Critical current via gauge/gravity duality*

S. Khlebnikov (Purdue)

March 3, 2012

*arXiv:1201.5103

Motivation

- Computation of properties of SN transition at a critical (depairing) current is a classic (and surprisingly difficult) problem in theory of superconductivity.
- 1D superconductor is supposed to be the simplest: the current is uniform over the wire's cross section. The wire is still multichannel, though:

$$N_{
m ch} \sim k_F^2 A \gg 1$$

It is important to know if the transition is 1st or 2nd order (i.e., if superconductivity can be "softened" by application of current).

 The difficulty lies in incorporating inter-channel scattering necessary to define a current-carrying *normal* state.
 Gauge/gravity duality to the rescue.

Application of gauge/gravity duality

Consider a large N SU(N) gauge theory and identify N with N_{ch}. Consider N species of electrons in (1+1) dimensions.
 For each, define a Dirac spinor (γ₀ = σ¹)

$$\psi = \left[\begin{array}{c} \sum_{k>0} (a_{Rk}e^{ikx} + b_{Rk}^{\dagger}e^{-ikx}) \\ \sum_{k<0} (a_{Lk}e^{ikx} + b_{Lk}^{\dagger}e^{-ikx}) \end{array} \right]$$

The superconducting channel is $\sum_{A=1}^{N} \bar{\psi}_{A} \psi_{A}$.

Gravitational description: N D3 branes + single (probe) D5 intersecting over a line:

	0	1	2	3	4	5	6	7	8	9
D3 :	×	×	×	×						
D5 :	\times	\times			×	\times	\times	\times		

Note: electrons are (1+1) but the gauge field is (3+1). Compare: D3/D7 intersecting over a plane (graphene/QHE) [Rey 07; Davis, Kraus and Shah 08].

D5 action

▶ Need the full D3 metric ("throat"), including the AF region:

$$ds^{2} = \frac{1}{\sqrt{f}}dx^{\mu}dx_{\mu} + \sqrt{f}\left(d\Delta^{2} + \Delta^{2}d\phi^{2} + d\rho^{2} + \rho^{2}d\Omega_{3}^{2}\right)$$

with $f = 1 + \frac{R^4}{(\Delta^2 + \rho^2)^2}$. Set R = 1. "Order parameter": $\Delta e^{i\phi}$. First look at these static embeddings: $\Delta = \Delta(\rho)$, $\phi = 0$, $A_t = A_t(\rho)$. The DBI action is $S_{\text{DBI}} = -\int dt \mathcal{F}$,

$$\mathcal{F} = 2\pi^2 T_5 \int dx d
ho
ho^3 \sqrt{f} (1 + \Delta_{,
ho}^2 - F_{t
ho}^2)^{1/2}$$

where $F_{t\rho} = -\partial_{\rho}A_t$. Note: A_t couples to $\psi^{\dagger}\psi$, i.e., to the electric current

$$J = \frac{1}{2\pi^2 T_5} \frac{\delta \mathcal{F}}{\delta F_{t\rho}}$$

Legendre transform:

$$\widehat{\mathcal{F}} = 2\pi^2 T_5 \int dx d
ho (
ho^6 f + J^2)^{1/2} (1 + \Delta_{,
ho}^2)^{1/2}$$

Describes physics at fixed J.

Properties of solutions

- F_{tρ} has nowhere on the brane to end, hence Δ(ρ → 0) = 0: the superconductor is gapless.
- $\Delta(\rho)$ goes to a constant at large ρ : $\Delta(\rho \to \infty) = b$.
- ► Equation-of-state curve: b as a function of Δ_{,ρ}(0) (one for each J). A nontrivial zero of such a curve = spontaneous breaking of φ → φ + const symmetry. Merging of zeroes = continuous phase transition (here at J = J_c = 0.3197).

Linear stability analysis

Linearize near Δ = 0 but include t and x dependence: Δ ~ e^{-iωt+ikx}Δ⁽ⁿ⁾(ρ). Frequency of the unstable mode:

$$\operatorname{Im}\omega = \Omega_0(k,J) \approx a(J_c - J) - a'k^2$$
,

for J near J_c and small k^2 . a, a' > 0.

► All the scaling exponents here are Gaussian, but that's the ultraviolet behavior, reflecting the suppression of interactions among the collective modes by the large N (i.e., the thickness of the wire). To find the infrared scaling, we construct an effective field theory near $J = J_c$.

Effective field theory near $J = J_c$

Substitute the single-mode approximation

$$\Delta e^{i\phi}(x,\rho;J) = \int dk e^{ikx} \Psi(k) \Delta^{(0)}(\rho;k,J)$$

into the DBI action and expand to the fourth order in $\Psi(x)$ (but second in $\Psi_{,x}$). Obtain the GL-type free energy:

$$\mathcal{F}_{\rm GL} = \pi T_5 \left[-\int dk \Omega_0(k,J) |\Psi(k)|^2 + c \int dx |\Psi(x)|^4 \right]$$

Note: c > 0.

• Add the dissipative term (Ω = Euclidean frequency)

$$S_{\rm dissip} = \pi T_5 \int dx d\Omega |\Omega| |\Psi(x, \Omega)|^2$$

The total

$$S_E = \int d au \mathcal{F}_{\mathrm{GL}} + S_{\mathrm{dissip}}$$

is the dissipative XY model, known to have a nontrivial infrared fixed point [e.g., Sachdev, Werner and Troyer 04].

Comparison to experiments

Since in the UV the |Ψ|⁴ coupling is small, even a small deviation of J from J_c may lock the system in the domain controlled by the Gaussian fixed point. Then, e.g., the free-energy barrier for thermal phase slips scales as

$$\delta \mathcal{F} \sim (\text{free-energy density}) imes \xi \sim (J_c - J)^{3/2}$$

Experimentally, the scaling exponent for δF has been deduced from statistics of the switching current [Sahu et al. 08, Li et al. 10, Aref et al.] and found to be close to 3/2 for Al and amorphous MoGe wires, albeit closer to 5/4 for crystalline Mo₃Ge.

Conclusions

- As an approach to the depairing transition, the gauge/gravity duality allows one to include effects (such as the electron-electron scattering) that may be difficult to include by other means.
- The transition at fixed current is found to be second-order, in the dissipative XY universality class. The second order is consistent with the experiments on the switching currents.
- The Gaussian UV fixed point controls scaling up to large distances (a consequence of the initial 1/N suppression). Materials with large coherence lengths (crystalline?) will probably be needed to observe deviations from the Gaussian scaling.