotient of OP1×P1(1,0)2 ⊕OP1×P1(0,1)2 by the subbundle
spanned by the two-dimensional space of sections
(E1(φ), . . . ,E4(φ)) of OP1×P1(1,0)2 ⊕OP1×P1(0,1)2

In the language of algebraic geometry, this corresponds to
the exact sequence of vector bundles on P1 × P1

0→ O2 (E1,...,E4)→ O(1,0)2 ⊕O(0,1)2 → E → 0

Sheldon Katz (0, 2) Quantum Cohomology
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Relation to Heterotic String Theory.

Can rewrite by dualizing as

0→ E∗ → O(−1,0)2 ⊕O(0,−1)2 →W ⊗O → 0

Since H1(O(−1,0)) = H1(O(0,−1)) = 0, we conclude
W ' H1(E∗)
H1(E∗) parametrize the fermion vertex operators in the
heterotic string
This completes the GLSM - heterotic dictionary
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P1 × P1.

Let W be the 2-dimensional space of the aij , ãij

A =

(
a11 a21
a21 a22

)
, Ã =

(
ã11 ã21
ã21 ã22

)
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Couplings

Let W be generated by ψ, ψ̃
P(ψ, ψ̃) any operator

〈P〉 =
∑

d ,d̃〈P〉d ,d̃qd q̃d̃ where q, q̃ depend on FI
parameters
Analogous to instanton sum in string theory
Let Q = det(A), Q̃ = det(Ã) ∈ Sym2W
Then the (0,2) quantum cohomology algebra is

Q2 = q, Q̃2 = q̃
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Explanation.

Can compute 〈P〉d ,d̃ by algebraic geometry

⊗kH1(E∗)→ Hk (ΛkE∗) ' Hk (Ωk
Md,d̃

) ' C

k = 2d + 2d̃ + 2,Md ,d̃ = P2d+1 × P2d̃+1

Normalization is nontrivial, but much easier to prove
identities between correlation functions directly
Quantum cohomology relations follow from identities

〈PQ〉d+1,d̃ = 〈P〉d ,d̃ = 〈PQ̃〉d ,d̃+1

Proven directly by geometry
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Relations.

Generalized Koszul complex of

0→ E∗ → Z = O(−1,0)2 ⊕O(0,−1)2 →W ⊗O → 0

is

0→ Λ2E∗ → Λ2Z →W ⊗ Z → Sym2W ⊗O → 0

O(−2,0) ⊂ Λ2Z and H1(O(−2,0)) 6= 0
This cohomology class produces a classical cohomology
relation 〈Q〉0,0 = 0

Similarly 〈Q̃〉0,0 = 0

Sheldon Katz (0, 2) Quantum Cohomology
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Gauge Instanton Moduli Space.

In the (d , d̃) instanton background, the zero modes of Φ1

and Φ2 are polynomials f 1,2 of degree d in the
homogeneous coordinates (x0, x1) on the worldsheet
Similarly, the zero modes of Φ3 and Φ4 are polynomials f 3,4

of degree d̃ in the homogeneous coordinates (x0, x1) on
the worldsheet
The FI constraints prevent either (f 1, f 2) or (f 3, f 4) from
being identically zero.
Since (f 1, f 2) has 2(d + 1) parameters and (f 3, f 4) has
2(d̃ + 1) parameters, after imposing the FI constraint and
gauge equivalence, the moduli space is P2d+1 × P2d̃+1

In general, this is also a toric variety, so the same
techniques apply as in the classical (from the viewpoint of
geometry) case!
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In an instanton background, we get Qd+1 = 0 (from
H2d+1(P2d+1 × P2d̃+1,O(−2d − 2,0)) = 0) and Q̃d̃+1 = 0.
This is consistent with

〈PQ〉d+1,d̃ = 〈P〉d ,d̃ = 〈PQ̃〉d ,d̃+1

More mathematical details complete the argument
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General Case.

The general case relies on toric geometry rather than the
geometry of projective space
One new ingredient in general: if a field lives in a bundle
with negative chern class in an instanton background,
there are no zero modes. To compensate, new terms enter
into the calculation from the four-fermi terms in the action
These turn out to be powers of the analogues of the same
Q, Q̃ in the general case.
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Q, Q̃ in the general case.
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A little toric geometry

In general, Mvac is a toric variety.
To each field Φi , we associate the divisor Di ⊂ Mvac defined
by φi = 0
Have line bundles O(Di) associated with these divisors by
general algebraic geometry

0→ E∗ ⊗O → ⊕iO(−Di)
Ea
→W ⊗O → 0
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Q

Now group together all Φi (hence Υi ) whose associated
bundles O(Di) are isomorphic (or in physical terms, whose
charges are equal)
These E i can be expressed as W -valued linear
expressions in these Φ, plus higher degree polynomials
which we show can be ignored
Labelling each collection by an index c, these expressions
for the E i can be arranged into a W -valued square matrix
Ac

Put Qc = det(Ac)
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The Result.

∏
c∈[K ]

Qc = qβK
∏

c∈[K−]

Q−d
βK
c

c

where the notation will not be explained in a 30 minute talk!
This form is precisely the form conjectured by McOrist and
Melnikov
We prove that the result is true in general, independent of
any nonlinear deformations
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Four-Fermi Terms

Suppose Φi lives in a bundle with negative chern class di
in an instanton background β
Then any Φj in the same class c lives in the same bundle
The four-fermi terms are Q−dc−1

c

In GLSM, four-fermi terms are generated by Yukawa
couplings

σaψi ψ̄i , σaλi λ̄i

dim H1(OP1(dc)) = −dc − 1
This is the analogue of the virtual fundamental class of
Gromov-Witten theory
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