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Motivation

» Computation of properties of SN transition at a critical
(depairing) current is a classic (and surprisingly difficult)
problem in theory of superconductivity.

» 1D superconductor is supposed to be the simplest: the current
is uniform over the wire's cross section. The wire is still
multichannel, though:

N ~ k2A > 1

It is important to know if the transition is 1st or 2nd order
(i.e., if superconductivity can be “softened” by application of
current).

» The difficulty lies in incorporating inter-channel scattering

necessary to define a current-carrying normal state.
Gauge/gravity duality to the rescue.



Application of gauge/gravity duality

» Consider a large N SU(N) gauge theory and identify N with
Ng,. Consider N species of electrons in (1+1) dimensions.
For each, define a Dirac spinor (yo = o)
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The superconducting channel is ZXZI Yata.

» Gravitational description: N D3 branes + single (probe) D5
intersecting over a line:
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D3: x x x X
D5: x X X X X X

Note: electrons are (1+1) but the gauge field is (3+1).
Compare: D3/D7 intersecting over a plane (graphene/QHE)
[Rey 07; Davis, Kraus and Shah 08].



D5 action
> Need the full D3 metric (“throat”), including the AF region:

1
ds? = WdX“qu +VF (dA? + Ad¢? + dp? + p?dQ3)

with f =1+ ﬁ. Set R = 1. “Order parameter’: Ae'®.
» First look at these static embeddings: A = A(p), ¢ =0,
Ac = Ai(p). The DBI action is Sppi = — [ dtF,

F =2n? T5/dxdpp3\/?(1 4 A?p _ Ft2p)l/2,
where F;, = —0,A;. Note: A; couples to 111, i.e., to the

electric current
1 O6F
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» Legendre transform:

F=27Ts / dxdp(p®f + JA)2(1+ A%)H?

Describes physics at fixed J.



Properties of solutions

» F:, has nowhere on the brane to end, hence A(p — 0) = 0:
the superconductor is gapless.

» A(p) goes to a constant at large p: A(p — o0) = b.

» Equation-of-state curve: b as a function of A ,(0) (one for
each J). A nontrivial zero of such a curve = spontaneous
breaking of ¢ — ¢ + const symmetry. Merging of zeroes =
continuous phase transition (here at J = J. = 0.3197).
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Linear stability analysis

» Linearize near A = 0 but include t and x dependence:
A ~ e~ Wtk A(")(p). Frequency of the unstable mode:

Imw = Qo(k, J) ~ a(J. — J) — a'k?,

for J near J. and small k2. a,a’ > 0.

» All the scaling exponents here are Gaussian, but that's the
ultraviolet behavior, reflecting the suppression of interactions
among the collective modes by the large N (i.e., the thickness
of the wire). To find the infrared scaling, we construct an
effective field theory near J = J..



Effective field theory near J = J,

> Substitute the single-mode approximation
Ae'(x, p; J) = / dke™ W (kYA (p; k, J)

into the DBI action and expand to the fourth order in W(x)
(but second in W ,). Obtain the GL-type free energy:

FaL=nTs [—/deo(k, DIW(K)]? + c/dx|w(x)y4}

Note: ¢ > 0.
» Add the dissipative term (Q2= Euclidean frequency)

Sdissip = 7TT5 / dXdQ|QHW(X, Q)‘z

» The total
Se = /deGL + Sdissip

is the dissipative XY model, known to have a nontrivial
infrared fixed point [e.g., Sachdev, Werner and Troyer 04].



Comparison to experiments

» Since in the UV the |W|* coupling is small, even a small
deviation of J from J. may lock the system in the domain
controlled by the Gaussian fixed point. Then, e.g., the
free-energy barrier for thermal phase slips scales as

8F ~ (free-energy density) x & ~ (Je — J)3/?

> Experimentally, the scaling exponent for § F has been deduced
from statistics of the switching current [Sahu et al. 08, Li et
al. 10, Aref et al.] and found to be close to 3/2 for Al and
amorphous MoGe wires, albeit closer to 5/4 for crystalline
Mo3Ge.



Conclusions

» As an approach to the depairing transition, the gauge/gravity
duality allows one to include effects (such as the
electron-electron scattering) that may be difficult to include
by other means.

» The transition at fixed current is found to be second-order, in
the dissipative XY universality class. The second order is
consistent with the experiments on the switching currents.

» The Gaussian UV fixed point controls scaling up to large
distances (a consequence of the initial 1/N suppression).
Materials with large coherence lengths (crystalline?) will
probably be needed to observe deviations from the Gaussian
scaling.



