# **Constraints on String Cosmology**

Callum Quigley

University of Chicago

### Great Lakes String Conference, Purdue University March 3, 2012

based on arXiv:1110.0545 [hep-th]

with Stephen Green, Emil Martinec and Savdeep Sethi

・ロト ・ 一下・ ・ ヨト

# Accelerated Expansion and Supergravity

• Want to study accelerated expansion (inflation/dS) in string theory

# Accelerated Expansion and Supergravity

- $\bullet$  Want to study accelerated expansion (inflation/dS) in string theory
- But D = 10/11 sugra satisfies the Strong Energy Condition (SEC):

 $R_{00} \geq 0.$ 

This forbids accelerated expansion.

イロト (得) (注) (す)

# Accelerated Expansion and Supergravity

- $\bullet$  Want to study accelerated expansion (inflation/dS) in string theory
- But D = 10/11 sugra satisfies the Strong Energy Condition (SEC):

$$R_{00} \geq 0.$$

This forbids accelerated expansion.

• No-Go Thm.  $\Rightarrow$  SEC is inherited upon (warped) compactification.

# Accelerated Expansion and Supergravity

- Want to study accelerated expansion (inflation/dS) in string theory
- But D = 10/11 sugra satisfies the Strong Energy Condition (SEC):

$$R_{00} \geq 0.$$

This forbids accelerated expansion.

- No-Go Thm.  $\Rightarrow$  SEC is inherited upon (warped) compactification.
- Does this rule out inflation/dS in string theory?

# Accelerated Expansion and String Theory

- String theory is not supergravity
- Have objects like O-planes, with negative tension



• These can violate SEC

# SEC Violation in Heterotic String Theory

In heterotic all O-planes effects are encoded in  $\alpha' R^2$  corrections.

Several reasons to do study this problem in heterotic:

• Heterotic is "complete" (all couplings known to this order -Bergshoeff & de Roo '89).

- 4 回 ト 4 ヨ ト 4 ヨ ト

# SEC Violation in Heterotic String Theory

In heterotic all O-planes effects are encoded in  $\alpha' R^2$  corrections.

Several reasons to do study this problem in heterotic:

- Heterotic is "complete" (all couplings known to this order Bergshoeff & de Roo '89).
- Heterotic supergravity is reliable (no localized sources)

- 4 回 ト 4 ヨ ト 4 ヨ ト

# SEC Violation in Heterotic String Theory

In heterotic all O-planes effects are encoded in  $\alpha' R^2$  corrections.

Several reasons to do study this problem in heterotic:

- Heterotic is "complete" (all couplings known to this order -Bergshoeff & de Roo '89).
- Heterotic supergravity is reliable (no localized sources)
- Same qualitative features should carry over to other frames

不得下 イラト イラト

# SEC Violation in Heterotic String Theory

In heterotic all O-planes effects are encoded in  $\alpha' R^2$  corrections.

Several reasons to do study this problem in heterotic:

- Heterotic is "complete" (all couplings known to this order -Bergshoeff & de Roo '89).
- Heterotic supergravity is reliable (no localized sources)
- Same qualitative features should carry over to other frames
- Simple calculation, can extract robust statements

(4 間) トイヨト イヨト

# Outline



### Review 2

- Strong Energy Condition
- No-Go Theorem
- Higher Order Couplings

### Calculations

- Set Up
- Method
- Results



Strong Energy Condition No-Go Theorem Higher Order Couplings

# **Strong Energy Condition**

- Roughly speaking, SEC requires  $R_{00} \ge 0$ .
- More precisely, take any forward pointing time-like vector u, then

 $R_{\mu\nu}u^{\mu}u^{\nu}\geq 0.$ 

- Physically, SEC says that gravity is locally attractive.
- Main point for us, in FRW universe

$$R_{00} = -3\left(\frac{\ddot{a}}{a}\right)$$

• So  $\ddot{a} \ge 0 \Leftrightarrow$  SEC is violated.

イロト 不同 トイヨト イヨト

Introduction & Motivations Review No-C Calculations High

Strong Energy Condition No-Go Theorem Higher Order Couplings

# **SEC** in $D = 10 \ \mathcal{N} = 1$ supergravity

Trace-reversed Einstein equations (in Einstein frame):

$$R_{MN} = \frac{1}{2} \nabla_{M} \phi \nabla_{N} \phi + \frac{1}{4} e^{-\phi} H_{MPQ} H_{N}^{PQ} - \frac{1}{8} e^{-\phi} g_{MN} |H|^{2} + \frac{\alpha'}{4} e^{-\phi/2} \left[ \operatorname{tr} F_{MP} F_{N}^{P} - \frac{1}{8} g_{MN} \operatorname{tr} |F|^{2} \right]$$

In particular,

$$R_{00} = \frac{1}{2} (\dot{\phi})^2 + \frac{1}{8} e^{-\phi} \left( H_{0IJ} H_0^{\ IJ} + H_{IJK} H^{IJK} \right) \\ + \frac{\alpha'}{32} e^{-\phi/2} \left( 7F_{0I} F_0^{\ I} + \frac{1}{2} F_{IJ} F^{IJ} \right) \ge 0$$

So, D = 10 sugra satisfies SEC.

Strong Energy Condition No-Go Theorem Higher Order Couplings

# Proof of the No-Go Theorem

Extremely simple and elegant (Gibbons '84, see also Maldecena-Nunez)

Take warped product metric

$$ds^2 = W^2(y) \left(g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{ij}(y)dy^i dy^j\right)$$

Strong Energy Condition No-Go Theorem Higher Order Couplings

# Proof of the No-Go Theorem

Extremely simple and elegant (Gibbons '84, see also Maldecena-Nunez)

Take warped product metric

$$ds^2=W^2(y)\left(g_{\mu
u}(x)dx^\mu dx^
u+g_{ij}(y)dy^i dy^j
ight)$$

② Simple calculation shows

$$R_{00}^{(D)} = R_{00}^{(d)} + rac{1}{(D-2)W^{D-2}} 
abla^2 W^{D-2} \ge 0$$

Strong Energy Condition No-Go Theorem Higher Order Couplings

# Proof of the No-Go Theorem

Extremely simple and elegant (Gibbons '84, see also Maldecena-Nunez)

Take warped product metric

$$ds^2=W^2(y)\left(g_{\mu
u}(x)dx^\mu dx^
u+g_{ij}(y)dy^i dy^j
ight)$$

② Simple calculation shows

$$R_{00}^{(D)} = R_{00}^{(d)} + \frac{1}{(D-2)W^{D-2}}\nabla^2 W^{D-2} \ge 0$$

• Multiply by  $W^{D-2}$ , and integrate over Y.

As long as  $W(y) \neq 0$ , guaranteed that  $R_{00}^{(d)} \geq 0$ .

Strong Energy Condition No-Go Theorem Higher Order Couplings

# **Heterotic Supergravity**

 ${\it D}=$  10  ${\cal N}=$  1 supergravity with specific  ${\it O}(\alpha')$  correction, and field definitions

$$S = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \, e^{-2\phi} \Big[ R + 4(\partial\phi)^2 - \frac{1}{2} |H|^2 \\ - \frac{\alpha'}{4} \left( \operatorname{tr} |F|^2 - \operatorname{tr} |R_+|^2 \right) + O(\alpha'^2) \Big],$$

where

$$\mathrm{tr}\,|R_+|^2=rac{1}{2}R_{MNAB}(\Omega_+)R^{MNAB}(\Omega_+)$$

$$\Omega^{AB}_{\pm \ M} = \Omega^{AB}_{\ M} \pm \frac{1}{2} H^{AB}_{\ M} + O(\alpha')$$

$$H = dB + rac{lpha'}{4} \left[ \mathrm{CS}(\Omega_+) - \mathrm{CS}(A) \right],$$

Callum Quigley

Strong Energy Condition No-Go Theorem **Higher Order Couplings** 

# **Modified Equations of Motion**

These  $R^2_{\perp}$  terms modify the Ricci tensor. In particular

$$\tilde{R}_{00} = \dots + \frac{\alpha'}{16} e^{-\phi/2} \left[ \left( 7R_{+0I0J}R_{+0}{}^{I}{}_{0}{}^{J} + \frac{1}{2}R_{+IJ0K}R_{+}{}^{IJ}{}_{0}{}^{K} \right) - \frac{1}{2} \left( 7R_{+0IJK}R_{+0}{}^{IJK} + \frac{1}{2}R_{+IJKL}R_{+}{}^{IJKL} \right) \right]$$

• No longer positive definite.

Introduction & Motivations Review No-Go Theorem Calculations Summarv

Strong Energy Condition **Higher Order Couplings** 

# Modified Equations of Motion

These  $R^2_{\perp}$  terms modify the Ricci tensor. In particular

$$\tilde{R}_{00} = \dots + \frac{\alpha'}{16} e^{-\phi/2} \left[ \left( 7R_{+0I0J}R_{+0}{}^{I}{}_{0}{}^{J} + \frac{1}{2}R_{+IJ0K}R_{+}{}^{IJ}{}_{0}{}^{K} \right) - \frac{1}{2} \left( 7R_{+0IJK}R_{+0}{}^{IJK} + \frac{1}{2}R_{+IJKL}R_{+}{}^{IJKL} \right) \right]$$

- No longer positive definite.
- How large can negative contributions be? Can no-go be evaded?

イロト イボト イラト イラト

Introduction & Motivations Review No-Go Theorem Calculations Summarv

Strong Energy Condition **Higher Order Couplings** 

# **Modified Equations of Motion**

These  $R_{\perp}^2$  terms modify the Ricci tensor. In particular

$$\tilde{R}_{00} = \dots + \frac{\alpha'}{16} e^{-\phi/2} \left[ \left( 7R_{+0I0J}R_{+0}{}^{I}{}_{0}{}^{J} + \frac{1}{2}R_{+IJ0K}R_{+}{}^{IJ}{}_{0}{}^{K} \right) - \frac{1}{2} \left( 7R_{+0IJK}R_{+0}{}^{IJK} + \frac{1}{2}R_{+IJKL}R_{+}{}^{IJKL} \right) \right]$$

- No longer positive definite.
- How large can negative contributions be? Can no-go be evaded?
- Cannot dial up arbitrarily large must satisfy dilaton e.o.m. (and Bianchi)

#### Strong Energy Condition No-Go Theorem **Higher Order Couplings**

# Modified Equations of Motion

These  $R_{\perp}^2$  terms modify the Ricci tensor. In particular

$$\tilde{R}_{00} = \dots + \frac{\alpha'}{16} e^{-\phi/2} \left[ \left( 7R_{+0I0J}R_{+0}{}^{I}{}_{0}{}^{J} + \frac{1}{2}R_{+IJ0K}R_{+}{}^{IJ}{}_{0}{}^{K} \right) - \frac{1}{2} \left( 7R_{+0IJK}R_{+0}{}^{IJK} + \frac{1}{2}R_{+IJKL}R_{+}{}^{IJKL} \right) \right]$$

- No longer positive definite.
- How large can negative contributions be? Can no-go be evaded?
- Cannot dial up arbitrarily large must satisfy dilaton e.o.m. (and Bianchi)
- These constraints can be relaxed in local/non-compact models. In global/compact models, these gives bounds to how much  $|R_{+}|^{2}$  is allowed. ・ロト ・ 同ト ・ ヨト ・ ヨト 3

Set Up Method Results

# Caveats

- $\bullet\,$  We assume  $\alpha'$  expansion is valid
  - Keep only leading  ${\it O}(\alpha')$  corrections
  - $\bullet\,$  Neglect all higher perturbative and non-perturbative  $\alpha'$  corrections

Set Up Method Results

# Caveats

- $\bullet\,$  We assume  $\alpha'$  expansion is valid
  - Keep only leading  ${\it O}(\alpha')$  corrections
  - $\bullet$  Neglect all higher perturbative and non-perturbative  $\alpha'$  corrections
- Ignore perturbative  $g_s$  corrections
  - One string-loop comes in at  ${\it O}(lpha'^3)$

イロト 不得下 不足下 不足下

Set Up Method Results

# Caveats

- $\bullet\,$  We assume  $\alpha'$  expansion is valid
  - Keep only leading  $\mathcal{O}(\alpha')$  corrections
  - $\bullet\,$  Neglect all higher perturbative and non-perturbative  $\alpha'$  corrections
- Ignore perturbative  $g_s$  corrections
  - One string-loop comes in at  $O(lpha'^3)$
- Ignore non-perturbative g<sub>s</sub> corrections
  - NS5-branes are just point-like instantons (no SEC violation)
  - Other spacetime non-perturbative effects, like gaugino condensation, could alter this picture

・ロト ・ 同ト ・ ヨト ・ ヨト

## Ansatz

• We'll take an extremely simple ansatz for our spacetime fields:

$$ds^{2} = e^{2\omega(y)} (\hat{g}_{\mu\nu}(x) dx^{\mu} dx^{\nu} + \hat{g}_{mn}(y) dy^{m} dy^{n})$$
  

$$H = H_{mnp}(y) dy^{m} dy^{n} dy^{p}$$
  

$$F = F_{mn}(y) dy^{m} dy^{n}$$
  

$$\phi = \phi(y)$$

# Ansatz

• We'll take an extremely simple ansatz for our spacetime fields:

$$ds^{2} = e^{2\omega(y)} (\hat{g}_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \hat{g}_{mn}(y)dy^{m}dy^{n})$$
  

$$H = H_{mnp}(y)dy^{m}dy^{n}dy^{p}$$
  

$$F = F_{mn}(y)dy^{m}dy^{n}$$
  

$$\phi = \phi(y)$$

- In particular  $\dot{\phi} = 0$ .
- Ignore axion h, dh = \*H.
- Ignore all other light scalars from compactifying.

 $\Rightarrow$  No dynamical scalars (moduli or otherwise).

イロト イボト イラト イラト

Set Up Results

### **Two Cases**

We consider two simple choices for spacetime metrics

Maximally symmetric spacetime

$$\hat{R}_{\mu
u} = \Lambda \hat{g}_{\mu
u}$$

In FLRW spacetime

$$ds_X^2 = -dt^2 + a(t)^2 h_{ij} dx^i dx^j$$

 $\Rightarrow$  focus on effects of  $|R_+|^2$  on  $\Lambda$  and a(t), respectively.

# Method

- We don't know form of internal fields  $R_{mnpq}(\Omega_+)$ ,  $H_{mnp}$ , etc.
- Use the dilaton equation

$$\tilde{\nabla}^{M}\tilde{\nabla}_{M}\phi + \frac{1}{2}e^{-\phi}|H|^{2} + \frac{\alpha'}{8}e^{-\phi/2}\left(\operatorname{tr}|F|^{2} - \operatorname{tr}|R_{+}|^{2}\right) = O(\alpha'^{2})$$

to eliminate these from the Einstein equations

$$\begin{split} \tilde{R}_{MN} &= \frac{1}{4} \tilde{g}_{MN} \tilde{\nabla}^P \tilde{\nabla}_P \phi + \frac{1}{2} \tilde{\nabla}_M \phi \tilde{\nabla}_N \phi + \frac{1}{4} e^{-\phi} H_{MPQ} H_N^{PQ} \\ &+ \frac{\alpha'}{4} e^{-\phi/2} \left[ \operatorname{tr} F_{MP} F_N^P - R_{+MPAB} R_{+N}^{PAB} \right]. \end{split}$$

# Method

Write in product frame, look at spacetime components:

$$\hat{R}_{\mu\nu} = \hat{g}_{\mu\nu}W^{-8}\hat{g}^{mn}\hat{\nabla}_m \left(W^8\hat{\nabla}_n\omega\right) - \frac{\alpha'}{4}e^{-2\omega}\left[\hat{R}_{\mu\rho\lambda}{}^{\sigma}\hat{R}_{\nu}{}^{\rho\lambda}{}_{\sigma} - 4\hat{R}_{\mu\nu}|\hat{\nabla}_m\omega|^2 + 2\hat{g}_{\mu\nu}\left(3\left(|\hat{\nabla}_m\omega|^2\right)^2 + 2|X_{mn}|^2 + \frac{1}{2}e^{-4\omega}|H_{mn}{}^p\hat{\nabla}_p\omega|^2\right)\right]$$

where

$$X_{mn}(\omega) = \hat{
abla}_m \omega \hat{
abla}_n \omega - \hat{
abla}_m \hat{
abla}_n \omega - \hat{g}_{mn} |\hat{
abla}_p \omega|^2$$

## Maximally symmetric spacetimes

• For 
$$\hat{R}_{\mu
u} = \Lambda \hat{g}_{\mu
u}$$
, this reduces to

$$W^{-8}\hat{\nabla}^{m}\left(W^{8}\hat{\nabla}_{m}\omega\right) = \Lambda$$
$$+\frac{\alpha'}{2}e^{-2\omega}\left[\frac{1}{3}\left(\Lambda - 3|\hat{\nabla}_{m}\omega|^{2}\right)^{2} + 2|X_{mn}|^{2} + \frac{1}{2}e^{-4\omega}|H_{mn}{}^{p}\hat{\nabla}_{p}\omega|^{2}\right]$$

- Note:  $R^2$  terms and  $|\hat{
  abla}\omega|^2$  combine into perfect square!
- As in no-go thm, multiply by  $W^8$  and integrate over Y

化口压 化固压 化医压 化医压

# **Result:**

$$\Lambda = -\frac{\alpha'}{2V'} \int_{\mathcal{M}} d^6 y \sqrt{\hat{g}} W^8 e^{-2\omega} \left[ 3|\hat{\nabla}_m \omega|^2 + \frac{1}{2} e^{-4\omega} |H_{mn}{}^p \hat{\nabla}_p \omega|^2 \right] + O(\alpha'^2)$$

where 
$$V' = \int_{\mathcal{M}} d^6 y \sqrt{\hat{g}} W^8$$

- In particular,  $\Lambda \leq 0$ .
- No de Sitter solutions in this setup

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ



Minkowski:

- No warping in string frame (consistent with Strominger '86)
- All supersymmetric solutions are of this type (Strominger)
- ∃? non-SUSY Minkowski vacua (probably not, finely-tuned)

AdS:

- Should exist! Not possible in supergravity
- $\Lambda \sim \mathcal{O}(lpha'/R^4)$ , so weakly curved
- Non-SUSY
- Seem to be generic solutions
- AdS/CFT? Worldsheet description?

dS:

- not possible by  $O(\alpha')$  corrections
- these effects are dual to O-planes in other duality frames
- this indicates that *O*-planes are probably not sufficient to violate SEC in fully global models

Results

# **Summary & Future Directions**

- Looked for SEC violation from  $O(\alpha')$  effects in heterotic supergravity
- Dilaton plays important role in constraining size of SEC violation
- $\bullet\,$  In the absence of dynamical scalars, solutions are maximally symmetric with  $\Lambda \leq 0$
- Only relevant missing piece is spacetime non-perturbative effects
- Could these generate V > 0 for, say, dilaton ( $\sim$  racetrack)?
- $\bullet\,$  Begun to include model-independent scalars  $\phi,\,h$  and volume
- Brief periods of inflation are possible, requires further analysis

# THANK YOU!

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Results

### **Future Directions**

- Begun to include model-independent scalars  $\phi$  and hPeriods of inflation *may* be possible, require further analysis
- Could extend to model-dependent scalars
- Only relevant missing piece is spacetime non-perturbative effects
- Could these generate V > 0 for, say, dilaton ( $\sim$  racetrack)?

Results

# **SEC Violation in String Theory**

• These effects are present in every corner of string landscape



Results

# **SEC Violation in String Theory**

• These effects are present in every corner of string landscape



Results

# **SEC Violation in String Theory**

• These effects are present in every corner of string landscape



Results

# **SEC Violation in String Theory**

• These effects are present in every corner of string landscape



Results

# **SEC Violation in String Theory**

• These effects are present in every corner of string landscape



- These couplings make flux compactifications possible
  - Even though higher order, cannot neglect
  - Produce background charges, act as sinks
  - Allow solutions to Gauss Law with non-trivial flux

Results

# **Comment on different frames**

- Action written with string frame metric, g
- EoM/SEC best studied in Einstein frame,

$$g=e^{\phi/2} ilde{g}$$

• In practice, useful to use product frame metric

$$g=e^{\phi/2}W^2\hat{g}$$

$$\omega = \log W + \frac{1}{4}\phi$$

conformal factor between string and product frame

Results

# **Modified Equations of Motion**

In Einstein frame,

• dilaton EoM

$$\tilde{\nabla}^{M}\tilde{\nabla}_{M}\phi + \frac{1}{2}e^{-\phi}|H|^{2} + \frac{\alpha'}{8}e^{-\phi/2}\left(\operatorname{tr}|F|^{2} - \operatorname{tr}|R_{+}|^{2}\right) = O(\alpha'^{2})$$

• Einstein equation (trace-reversed)

$$\tilde{R}_{MN} = \ldots + \frac{\alpha'}{4} e^{-\phi/2} \left[ \frac{1}{8} \tilde{g}_{MN} \operatorname{tr} |R_+|^2 - R_{+MPAB} R_{+N}^{PAB} \right] + O(\alpha'^2)$$

• won't need others

Results

### Minkowski spacetime

• From last slide,  $\Lambda = 0 \Leftrightarrow \hat{\nabla}\omega = 0$ 

Results

### Minkowski spacetime

- From last slide,  $\Lambda = \mathbf{0} \Leftrightarrow \hat{\nabla} \omega = \mathbf{0}$
- All warping (in Einstein frame) comes from  $\phi$ .
- String frame metric is (unwarped) direct product.

イロト イボト イラト イラト

Results

### Minkowski spacetime

- From last slide,  $\Lambda = \mathbf{0} \Leftrightarrow \hat{\nabla}\omega = \mathbf{0}$
- All warping (in Einstein frame) comes from  $\phi$ .
- String frame metric is (unwarped) direct product.
- Consistent with analysis by Strominger ('86): Max'ly symm. SUSY spacetimes are Minkowski, with  $\nabla \omega = 0$ .
- Are there other (non-SUSY) Minkowski solutions?

Results

### AdS spacetime

Generic solution will have  $\Lambda < 0.$ 

• Surprising, since no known AdS<sub>4</sub> solutions in heterotic Forbidden in pure supergravity

Results

### **AdS** spacetime

Generic solution will have  $\Lambda < 0.$ 

- Surprising, since no known *AdS*<sub>4</sub> solutions in heterotic Forbidden in pure supergravity
- $|\Lambda| \sim O(lpha')$ , so weakly curved

イロト 不得下 不同下 不同下

Results

### **AdS** spacetime

Generic solution will have  $\Lambda < 0.$ 

- Surprising, since no known AdS<sub>4</sub> solutions in heterotic Forbidden in pure supergravity
- $|\Lambda| \sim O(\alpha')$ , so weakly curved
- $\bullet\,$  Non-SUSY, since all SUSY sol'n have  $\Lambda=0$

Results

### AdS spacetime

Generic solution will have  $\Lambda < 0$ .

- Surprising, since no known AdS<sub>4</sub> solutions in heterotic Forbidden in pure supergravity
- $|\Lambda| \sim O(\alpha')$ , so weakly curved
- $\bullet\,$  Non-SUSY, since all SUSY sol'n have  $\Lambda=0$
- Only shown solutions are possible, need to construct examples Possible dual: IIB on  $K3 \times T^2$  with  $G^{(3,0)} \neq 0$

イロト イポト イラト イラト

Results

# Case 2: FLRW spacetimes

Performing similar analysis, find the Friedmann equations:

$$W^{-8}\hat{\nabla}^{m}\left(W^{8}\hat{\nabla}_{m}\omega\right)$$

$$= 3\left(\frac{\ddot{a}}{a}\right) + \frac{\alpha'}{2}e^{-2\omega}\left[3\left(\frac{\ddot{a}}{a} - |\hat{\nabla}_{m}\omega|^{2}\right)^{2} + 2|X_{mn}|^{2} + \frac{1}{2}e^{-4\omega}|H_{mn}{}^{p}\hat{\nabla}_{p}\omega|^{2}\right]$$

$$= -3\left(\frac{\dot{a}^{2} + k}{a^{2}}\right) - \frac{\alpha'}{2}e^{-2\omega}\left[3\left(\frac{\dot{a}^{2} + k}{a^{2}} - |\hat{\nabla}_{m}\omega|^{2}\right)^{2} + 2|X_{mn}|^{2} + \frac{1}{2}e^{-4\omega}|H_{mn}{}^{p}\hat{\nabla}_{p}\omega|^{2}\right]$$

Results

## Case 2: FLRW spacetimes

Integrating over 
$$Y$$

$$\frac{\ddot{a}}{a} = \frac{\dot{a}^2 + k}{a^2} = \frac{\Lambda_{eff}}{3}$$

where

$$\Lambda_{eff} = -\frac{\alpha'}{2V'} \int_{\mathcal{M}} d^{6}y \sqrt{\hat{g}} W^{8} e^{-2\omega} \left[ 3|\hat{\nabla}_{m}\omega|^{2} + 2|X_{mn}|^{2} + \frac{1}{2} e^{-4\omega} |H_{mn}{}^{p}\hat{\nabla}_{p}\omega|^{2} \right] + O(\alpha'^{2})$$

Once again  $\Lambda_{\textit{eff}} \leq 0$ 

### Results

# **Solutions:**

$$\frac{\ddot{a}}{a} = \frac{\dot{a}^2 + k}{a^2} = \frac{\Lambda_{eff}}{3}$$

Callum Quigley Constraints on String Cosmology

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

Results

# Solutions:

$$\frac{\ddot{a}}{a} = \frac{\dot{a}^2 + k}{a^2} = \frac{\Lambda_{eff}}{3}$$

 $\bullet \ \Lambda_{\textit{eff}} = 0$ 

$$\Rightarrow \left\{ egin{array}{c} \dot{a} = 1 \ k = -1 \end{array} 
ight.$$

This is Milne Universe, equivalent to a patch of Minkowski

イロト 不得下 不良下 不良下

Results

# **Solutions:**

$$\frac{\ddot{a}}{a} = \frac{\dot{a}^2 + k}{a^2} = \frac{\Lambda_{eff}}{3}$$

 $\bullet \ \Lambda_{eff} = 0$ 

This is Milne Universe, equivalent to a patch of Minkowski

 $\Rightarrow \begin{cases} \dot{a} = 1 \\ k = -1 \end{cases}$ 

•  $\Lambda_{eff} < 0$  $\Rightarrow \begin{cases} a(t) \sim \sin\left(\sqrt{|\Lambda_{eff}|/3}t\right) \\ k = \Lambda_{eff}/3 \end{cases}$ 

This "bounce" solution is actually just a patch of AdS

4 3 5 4 3 5 5

Results

# Summary of FRW Results:

- No new FRW solutions
- In particular, no acceleration  $\ddot{a} > 0$
- Not surprising in retrospect;
   no dynamical fields to source non-trivial behaviour or a(t)

Results

# **Extending the Results?**

- What if we relax our assumptions? Allow model independent scalars  $\phi$  and h
- $\bullet\,$  If we only allow  ${\it h},\,{\rm but}\;\dot{\phi}={\rm 0},$  immediately run into problems

Results

# **Extending the Results?**

- What if we relax our assumptions? Allow model independent scalars  $\phi$  and h
- $\bullet\,$  If we only allow  ${\it h},\,{\rm but}\;\dot{\phi}={\rm 0},$  immediately run into problems
- Consider 0m (time-internal) components of Einstein equations

Results

# **Extending the Results?**

- What if we relax our assumptions? Allow model independent scalars  $\phi$  and h
- $\bullet\,$  If we only allow  ${\it h},\,{\rm but}\;\dot{\phi}={\rm 0},$  immediately run into problems
- Consider 0m (time-internal) components of Einstein equations

$$0 = -3\alpha' e^{-6\omega} h\left(\frac{\dot{a}}{a}\right) \hat{\nabla}_m \omega + O(\dot{\phi})$$

Then 
$$\begin{cases} h = 0\\ \dot{a} = 0\\ \hat{\nabla}_m \omega = 0 \end{cases}$$

- First option we have studied already
- Second option is uninteresting
- Third is too constraining (reduces to  $\ddot{a} = 0$ )

不良区 不良区

 $\frac{1 \text{Introduction \& Motivations}}{\text{Calculations}} \text{Results}$ Including  $\dot{\phi} \neq 0$ 

- Simplest extension will require time-dependent dilaton
- This vastly complicates the e.o.m. e.g. The first Friedmann equations become

$$3\left(\frac{\ddot{a}}{a}\right) = -\frac{1}{V'} \int d^{6}y \sqrt{g_{6}} W^{8} \left[-\hat{\nabla}^{\mu}\hat{\nabla}_{\mu}\omega + 8\dot{\omega}^{2}\right] \\ + \frac{\alpha'}{2}e^{-2\omega} \left\{3\left(\frac{\ddot{a}}{a} + \ddot{\omega} + \dot{\omega}\left(\frac{\dot{a}}{a}\right) - |\hat{\nabla}_{m}\omega|^{2}\right)^{2}\right. \\ \left. + 2\left|\hat{g}_{mn}\ddot{\omega} + X_{mn}\right|^{2} - 8\left|\hat{\nabla}_{m}\dot{\omega} - \dot{\omega}\hat{\nabla}_{m}\omega\right|^{2} \\ \left. + 3e^{-4\omega}\left(\frac{1}{6}\left|H_{mn}^{p}\hat{\nabla}_{p}\omega\right|^{2} - h^{2}\left(\dot{\omega} + \frac{\dot{a}}{a}\right)^{2} - \dot{\omega}^{2}\left|H_{mnp}\right|^{2}\right)\right\}.$$

イロト イボト イラト イラト

Results

### **Status**

• That is only one component of Einstein equations, several others

イロト 不同 トイヨト イヨト

Results

## Status

- That is only one component of Einstein equations, several others
- Other field equations, too. And Bianchi.

Results

# Status

- That is only one component of Einstein equations, several others
- Other field equations, too. And Bianchi.
- Sufficiently complicated that we cannot yet rule out *periods* of inflation

Results

# Status

- That is only one component of Einstein equations, several others
- Other field equations, too. And Bianchi.
- Sufficiently complicated that we cannot yet rule out *periods* of inflation
- Although, a pure dS phase looks improbable/impossible.