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The plasma created in ultra relativistic heavy ion collisions at RHIC is
characterized as the most ‘perfect fluid’. Anisotropic expansion of the
matter is modeled with hydrodynamics- with minimal viscosity.

The empirical evidence suggests QCD matter created at RHIC is
strongly coupled.

Elliptic flow at LHC is also consistent with strongly coupled quark matter.

Estimates of plasma temperature suggests T ≥ Tc but not
asymptotically high.

Analysis of the plasma requires understanding of strongly coupled
QCD. The conventional approach is to use lattice QCD- but it’s not the
only option.

Hilbert space of certain quantum field theories is contained in the
Hilbert space of gravity. Conformal Field Theory ⇐⇒ Anti De Sitter
Space [Maldacena, ’97]

However QCD is non-conformal in the temperature regime explored by
the heavy ion collisions.

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory?

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory? Yes!

Non Conformal Field Theory ⇐⇒ Conifold geometries with fluxes
[Klebanov-Tseytlin, 2000, Klebanov-Strassler,’01]

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory? Yes!

Non Conformal Field Theory ⇐⇒ Conifold geometries with fluxes
[Klebanov-Tseytlin, 2000, Klebanov-Strassler,’01]

The gauge theory degrees of freedom Neff diverges in the UV.

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory? Yes!

Non Conformal Field Theory ⇐⇒ Conifold geometries with fluxes
[Klebanov-Tseytlin, 2000, Klebanov-Strassler,’01]

The gauge theory degrees of freedom Neff diverges in the UV. We
modify UV of KS model and introduce fundamental matter by
embedding seven branes.

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory? Yes!

Non Conformal Field Theory ⇐⇒ Conifold geometries with fluxes
[Klebanov-Tseytlin, 2000, Klebanov-Strassler,’01]

The gauge theory degrees of freedom Neff diverges in the UV. We
modify UV of KS model and introduce fundamental matter by
embedding seven branes.

We find new non-extremal solutions of modified KS model derived
directly from 10d type IIB action with fluxes.

Mohammed Holographic Thermal QCD



Introduction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  200  300  400  500  600

0.4 0.6 0.8 1.0 1.2 1.4

T [MeV] 

Tr0 (ε-3p)/T4 

asqtad: Nτ=8
6

p4: Nτ=8
6

Large conformal anomaly ! Is there a gravity description for a QCD like
theory? Yes!

Non Conformal Field Theory ⇐⇒ Conifold geometries with fluxes
[Klebanov-Tseytlin, 2000, Klebanov-Strassler,’01]

The gauge theory degrees of freedom Neff diverges in the UV. We
modify UV of KS model and introduce fundamental matter by
embedding seven branes.

We find new non-extremal solutions of modified KS model derived
directly from 10d type IIB action with fluxes.

Using this black hole geometry, we explore the thermodynamics of the
gauge theory and find qualitative consistency with thermal QCD. .
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The gauge group is SU(N + M) × SU(N), logarithmic running of gauge

coupling but Neff diverges in the UV and the theory has Landau Poles.
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Non-Conformal Field Theory:The Brane Setup
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Anti 5 Branes

7 Branes

Now we have SU(N + M) × SU(N) gauge group in the IR ,
SU(N + M) × SU(N + M) in the UV and SU(Nf ) × SU(Nf ) flavor
symmetry with fundamental matter and logarithmic running of gauge
coupling. Neff large but finite in the far UV and gauge group cascades to
SU(M̄) in the far IR.

How to analyze the strongly coupled gauge theory?
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Dual Geometry

For large M, ’tHooft coupling Λ1 = g1(k + 1)M,Λ2 = g2kM) ≫ 1, and
the gauge theory can be described by type IIB supergravity

SIIB =
1

2κ2
10

Z
d10x

p
−g

"
R − ∂aτ∂

aτ

2|Imτ |2 − G3 · Ḡ3

12Imτ
−

eF 2
5

4 · 5!

#

+
1

8iκ2
10

Z
C4 ∧ G3 ∧ Ḡ3

Imτ
+ Sloc
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The metric takes the form

ds2 =
1√
h

h
− g1(r)dt2 + dx2 + dy2 + dz2

i
+

√
h

h
g2(r)

−1dr2 + dM2
5

i

≡ −e2A+2Bdt2 + e2Aδij dx idx j + e−2A−2Begmndxmdxn
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−1dr2 + dM2
5

i

≡ −e2A+2Bdt2 + e2Aδij dx idx j + e−2A−2Begmndxmdxn

Extremal limit is achieved when e2B = 1. Non-extremality is the limit
e2B ≡ e2B(xm) with a regular horizon xm

H such that
e2B(xm

H ) = 0, e−2A(xm
H ) 6= 0
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e2B ≡ e2B(xm) with a regular horizon xm

H such that
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H ) = 0, e−2A(xm
H ) 6= 0

Warped four dimensional Minkowski space and warped six dimensional

cone with five dimensional compact space S5 as it’s base.
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Dual Geometry

With fluxes and warp factors A,B only depending on cone coordinates
xm, we have the Einstein equations

Rµν = −gµν

"
G3 · Ḡ3

48 Imτ
+

eF 2
5

8 · 5!

#
+

eFµabcd
eF abcd

ν

4 · 4!
+ κ2

10

„
T loc

µν − 1
8

gµνT loc

«

Rmn = −gmn

"
G3 · Ḡ3

48 Imτ
+

eF 2
5

8 · 5!

#
+

eFmabcd
eF abcd

n

4 · 4!
+

G bc
m Ḡnbc

4 Imτ
+
∂mτ∂nτ

2 |Imτ |2

+ κ2
10

„
T loc

mn − 1
8

gmnT loc
«

(1)
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We consider closed three form fluxes H3,F3 (sourced by M number of
five branes) and self dual five form flux

eF5 = (1 + ⋆)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2)

Minimizing the action also gives the Bianchi identity for the five-form
flux, namely

d eF5 = H3 ∧ F3 + 2κ2
10T3ρ3
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We consider closed three form fluxes H3,F3 (sourced by M number of
five branes) and self dual five form flux

eF5 = (1 + ⋆)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2)

Minimizing the action also gives the Bianchi identity for the five-form
flux, namely

d eF5 = H3 ∧ F3 + 2κ2
10T3ρ3

Solve the Einstein equations and Bianchi identity to obtain A,B and g̃mn.
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Dual Geometry

We have four equations and unknown functions A,B and g̃mn. We use
the following ansatz

egmndxmdxn = dr2 + r2e2B

"
1
9
(dψ + cosθ1dφ1 + cosθ2dφ2)

2

+
1
6
(dθ2

1 + sin2θ1dφ2
1) +

1
6

(1 + F )(1 + G)

„
dθ2

2

1 + G + sin2θ2dφ2
2

« #
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In the limit M = 0 and ∂τ ∼ O(Nf ) = 0, an exact solution exist

e−4A = α−1 = L4/r4, e2B = 1 − r4
h /r

4, F = G = 0

the well known non-extremal limit of Klebanov-Witten geometry -
AdS5 × T 1,1 with a black hole with L4 = gsNα′2
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In the limit M = 0 and ∂τ ∼ O(Nf ) = 0, an exact solution exist

e−4A = α−1 = L4/r4, e2B = 1 − r4
h /r

4, F = G = 0

the well known non-extremal limit of Klebanov-Witten geometry -
AdS5 × T 1,1 with a black hole with L4 = gsNα′2

When Nf ,M 6= 0, but B = 0 , we have the extremal Klebanov-Tseytlin
geometry with Ouyang D7 embedding. Again exact solution exists with

e−4A = α−1 = h0 =
L4

r4

(
1 +

3gsM2

2πN
logr

»
1 +

3gsNf

2π

„
logr +

1
2

«–

+
3g2

s M2Nf

8π2N
logr log

„
sin
θ1

2
sin
θ2

2

« )

F = G = 0 Mohammed Holographic Thermal QCD



Dual Geometry

Hence in the non-extremal limit, F ,G ∼ O(M, rh). With gsM2/N ≪ 1,
ignoring O(gsM2/N)O(F ,G) and considering upto linear order in F ,G
we get the Bianchi identity

"
∂r∂r h1 +

1
g
∂θi

“
ḡθi θi

0 ∂θi h
1
”

+
r4
h /r

4

g
∂θi

“
ḡθi θi

0 ∂θi h
0
” #

r5 + 5r4∂r h1

= 4L4∂r (F + G/2)

where h1 = e−4A − h0.

Mohammed Holographic Thermal QCD



Dual Geometry

Hence in the non-extremal limit, F ,G ∼ O(M, rh). With gsM2/N ≪ 1,
ignoring O(gsM2/N)O(F ,G) and considering upto linear order in F ,G
we get the Bianchi identity

"
∂r∂r h1 +

1
g
∂θi

“
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ḡθi θi

0 ∂θi h
0
” #

r5 + 5r4∂r h1

= 4L4∂r (F + G/2)

where h1 = e−4A − h0.
Note in the limit Nf ,M = 0, h1 = 0 which means h1 ∼ O(M,Nf ). Using
this above gives

F ,G ∼ O(M/N) + O(g2
s M2Nf/N)

which give F ,G ≪ 1 for N ≫ M. This also justifies ignoring
O(gsM2/N)O(F ,G) and the linear approximation.
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F ,G ∼ O(M/N) + O(g2
s M2Nf/N)

which give F ,G ≪ 1 for N ≫ M. This also justifies ignoring
O(gsM2/N)O(F ,G) and the linear approximation.

Writing e2B = 1 − r̄ 4
h

r 4 + G, a similar analysis gives

G ∼ O(M/N) + O(g2
s M2Nf/N)

Also writing h1 = L4

r 4 A1 gives A1 ∼ O(M/N).
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Dual Geometry

Thus in the limit N ≫ M and gsM2/N ≪ 1, we can consider only linear
terms in F ,G,G and A1. However, there are only three non-trivial
equations upto linear order and hence we can set G = 0. In fact, G3 do
not enter explicitly in the equations for F ,G and A1 and we find an exact
solution to all equations with

h1 =
L4

r4

“
A0 + A1 log r + A2 log2r

”

e2B ≡ g = 1 − r̄4
h

r4
+ G ≡ 1 − r̄4

h

r4
+ g0 + g1 log r + g2 log2r

F = F0 + F1 log r + F2 log2r
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The background warp factor h0 couples directly to G3 which is non-ISD.
Our solution for the field strength is

α = e4A + O(F 2), F3,H3 ∼ M(1 + O(rh,F ))

where the non-ISD part G3 is of O(F , rh). In the limit F = rh = 0, we
recover ISD G3.

Mohammed Holographic Thermal QCD



Dual Geometry

In the limit Nf = 0 but M 6= 0, the equations drastically simplify and we
get

A0(r) =
∞X

k=1

ā0
k

“ rh

r

”k
, F0(r) =

∞X

k=1

f̄ 0
k

“ rh

r

”k
, g0(r) =

∞X

k=1

ζ̄0
k

“ rh

r

”k

with Ai = Fi = gi = 0, i = 2, 3. These forms also satisfy the boundary
conditions

A0(∞) = 0, A′

0(∞) = 0, g0(∞) = 0, g′

0(∞) = 0,F0(∞) = 0,F ′

0(∞) = 0
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Dual Geometry

In the limit Nf = 0 but M 6= 0, the equations drastically simplify and we
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Dual Geometry
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Dual Geometry

The exact solution is the non-extremal limit of Klebanov-Tseytlin model
with a regular resolved cone with resolution function F describing
squashing between the two S2’s.
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deformed cone metric for g̃mn with radial coordinate
b ≤ r ≤ ∞.

Mohammed Holographic Thermal QCD



Dual Geometry

The exact solution is the non-extremal limit of Klebanov-Tseytlin model
with a regular resolved cone with resolution function F describing
squashing between the two S2’s.

It can easily be generalized for the deformed resolved cone by using the
deformed cone metric for g̃mn with radial coordinate
b ≤ r ≤ ∞.However, for large radial distance, deformed cone becomes
regular cone and we will consider r ≥ rh ≫ b which means the horizon
‘cloaks’ the deformed cone and the non-extremal geometry sees only a
regular cone.
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deformed cone as the internal space describes the confining phase of
the gauge theory. The geometry near r ∼ b describes confinement in
SU(M) gauge theory at low temperature.
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Dual Geometry

The analysis can easily be generalized for KS type geometries with
modifications at asymptotically large r .

Three form fluxes ∼ M̄(r)/rA with M̄(r) = M
“

1 − exp[α(r−r0−b)]
1+exp[α(r−r0−b)]

”
.

Near r ∼ r0 we have fluxes sourced by anti five branes.

limr→b M(r) → M and limr→∞ M̄(r) → 0. Hence B2 ∼ M ln(r) for r ≪ r0

and B2 ∼ 0 for r ≫ r0.

7 branes source τ , we can arrange them in such a way that for r ≫ r0,
τ ∼ 1/rn. On the other hand for r < r0, τ ∼ ln(r).

We expect the squashing function F and warp factors eA, eB to again be
described by our ansatz with inverse power law behavior.
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The Story so far
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Entropy From Dual Gravity

Entropy of the gauge theory given by entropy of black hole. The black

hole entropy is obtained from Walds formula using our solution for the

metric.
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Entropy From Dual Gravity

Entropy of the gauge theory given by entropy of black hole. The black

hole entropy is obtained from Walds formula using our solution for the

metric.In the limit M = Nf = 0, s/T 3 is flat [Gubser et al ’98], whereas

for our non-AdS geometry a rapid change of entropy is observed.
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Conformal anomaly from non-AdS Dual Gravity

We computed free energy of the thermal gauge theory from the ten
dimensional type IIB supergravity action, Igravity = Igauge= βF .

We obtain pressure p = − ∂F
∂V = −f and then using the black hole

entropy, we compute internal energy e = f + Ts.
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Linear confinement from holography

We want to analyze the confinement mechanism for the fundamental
matter arising from string theory. While lattice QCD gives linear
confinement of quarks at low temperatures, do our quark strings
confine?

We will study QQ̄ free energy as a function of inter quark separation
and temperature. Free energy can be obtained from the Wilson loop

< WC >∼ exp(−F (d ,T )/T )

d

τ
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Wilson Loops From Dual Gravity

Holography gives

< WC >∼ exp(−SNG)

umax

t

x
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d 
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Lattice VS Dual Gravity
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[Olaf Kaczmarek et al]
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Summary

We have constructed non-extremal generalizations of warped resolved
deformed conifold geometry.

It is possible to construct the dual gravity of gauge theory which has
logarithmic running of coupling in IR but behaves almost conformal in
the UV.

IR of the field theory we analyzed mimics large N QCD.

Entropy of black hole is qualitatively similar to that of strongly coupled
QCD while the conformal anomaly of the dual gauge theory is in
agreement with QCD.

The dual geometry realizes linear confinement of both heavy and light
quarks.

We expect the IR of the gauge theory to be thermodynamically

equivalent to strongly coupled large N QCD.
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Future Directions

What are the phases and order of phase transitions?

What about chemical potential and critical point?

We are now studying various phases of nuclear matter at strong
coupling by varying chemical potential and temperature coming from
ten dimensional black hole geometries in string theory. We expect
Hawking-Page phase transition ...

For a trivial D7 embedding the chemical potential scales as
µ ∼ T (1 + log(rh)) .

Using this non-extremal geometries we are also studying trailing and

falling strings giving rise to heavy and light quark energy loss [Andrej

Ficnar, Miklos Gyulassy]... Stay tuned!
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