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Knowns and Desires

Reducing string theory to four dimensions 
requires a choice of compactification.

The space of string compactifications is still 
largely mysterious. 

We need more powerful approaches to 
understand the interplay between cosmology, 
particle physics and Planck scale SUSY.  
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6

Need to specify a metric and a choice of 
flux/gauge bundle. 

In every corner of the diagram, one finds 
the same qualitative physics: a landscape of 
SUSY vacua, potential large warping, etc.

Only in the heterotic string is the required 
data purely NS with no RR fields. 

For models with RR fields, not much is known 
beyond the SUGRA approximation. 
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We will focus on N=1 SUSY heterotic string vacua.

Spacetime SUSY => (0,2) worldsheet SUSY. 
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7

We will focus on N=1 SUSY heterotic string vacua.

Spacetime SUSY => (0,2) worldsheet SUSY. 

In conventional models, this requires specifying a complex
manifold,

and a choice of H-flux and gauge-bundle:

The primary constraint is the Bianchi identity which has a 
gravitational correction:

Jab̄ = igab̄

gab̄Fab̄H = i(@ � @̄)J,

dH = ↵0

4 {tr(R ^R)(!+)� tr(F ^ F )}
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If H=0 at tree-level then the geometry is Ricci flat:

Rµ⌫ = 0
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If H=0 at tree-level then the geometry is Ricci flat:

These spaces are Calabi-Yau and the most commonly 
studied compactifications. 

They are likely to be a very special subset of generic 
heterotic compactifications which will typically have 
torsion: 

Generic compactifications should have few if any moduli 
other than the string dilaton. 

Rµ⌫ = 0

Rµ⌫ ⇠ Hµ⇢�H
⇢�
⌫ + . . .
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What we want: a linear framework analogous to the linear 
sigma model (Witten) that allows us to build analogues of 
the quintic Calabi-Yau.

P
i z

5
i = 0 ⇢ P4

We will need to discover new geometries since very few 
examples of torsional spaces are known.

9Saturday, March 3, 12



10

Non-Compact Models
Basics: we will restrict to (0,2) theories built from chiral 
superfields 

in a superspace with coordinates: (✓+, ✓̄+).

D̄+�i = 0.
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Non-Compact Models
Basics: we will restrict to (0,2) theories built from chiral 
superfields 

in a superspace with coordinates: (✓+, ✓̄+).

D̄+�i = 0.

Let’s recall that the simplest (2,2) non-linear sigma models 
are defined by a choice of Kahler potential: 

 L =

Z
d4✓K(�, �̄) gi|̄ = @i@|̄K
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For a (0,2) theory, the analogous data is a collection of
one-forms:

L ⇠
Z

d2✓
�
Ki(�, �̄)@��

i + c.c.
�

⇠ �gi|̄ @↵�
i@↵�|̄ + bi|̄ ✏

↵�@↵�
i@��

|̄ + . . . .
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For a (0,2) theory, the analogous data is a collection of
one-forms:

L ⇠
Z

d2✓
�
Ki(�, �̄)@��

i + c.c.
�

⇠ �gi|̄ @↵�
i@↵�|̄ + bi|̄ ✏

↵�@↵�
i@��

|̄ + . . . .

The metric is generally non-Kahler.

gi|̄ = @(|̄Ki), bi|̄ = @[|̄Ki]

Kahler => Ki = @iK
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Linear models have canonical kinetic terms and are 
usually UV free. Interactions are generated by gauging 
and by introducing superpotentials. 
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Linear models have canonical kinetic terms and are 
usually UV free. Interactions are generated by gauging 
and by introducing superpotentials. 

To build a gauge theory, we introduce a chiral fermionic 
field strength

with couplings: 

⌥ ⇠ �+ ✓+ (D � iF01)

L⌥ ⇠ 1

e2

Z
d2✓⌥̄⌥ ⇠ 1

e2

✓
1

2
F 2
01 + i�̄@+�+

1

2
D2

◆
,
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12

Linear models have canonical kinetic terms and are 
usually UV free. Interactions are generated by gauging 
and by introducing superpotentials. 

To build a gauge theory, we introduce a chiral fermionic 
field strength

with couplings: 

⌥ ⇠ �+ ✓+ (D � iF01)

L⌥ ⇠ 1

e2

Z
d2✓⌥̄⌥ ⇠ 1

e2

✓
1

2
F 2
01 + i�̄@+�+

1

2
D2

◆
,

LFI ⇠ t

4

Z
d✓+⌥+ c.c. ⇠ �rD +

✓

2⇡
F01.
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e ! 1

L
bosonic

= �|D
µ

�i|2 + ✓

2⇡F01 � V (�i)

13Saturday, March 3, 12



13

Taking          , we can neglect the gauge kinetic terms

with a potential energy:

e ! 1

L
bosonic

= �|D
µ

�i|2 + ✓

2⇡F01 � V (�i)
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Taking          , we can neglect the gauge kinetic terms

with a potential energy:

e ! 1

L
bosonic

= �|D
µ

�i|2 + ✓

2⇡F01 � V (�i)

V = 1
2e2D

2, D = �e2
�P

qi|�i|2 � r
�
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Taking          , we can neglect the gauge kinetic terms

with a potential energy:

The moduli space is a toric variety:

realized as a symplectic quotient of      for d charged 
fields by U(1) with moment map D.

     

e ! 1

L
bosonic

= �|D
µ

�i|2 + ✓

2⇡F01 � V (�i)

V = 1
2e2D

2, D = �e2
�P

qi|�i|2 � r
�

Cd

D�1(0)/U(1)
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In the IR limit, we can solve for the gauge field:

This gives the space-time B-field:

If we can make     effectively vary, we can generate
a non-zero H=dB. 

Aµ = i
2

P
qi(�̄i@µ�

i��i@µ�̄
i)P

q2i |�i|2 .

B = ✓
2⇡dA = ✏µ⌫Bi|̄@µ�i@⌫�|̄

✓
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Modify the FI term which is a superpotential coupling:

This has the following effect:

We generate a metric and H-field but these models are 
always non-compact. 

LFI ⇠ t

4

Z
d✓+f(�)⌥+ c.c.

✓
2⇡ ! ✓

2⇡ + Im(f(�))

V (�) ! e2

2

�P
qi|�i|2 +Re(f)� r

�2
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15

Modify the FI term which is a superpotential coupling:

This has the following effect:

We generate a metric and H-field but these models are 
always non-compact. 

LFI ⇠ t

4

Z
d✓+f(�)⌥+ c.c.

Gauge invariant

✓
2⇡ ! ✓

2⇡ + Im(f(�))

V (�) ! e2

2

�P
qi|�i|2 +Re(f)� r

�2

15Saturday, March 3, 12



16

Example: Conifold with Torsion 

A single U(1) gauge group with charged matter:

Take a quadratic                . Higher powers are possible 
but the dilaton appears to blow up. 

f ⇠ fim�i�m

|�i|2 � |�m|2 = r

�i(i = 1, 2) qi = +1, �m(m = 1, 2) qa = �1

�i = �̄i, �ı̄ = �i, �̃i = fim�m, �̃ı̄ = f̄im�̄m.
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This leads to a B-field and metric which depend on a 
tunable deformation:

Gi|̄ = �i|̄ �
�i�|̄ � e�i

e�|̄P
|�|2 ,

Bi|̄ = ��i
e�|̄ � �|̄

e�iP
|�|2 , . . .

This is a beautiful collection of non-compact 
torsional spaces.
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Compact Models
The previous approach never involves quantized fluxes.
Yet we expect flux quantization to play a central role:

How do we build compact models?

1
2⇡↵0

R
H 2 2⇡Z
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Let’s draw an analogy with N=1 D=4 gauge theory:

R
d

2
xd✓

+ ⌥ ,
R
d

4
x d

2
✓W

↵
W↵

Im
R
d

4
x d

2
✓ (⌧W↵

W↵) ! 1
4g2F

2 + ✓
32⇡2F ^ F

⌧ = 8⇡
g2 + i✓

Renormalization is tightly controlled by holomorphy,

⌧(µ) = b
2⇡i log(⇤/µ) + f(⇤b,�)

⇤b ! e2⇡i⇤b, ⌧ ⇠ ⌧ + 1
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We will allow log interactions for    in the fundamental 
theory.

Note that no scale is need to define the log in two 
dimensions.

⌥

Integers Different gauge factors

We could also add additional single valued functions but 
let’s focus on the log which has all the novelty.

LFI =

i
8⇡

R
d✓+ Na

i log

�
�

i
�
⌥

a
+ c.c.
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This model is not classically gauge-invariant! Under a    
gauge transformation:

The antisymmetric part of this anomaly (in a,b) can be 
canceled by the classical coupling

where       is antisymmetric. This coupling shifts by

 

U(1)b

L2 = 1
4⇡

R
d2✓+ T abAaV b

�

�L2 =
�
� 1

8⇡T
ab

R
d✓+ ⇤a⌥b + c.c.

�
.

T ab

�i ! eiQ
b
i⇤

b
�i

�LFI = �
⇣

Na
i Qb

i
8⇡

R
d✓+ ⇤b⌥a + c.c.

⌘
.

21Saturday, March 3, 12



22

On the other hand, the gauge theory is generally anomalous 
with a symmetric one-loop anomaly:

Choosing

gives a quantum gauge invariant theory. These are 
intrinsically quantum models.

Aab =
P

i Q
a
iQ

b
i �

P
↵ Qa

↵Q
b
�

Left-movers (NS5-branes & bundle)Right-movers (curvature)

�L =
⇣

Aab

8⇡

R
d✓+ ⇤a⌥b + c.c.

⌘
.

T ab +Q[a
i N

b]
i = 0,

P
i Q

(a
i N b)

i �Aab = 0.
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We can now add superpotentials to carve out surfaces
in these generalizations of toric varietes. Introduce a 
left-moving charged fermionic superfield:

The superpotential couplings

give a bosonic potential

For a suitable choice of fields and charges, these give 
conformal models generalizing Calabi-Yau spaces. 

D̄+� =
p
2E(�).

LJ = � 1p
2

R
d✓+ � · J(�) + c.c.

V = |E|2 + |J |2.
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Classical and Quantum 
Geometries

Let’s get a feel for the structures that arise, starting 
with the classical geometries that generalize projective 
space.
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Let’s start with the case of one field (NS5-brane-like):

Q|�|2 �N log |�| = r.

There is a minimum at              which defines an |�|2 = N
2Q rmin.
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For the other sign (anti-brane sign), there are solutions 
for all r. 

Note that the log field cannot vanish!
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Moving to the case of two fields:

No log interactions: |�0|2 + |�1|2 = r

Let’s define the skeleton for this space to be the contour
in the             plane solving this equation. (|�0|, |�1|)
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The skeleton for the case giving S2.
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One log interaction: |�0|2 + |�1|2 �N0 log |�0| = r.
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Two log interactions: 

|�0|2 + |�1|2 �N0 log |�0|�N1 log |�1| = r,
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For the case with many fields: 
Pd�1

i=0 |�i|2 �
P

i Ni log |�i| = r

The moduli spaces take the form for 0 to d-1 log 
interactions,

 Pd�1, S2d�2, S2d�3 ⇥ S1, S2d�4 ⇥ (S1)2, . . . , Sd�1 ⇥ (S1)d�1.
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For the case with many fields: 
Pd�1

i=0 |�i|2 �
P

i Ni log |�i| = r

The moduli spaces take the form for 0 to d-1 log 
interactions,

 Pd�1, S2d�2, S2d�3 ⇥ S1, S2d�4 ⇥ (S1)2, . . . , Sd�1 ⇥ (S1)d�1.

This is an immediate puzzle because     does not admit a
complex structure! 
 

S4
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For the case with many fields: 
Pd�1

i=0 |�i|2 �
P

i Ni log |�i| = r

The moduli spaces take the form for 0 to d-1 log 
interactions,

 Pd�1, S2d�2, S2d�3 ⇥ S1, S2d�4 ⇥ (S1)2, . . . , Sd�1 ⇥ (S1)d�1.

This is an immediate puzzle because     does not admit a
complex structure! 
 
Is SUSY broken? 

 

S4
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determining the low-energy physics. 
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fields. 
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We need to take the quantum anomaly into account in 
determining the low-energy physics. 

This is currently under investigation ... 

However, it appears that some of the logs can be 
generated by integrating out massive (generally anomalous) 
fields. 

This suggests that some of these models correspond to 
novel mixed branches of (0,2) theories. 
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Summary
There appear to be an enormous number of 
quantum consistent gauge theories.

These theories provide a linear framework 
for studying classes of flux vacua.

(0,2) theories provide an exceptionally rich 
venue for new gauge dynamics

This reflects the richness of the N=1 string 
vacua they can describe 
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Can this construction be extended to higher 
dimensions?
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Can this construction be extended to higher 
dimensions?

Brane construction for A/V couplings and the 
quantum case?

Renormalization?

Spectrum, elliptic genera etc.?
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