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Background

Joint work with Ron Donagi, Josh Guffin, and Eric Sharpe

1110.3751, 1110.3752
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Background

Physical Model.

@ Spacetime M = R3' x X, X 6 dimensional and compact
S= / d"xy/—g (a,-x“a"xu + PV O " + Nl O, A3

+Ruaa5¢%”Aa5\b + .. )

@ " right-handed fermions in TX; \? left-handed fermions
living in gauge bundle E; a gauge index, " superpartner
of x#, (0,2) SUSY

@ In an E; heterotic, matter fits into 27, 27, singlet multiplets

e Yukawa couplings 278, 27°

e If E = TX (i.e. (2,2) SUSY), 278 and 27° Yukawa
couplings can be computed exactly by techniques of
algebraic geometry (only tree level couplings)
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Background

Quantum cohomology

@ What makes this work so well: (2,2) theory can be twisted
to become topological (A model)

@ Fermions take values in simpler bundles (trivial and
canonical)

@ In topological sector, worldsheet vertex operators are
identified with cohomology H*(X)

@ Operator products computed in terms of three point
couplings, define quantum cohomology, and the algebra
H*(X) still closes after quantum corrections

o Oa * Ob = <Oa, Ob, OC>OC

@ Three point couplings in twisted theory coincide with
Yukawa couplings in physical theory

@ We want to do this in (0, 2) theory, but we can’t
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Background

Half-twisted (0, 2) theories

@ However, we can half-twist (right handed fermions only)

@ Not topological, but have a finite-dimensional
quasi-topological sector

@ Three point couplings in half-twisted theory coincide with
Yukawa couplings in the physical theory

@ These theories are closely related to gauged linear sigma
models (and sometimes coincide)

@ Many other motivations from mathematics, especially
algebraic geometry

@ The rest of the talk will focus on (0,2) GLSMs
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Outline

e (0,2) Gauged Linear Sigma Model
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(0, 2) Gauged Linear Sigma Model

(0,2) GLSM

@ The (0,2) GLSM is a 2-dimensional gauge theory with
(0, 2) supersymmetry Witten

e Gauge group G = U(1)"

e Chiral fields ¢',...,®" Do’ = 0, lowest component scalar

e Fermi superfields T2, lowest component left-handed
fermion

e DT? = E3(®), E? holomorphic
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@ First studied in this context by Adams, Basu, and Sethi,
who computed by mirror symmetry
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(0, 2) Gauged Linear Sigma Model

Prior work.

@ First studied in this context by Adams, Basu, and Sethi,
who computed by mirror symmetry

@ Direct computation of quantum cohomology ring done for a
fixed (0, 2) deformation by Guffin-K-Sharpe

@ All (0,2) deformations of P! x P! model computed by
Guffin-K

@ General form for linear deformations conjectured by
McOrist-Melnikov

@ We verify their conjecture and show that it holds verbatim
for nonlinear deformations as well
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Vacuum Moduli Space

@ The moduli space of vacua is a toric variety
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(0, 2) Gauged Linear Sigma Model

Vacuum Moduli Space

@ The moduli space of vacua is a toric variety

@ Q' charge of &' under o™ U(1)

@ Flterms - Q. |/]2 — r,=0

@ Gauge equivalence classes give moduli space
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(0, 2) Gauged Linear Sigma Model

e G=U(1)
@ n+ 1 charged chiral superfields ¢°, ..., ®", all charge 1
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e G=U(1)

@ n+ 1 charged chiral superfields ¢°, ..., ®", all charge 1
@ Y|P -r=0

® Mue = {02192 =r}/(¢' ~ €9¢')
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(0, 2) Gauged Linear Sigma Model

e G=U(1)

@ n+ 1 charged chiral superfields ¢°, ..., ®", all charge 1
@ Y|P -r=0

® Mue = {02192 =r}/(¢' ~ €9¢')

@ This is complex projective n space P”
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(0, 2) Gauged Linear Sigma Model

Language of Algebraic Geometry

@ Complex projective space CP" = P":
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(0, 2) Gauged Linear Sigma Model

Language of Algebraic Geometry

@ Complex projective space CP" = P":
@ Described by homogeneous coordinates:

(X0, ---Xn) ~ (AXo, ..., AXn)

@ Have holomorphic line bundles O(k) on P” whose
holomorphic sections are homogeneous degree k
polynomials f(xo, . .., Xn)
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(0, 2) Gauged Linear Sigma Model

Identification of Vacuum Moduli Space by Algebraic
Geometry

@ My ~P"
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(0, 2) Gauged Linear Sigma Model

Identification of Vacuum Moduli Space by Algebraic
Geometry

@ My ~P"

(0% ..., 0" = (¢° ..., 0"
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(0, 2) Gauged Linear Sigma Model

Identification of Vacuum Moduli Space by Algebraic
Geometry

@ My ~P"
o
(¢°,....¢") — (4% ....4")
° 1
0 ny ., 0 n
(¢°,..., 0" ﬁ(¢,...,¢>)
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Instanton Contributions

@ Fix the worldsheet as S? = P'. Fix a gauge instanton
background with ¢y = d

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Gauged Linear Sigma Model

Instanton Contributions

@ Fix the worldsheet as S? = P'. Fix a gauge instanton
background with ¢y = d

@ Do’ = 0 implies 0¢' =

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Gauged Linear Sigma Model

Instanton Contributions

@ Fix the worldsheet as S? = P'. Fix a gauge instanton
background with ¢y = d

@ Do’ = 0 implies 0¢' =

@ ¢' is a holomorphic section of Op:(d), a degree d
polynomial

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Gauged Linear Sigma Model

Instanton Contributions

@ Fix the worldsheet as S? = P'. Fix a gauge instanton
background with ¢y = d

@ Do’ =0 implies ¢’ =0
@ ¢' is a holomorphic section of Op:(d), a degree d
polynomial

@ These are identified with degree d holomorphic maps
(worldsheet instantons)

¢ : P1 — Pn7 ¢(X07X1) = (¢O(XO7X1)7 e '7¢n(X0’X1))

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Gauged Linear Sigma Model

Instanton Contributions

@ Fix the worldsheet as S? = P'. Fix a gauge instanton
background with ¢y = d

@ Do’ = 0 implies 0¢' =
@ ¢' is a holomorphic section of Op:(d), a degree d
polynomial

@ These are identified with degree d holomorphic maps
(worldsheet instantons)

¢ : P1 — Pn7 ¢(X07X1) = (¢O(XO7X1)7 e ‘7¢n(X0’X1))

@ This gives the gauge theory/string theory dictionary: gauge
instantons < worldsheet instantons
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P! x P!

@ Now consider G = U(1)?, charged chirals ¢',... ¢*
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P! x P!

@ Now consider G = U(1)?, charged chirals ¢',... ¢*
@ Charge matrix

o R
o R
- O
- O
~—~7

12+ 922 = 1y, 0312 + |0%2 =1
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P! x P!

@ Now consider G = U(1)?, charged chirals ¢',... ¢*
@ Charge matrix

o R
o R
- O
- O
~—~7

12+ 922 = 1y, 0312 + |0%2 =1

@ After gauge equivalence, this is P! x P!
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(0, 2) Gauged Linear Sigma Model

P! x P!

@ Now consider G = U(1)?, charged chirals ¢',... ¢*
@ Charge matrix

o R
o R
- O
- O
~—~7

12+ 922 = 1y, 0312 + |0%2 =1

@ After gauge equivalence, this is P! x P!
@ In general, M, is a toric variety
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(0, 2) Gauged Linear Sigma Model

The (0,2) Deformation

@ For the rest of this talk, we specialize to the case where the
T! are in one to one correspondence with the ¢, same
charges, i.e. E is a deformation of the tangent bundle
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@ For the rest of this talk, we specialize to the case where the
T! are in one to one correspondence with the ¢, same
charges, i.e. E is a deformation of the tangent bundle

@ Convenient to let W be 2-dimensional vector space
containing the lattice of charges (in P! x P! case)

@ W also generates the ring of operators (arising in the
gauge sector)

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Gauged Linear Sigma Model

The (0,2) Deformation

@ For the rest of this talk, we specialize to the case where the
T! are in one to one correspondence with the ¢, same
charges, i.e. E is a deformation of the tangent bundle

@ Convenient to let W be 2-dimensional vector space
containing the lattice of charges (in P! x P! case)

@ W also generates the ring of operators (arising in the
gauge sector)

@ Since T/ and E/(®) have the same charges, we must have
for a;, a; € W
E'(®) = a1 ®' + @292, E*(®) = an®' + and?,
ES(CD) = é11¢3 + é12¢4, E4(¢) = é21¢1 + 522¢4
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(0, 2) Gauged Linear Sigma Model

Bundle E.

@ The bundle E on P! x P! determined by the T’ is the
quotient of Opipi(1,0)2 @ Op1,p1(0, 1)? by the subbundle
spanned by the two-dimensional space of sections
(E'(9),...,E*¢)) of Opiypi(1,0)% @ Opiypi1(0,1)3
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quotient of Opipi(1,0)2 @ Op1,p1(0, 1)? by the subbundle
spanned by the two-dimensional space of sections
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@ In the language of algebraic geometry, this corresponds to
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Relation to Heterotic String Theory.

@ Can rewrite by dualizing as

0—E"—0O(-1,02300,-1)2 - W0 -0
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@ Since H'(O(-1,0)) = H'(0(0, 1)) = 0, we conclude
W ~ H'(E¥)
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Relation to Heterotic String Theory.

@ Can rewrite by dualizing as

0—E"—0O(-1,02300,-1)2 - W0 -0

@ Since H'(O(-1,0)) = H'(0(0, 1)) = 0, we conclude
W~ H'(E*)

@ H'(E*) parametrize the fermion vertex operators in the
heterotic string
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(0, 2) Gauged Linear Sigma Model

Relation to Heterotic String Theory.

@ Can rewrite by dualizing as

0—E"—0O(-1,02300,-1)2 - W0 -0

@ Since H'(O(-1,0)) = H'(0(0, 1)) = 0, we conclude
W~ H'(E*)

@ H'(E*) parametrize the fermion vertex operators in the
heterotic string

@ This completes the GLSM - heterotic dictionary
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P! x P

@ Let W be the 2-dimensional space of the aj;, a;
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P! x P

@ Let W be the 2-dimensional space of the aj;, a;

a1 a ~ a1 a
A— 11 a1 7 A— ( a1 a )
azq a azi ax
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Couplings

@ Let W be generated by v, 9
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@ P(v, ) any operator
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Couplings

@ Let W be generated by v, 9
@ P(v, ) any operator

° (P)= Zd’a(P)dyaqdéya where q, g depend on FI
parameters
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Couplings

@ Let W be generated by 1, 1)

@ P(v, ) any operator

° (P) = Zd’a(P)dyaqdéya where g, § depend on Fl
parameters

@ Analogous to instanton sum in string theory
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Couplings

@ Let W be generated by 1, 1)

@ P(v, ) any operator

° (P) = Zd’a(P)dyaqdéya where g, § depend on Fl
parameters

@ Analogous to instanton sum in string theory

@ Let Q = det(A), Q = det(A) € Sym*W
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(0, 2) Quantum Cohomology

Couplings

@ Let W be generated by , i)

@ P(v, ) any operator

° (P) = Zd’a(P)dyaqdéya where g, § depend on Fl
parameters

@ Analogous to instanton sum in string theory

e Let Q = det(A), Q = det(A) € Sym?W

@ Then the (0, 2) quantum cohomology algebra is

F=q @F=3q

Sheldon Katz (0, 2) Quantum Cohomology



(0, 2) Quantum Cohomology

Explanation.

@ Can compute <P>d’a by algebraic geometry
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Explanation.

@ Can compute <P>d’a by algebraic geometry
°
@FH'(E*) — HY(NE*) ~ H*(Qfy ) ~C

.d

Kk =2d+2d+2,M, ; = P29+ x p2dt!
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@ Can compute <P>d’a by algebraic geometry
°
@FH'(E*) — HY(NE*) ~ H*(Qfy ) ~C
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Kk =2d+2d+2,M, ; = P29+ x p2dt!

@ Normalization is nontrivial, but much easier to prove
identities between correlation functions directly
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@FH'(E*) — HY(NE*) ~ H*(Qfy ) ~C
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Kk =2d+2d+2,M, ; = P29+ x p2dt!

@ Normalization is nontrivial, but much easier to prove
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@ Quantum cohomology relations follow from identities

(PQgi15=(Plgg=(PQgg.s
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(0, 2) Quantum Cohomology

Explanation.

@ Can compute <P>d’a by algebraic geometry
°
@FH'(E*) — HY(NE*) ~ H*(Qfy ) ~C

.d

Kk =2d+2d+2,M, ; = P29+ x p2dt!

@ Normalization is nontrivial, but much easier to prove
identities between correlation functions directly

@ Quantum cohomology relations follow from identities

(PQgi15=(Plgg=(PQgg.s

@ Proven directly by geometry
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Relations.

@ Generalized Koszul complex of

0-E"-Z=0(-1,02300,-12 > W0 -0

0> NE*-NZ-WeZ—Sym®We0 —0
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Relations.

@ Generalized Koszul complex of

0-E"-Z=0(-1,02300,-12 > W0 -0

0> NE*-NZ-WeZ—Sym®We0 —0

@ O(-2,0) c A2Z and H'(O(~2,0)) # 0
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Relations.

@ Generalized Koszul complex of

0-E"-Z=0(-1,02300,-12 > W0 -0

0> NE*-NZ-WeZ—Sym®We0 —0

@ O(—2,0) c A2Z and H'(0(-2,0)) # 0

@ This cohomology class produces a classical cohomology
relation (Q)oo =0
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Relations.

@ Generalized Koszul complex of

0-E"-Z=0(-1,02300,-12 > W0 -0

0> NE*-NZ-WeZ—Sym®We0 —0

@ O(—2,0) c A2Z and H'(0(-2,0)) # 0

@ This cohomology class produces a classical cohomology
relation (Q)oo =0

@ Similarly (Q)go =0
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Gauge Instanton Moduli Space.

@ In the (d, d) instanton background, the zero modes of '
and @2 are polynomials 112 of degree d in the
homogeneous coordinates (xp, x1) on the worldsheet
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Gauge Instanton Moduli Space.

@ In the (d, d) instanton background, the zero modes of ¢’
and @2 are polynomials 112 of degree d in the
homogeneous coordinates (xp, x1) on the worldsheet

@ Similarly, the zero modes of 3 and ®# are polynomials 34
of degree d in the homogeneous coordinates (X0, X1) on
the worldsheet
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Gauge Instanton Moduli Space.

@ In the (d, d) instanton background, the zero modes of ¢’
and @2 are polynomials 112 of degree d in the
homogeneous coordinates (xp, x1) on the worldsheet

@ Similarly, the zero modes of 3 and ®# are polynomials 34
of degree d in the homogeneous coordinates (X0, X1) on
the worldsheet

@ The FI constraints prevent either (f', f2) or (f3, f*) from
being identically zero.
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Gauge Instanton Moduli Space.

@ In the (d, d) instanton background, the zero modes of ¢’
and @2 are polynomials 112 of degree d in the
homogeneous coordinates (xp, x1) on the worldsheet

@ Similarly, the zero modes of 3 and ®# are polynomials 34
of degree d in the homogeneous coordinates (X0, X1) on
the worldsheet

@ The FI constraints prevent either (f', f2) or (f3, f*) from
being identically zero.

@ Since (f', f2) has 2(d + 1) parameters and (f3, f*) has
2(d + 1) parameters, after imposing the FI constraint and
gauge equivalence, the moduli space is P29+1 x p2d+1
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Gauge Instanton Moduli Space.

@ In the (d, d) instanton background, the zero modes of ¢’
and @2 are polynomials 112 of degree d in the
homogeneous coordinates (xp, x1) on the worldsheet

@ Similarly, the zero modes of 3 and ®# are polynomials 34
of degree d in the homogeneous coordinates (X0, X1) on
the worldsheet

@ The FI constraints prevent either (f', f2) or (f3, f*) from
being identically zero.

@ Since (f', f2) has 2(d + 1) parameters and (f3, f*) has
2(d + 1) parameters, after imposing the FI constraint and
gauge equivalence, the moduli space is P29+1 x p2d+1

@ In general, this is also a toric variety, so the same
techniques apply as in the classical (from the viewpoint of
geometry) case!
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@ In an instanton background, we get Q%" = 0 (from
H2d+1(p2d+1 » p2d+1 0(_2d — 2,0)) = 0) and Q+! = 0.
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@ In an instanton background, we get Q%" = 0 (from
H2A+1(p2d+1 5 p20+1 O(—2d — 2,0)) = 0) and Q+" = 0.
@ This is consistent with

(PQqi1.a=(Plag = (PQgg.
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@ In an instanton background, we get Q%" = 0 (from
H2A+1(p2d+1 5 p20+1 O(—2d — 2,0)) = 0) and Q+" = 0.
@ This is consistent with

(PQqi1.a=(Plag = (PQgg.

@ More mathematical details complete the argument
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General Case.

@ The general case relies on toric geometry rather than the
geometry of projective space
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General Case.

@ The general case relies on toric geometry rather than the
geometry of projective space

@ One new ingredient in general: if a field lives in a bundle
with negative chern class in an instanton background,
there are no zero modes. To compensate, new terms enter
into the calculation from the four-fermi terms in the action
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General Case.

@ The general case relies on toric geometry rather than the
geometry of projective space

@ One new ingredient in general: if a field lives in a bundle
with negative chern class in an instanton background,
there are no zero modes. To compensate, new terms enter
into the calculation from the four-fermi terms in the action

@ These turn out to be powers of the analogues of the same
Q, Qin the general case.
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A little toric geometry

@ In general, M, is a toric variety.
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A little toric geometry

@ In general, M, is a toric variety.

@ To each field ¢/, we associate the divisor D; ¢ M,,. defined
by ¢' =0
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A little toric geometry

@ In general, M, is a toric variety.

@ To each field ¢/, we associate the divisor D; C M., defined
by ¢' =0

@ Have line bundles O(D;) associated with these divisors by
general algebraic geometry
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A little toric geometry

@ In general, M, is a toric variety.

@ To each field ¢/, we associate the divisor D; C M., defined
by ¢' =0

@ Have line bundles O(D;) associated with these divisors by
general algebraic geometry

o
0-E*®0—a0-D)EWe0 -0
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@ Now group together all ¢’ (hence ') whose associated
bundles O(D;) are isomorphic (or in physical terms, whose
charges are equal)
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@ Now group together all ¢’ (hence ') whose associated
bundles O(D;) are isomorphic (or in physical terms, whose
charges are equal)

@ These E' can be expressed as W-valued linear
expressions in these ®, plus higher degree polynomials
which we show can be ignored
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@ Now group together all ¢’ (hence ') whose associated
bundles O(D;) are isomorphic (or in physical terms, whose
charges are equal)

@ These E' can be expressed as W-valued linear
expressions in these ®, plus higher degree polynomials
which we show can be ignored

@ Labelling each collection by an index c, these expressions
for the E' can be arranged into a W-valued square matrix
Ac
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@ Now group together all ¢’ (hence ') whose associated
bundles O(D;) are isomorphic (or in physical terms, whose
charges are equal)

@ These E' can be expressed as W-valued linear
expressions in these ®, plus higher degree polynomials
which we show can be ignored

@ Labelling each collection by an index c, these expressions

for the E' can be arranged into a W-valued square matrix
Ac

@ Put Q; = det(Ac)
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The Result.

H Qc—qK H QidﬁK

celK] ce[K]

where the notation will not be explained in a 30 minute talk!
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The Result.

H Qc—qK H QidﬁK

celK] ce[K]
where the notation will not be explained in a 30 minute talk!

@ This form is precisely the form conjectured by McOrist and
Melnikov
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The Result.

H Qc—qK H QidﬁK

celK] ce[K]
where the notation will not be explained in a 30 minute talk!
@ This form is precisely the form conjectured by McOrist and
Melnikov
@ We prove that the result is true in general, independent of
any nonlinear deformations
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3

@ Then any ¢/ in the same class c lives in the same bundle
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3

@ Then any ¢/ in the same class c lives in the same bundle
@ The four-fermi terms are Q; %~
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3

@ Then any ¢/ in the same class c lives in the same bundle
@ The four-fermi terms are Q; %~

@ In GLSM, four-fermi terms are generated by Yukawa
couplings o _
oY, o)
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3

@ Then any ¢/ in the same class c lives in the same bundle
@ The four-fermi terms are Q; %~

@ In GLSM, four-fermi terms are generated by Yukawa
couplings o _
oY, o)
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Four-Fermi Terms

@ Suppose ¢’ lives in a bundle with negative chern class d;
in an instanton background 3

@ Then any ¢/ in the same class c lives in the same bundle
@ The four-fermi terms are Q; %~

@ In GLSM, four-fermi terms are generated by Yukawa
couplings o _
oY, o)

@ This is the analogue of the virtual fundamental class of
Gromov-Witten theory
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