
On N = 2 Truncations of IIB on T 1,1

Phillip Szepietowski

University of Virginia

March 2, 2012 - GLSC – Purdue University
based on: 1111.6567 [Liu, PS, Halmagyi]

1 / 21



Outline

Consistent Truncations of Supergravity Theories

N = 2 Truncations on T 1,1

Important features from N = 2 matter coupled gauged
supergravity

Recap

2 / 21



Outline

Consistent Truncations of Supergravity Theories

N = 2 Truncations on T 1,1

Important features from N = 2 matter coupled gauged
supergravity

Recap

3 / 21



Consistent Truncations

There has been much recent interest in consistent truncations of
string and M-theory...

• AdS/CFT applications, mostly focused towards AdS/CMT

• Holographic superconductors, nonrelativistic geometries, etc.

Benefits of embedding in string theory

• Allows for more precise understanding of dual gauge theory and
operator mapping

• Higher derivative and other stringy effects can be systematically
included and studied

Today I’ll focus on another motivation...

• Constructing and understanding string solutions
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Conifold Solutions

Conifold solutions of IIB have provided much insight into
gauge/gravity duality

• Provide examples of gravity duals to gauge theories exhibiting
confinement, duality cascade, etc.

What can we learn by studying these reductions within actual
supergravity truncations?

• Many times one directly reduces theory to one dimension (the
“cone” coordinate over the compact manifold) and analyzes
equations there. Embedding these into 5d supergravities gives
another tool for analysis.

• Supergravity techniques allow for systematic construction of a
scalar “superpotential.”

• Perhaps knowledge of (5d) supergravity scalar coset will give insight
into dualities/solution generating techniques.
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Philosophy of consistent truncations

Dimensional Reduction

• Would like to dimensionally reduce IIB (or M-theory or whatever)
on a compact manifold to an effective lower dimensional theory – in
present case a five-dimensional supergravity.

• Usual procedure – KK reduction, gives infinite tower of states.

• Truncating the KK reduction to a subset of fields in such a way
that the higher dimensional equations are satisfied is termed a
“consistent truncation.”

Truncation procedure

• A convenient way to do this is to reduce on a set of forms defined
on internal manifold which close under exterior differentiation and
wedge products.

• Recently, this has been applied to many reductions, (nearly Kahler
manifolds, cosets, SE5 in M-theory and IIB, and various flux
compactifications)
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SU(2)× SU(2) Singlet Reduction on T 1,1

Structure of T 1,1 allows for many deformations
[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

• Metric is U(1) fiber over Kahler base – CP1 × CP1 allows for
“twisting” and “squashing”, also there are two individual Kahler
two-forms (one for each CP1.), and a holomorphic (2, 0) form.

ds2
10 = e2u3−2u1ds2

5 + e2u1+2u2E1Ē1 + e2u1−2u2E ′2Ē
′
2 + e−6u3−2u1E5E5

E ′2 = E2 + vĒ1

J1 = i
2E1 ∧ Ē1, J2 = i

2E2 ∧ Ē2, Ω = E1 ∧ E2, E5 = g5 + A1

• Expanding forms yields eight vectors and eleven scalars and allows for
three form flux:

F̃5 = (1 + ∗)[eZJ1 ∧ J2 ∧ E5 + K1 ∧ J1 ∧ J2 + K21 ∧ J1 ∧ E5

+K22 ∧ J2 ∧ E5 + 2<(L2 ∧ Ω ∧ E5)]

B i
2 = bi2 + bi1 ∧ E5 + c i0J+ + e i0J− + 2<(bi0Ω),

F i
3 = dB i

2 + j i0J− ∧ E5.
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The three N = 2 Truncations

Full reduction – N = 4 coupled to three vector multiplets

[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

N = 4 theory

gravity: metric + 6 × 1-forms + 1 scalar (u3) ,

3 vectors (N = 4): 3 × 1-forms + (u1, u2, k , c
i
0, e

i
0, b

i
0, b̄

i
0, τ, τ̄ , v , v̄) .

scalar-coset:
SO(5, 3)

SO(5)× SO(3)
× SO(1, 1)

• This contains the Papadopoulos-Tseytlin ansatz as a subtruncation.
Which has been used to discuss structure of many solutions on the
conifold.
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The three N = 2 Truncations

1. Betti-vector sector - 2 hyper-multiplets & 2 vector multiplets

scalar-coset:
SO(4, 2)

SO(4)× SO(2)
× SO(1, 1)× SO(1, 1)

Betti-vector truncation

gravity + 2 vectors: (gµν ;A1, k11, k12; u2, u3) ,

2 hypers: (u1, k , τ, τ̄ , b
i
0, b̄

i
0) .
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i
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• This can be further truncated to the universal SE5 sector. Which in
turn allows a truncation to pure N = 2 supergravity.
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• This also can be further truncated to the universal SE5 sector and
to pure N = 2 supergravity.

• Contains the Klebanov-Strassler solution.
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The three N = 2 Truncations

3. NS sector - 2 hyper-multiplets & 2 vector multiplets

scalar-coset:
SO(4, 2)

SO(4)× SO(2)
× SO(1, 1)× SO(1, 1)

NS truncation

gravity + 2 vectors: (gµν ;A1, b
2
1, b

2
2;φ+ 4u1, u3) ,

2 hypers: (φ− 4u1, u2, c
2
0 , e

2
0 , b

2
0, b̄

2
0, v , v̄) .
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The three N = 2 Truncations

3. NS sector - 2 hyper-multiplets & 2 vector multiplets

scalar-coset:
SO(4, 2)

SO(4)× SO(2)
× SO(1, 1)× SO(1, 1)

NS truncation

gravity + 2 vectors: (gµν ;A1, b
2
1, b

2
2;φ+ 4u1, u3) ,

2 hypers: (φ− 4u1, u2, c
2
0 , e

2
0 , b

2
0, b̄

2
0, v , v̄) .

• Same scalar coset as Betti-vector, but with different gauging.

• Does not allow a truncation to minimal N = 2 supergravity.

• Contains the Maldacena-Nunez solution.

• More generally, there is an interpolating solution which
demonstrates a geometric transition and can be related to the
baryonic branch of the Klebanov-Strassler solution through a TST
transformation [Maldacena,Martelli].
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Focus on two particular truncations

In the following we will focus on the second two truncations

1. The Betti-hyper truncation (includes KS)

2. The NS truncation (includes MN and interpolating solution)

• Today I will be mostly interested in understanding the scalar sectors
of these truncations

• Idea: use techniques of 5d gauged supergravity to understand
various features.

• In particular, we wish to understand the existence of scalar
superpotentials and the constraints imposed by supersymmetry.

But first, I should explain the relevant details of 5d gauged supergravity...
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Review of 5d N = 2 matter coupled gauged supergravity

Supersymmetry Variations [Ceresole,Dall’agata]

Gravity multiplet coupled to vector and hyper matter.

δψµ i = [Dµ +
i

24
X I (γµ

νρ − 4δνµγ
ρ)FI νρ]εi +

i

6
X I (PI )i

jεj

δλxi = (− i

2
γ · Dφx − 1

4
g xy∂yX

IγµνFI µν)εi − g xy∂yX
I (PI )i

jεj

δζA = f i AX (− i

2
γ · DqX +

1

2
X IKX

I )εi

Important Features

• Theory “specified” by scalar manifold and killing vectors KX
I or

prepotentials (PI )i
j ≡ P r

I (σr )i j .

• Can define a “superpotential” : W =
√
P rP r (P r ≡ X IP r

I ) – which
under certain conditions satisfies:

V = 2gΛΣ∂ΛW ∂ΣW −
4

3
W 2
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BPS Domain Wall Equations

Domain Wall Ansatz & BPS Equations

Break 5d space-time metric into a warped product of radial coordinate
and Minkowski space,

ds2
5 = dr2 + a(r)2ηµνdx

µdxν

Standard BPS equations can be written as

1

a

da(r)

dr
= ±1

3
W ,

dφΛ

dr
= ∓2gΛΣ∂ΣW ,

only IF [Ceresole,Dall’Agata,Kallosh,Van Proeyen]

∂xQ
r = 0 ,where Qr ≡ P r/

√
P rP r

which can be shown to be equivalent to all prepotentials being “parallel”

~PI × ~PJ = 0 , I , J = 1, .., nV + 1.
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True vs. Fake Superpotentials
In what follows we encounter two types of superpotentials:

True superpotential

• Wtrue ≡
√
P rP r

• Wtrue satisfies superpotential/potential relation ONLY when
~PI × ~PJ = 0 is satisfied

• In which case, solutions of BPS conditions are necessarily SUSY

Fake superpotential

• Wfake ≡ P3 (because it works)

? In addition Wfake is often constructed by considering the action of a
reduced one-dimensional system in r but relation to P3 not
completely understood

• In general, Wfake satisfies superpotential/potential relation and
yields BPS-like system of first order equations

• Solutions of “BPS” flow equations not necessarily SUSY

• However, when ~PI × ~PJ = 0 is enforced, solutions satisfy BPS
conditions
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reduced one-dimensional system in r but relation to P3 not
completely understood

• In general, Wfake satisfies superpotential/potential relation and
yields BPS-like system of first order equations

• Solutions of “BPS” flow equations not necessarily SUSY

• However, when ~PI × ~PJ = 0 is enforced, solutions satisfy BPS
conditions
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Back to truncations

To specify N = 2 structure need the prepotentials.
Find prepotentials in two independent ways:

1. Directly reduce IIB fermion supersymmetry variations and compare
to generic N = 2 supersymmetry variations

2. Construct prepotentials from killing vectors on coset manifold – the
gauging is determined by the reduction, so killing vectors are known

And find agreement between two methods – provides non-trivial
consistency check.

Lets look at BPS conditions for domain wall solutions in the
Betti-hyper and NS truncations...
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Betti-hyper sector
Prepotentials:

P0 = −i [( 3
2ρ2

(1 + |ρ|2)− 1
2e
−4u1eZ )σ3

+ 1
2ρe
−2u1vi (3(ρ̄− i)2b̄i0 + 3(ρ̄+ i)2bi0 − (1− i ρ̄)(1 + i ρ̄)j i0)σ+

− 1
2ρe
−2u1 v̄i (3(ρ+ i)2bi0 + 3(ρ− i)2b̄i0 − (1 + iρ)(1− iρ)j i0)σ−] ,

P1 = −2ie−4u1σ3 .

A fake superpotential emerges from P3(= X IP3
I ) (reproduces potential

but is known to have non-SUSY solutions!):

Wfake ≡ P3 = −1

2
e−4u1+4u3eZ + 2e−4u1−2u3 +

3

2τ2
(1 + |τ |2)e4u3 .

• This slightly generalizes superpotential constructed in literature for
the KS ansatz.

• Constraint ~PI × ~PJ = 0 in general not satisfied for solutions to the
Wfake system.

• Wfake also exists in Betti-vector and generic SE reductions.
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A non-supersymmetric solution
Can solve BPS flow equations on the deformed conifold using Wfake :

j1
0 = R, b1

0 = −
R

3
(F̃ −

1

2
) − i

P

6
(fKS − kKS ), e1

0 =
P

3
(fKS + kKS ),

j2
0 = P, b2

0 = −
P

3
(FKS −

1

2
) + i

R

6
(f̃ − k̃), e2

0 = −
R

3
(f̃ + k̃).

fKS (t) =
(−t coth t + 1)

2 sinh t
(−1 + cosh t)

+C1

(
− t +

1

2
sinh t +

t

2(1 + cosh t)
+

1

2
tanh t

2

)
−

C2

1 + cosh t
+ C3,

kKS (t) =
(−t coth t + 1)

2 sinh t
(1 + cosh t)

+C1

(
− t −

1

2
sinh t −

t

2(−1 + cosh t)
+

1

2
coth t

2

)
−

C2

1 − cosh t
+ C3,

FKS (t) =
1

2
−

t

2 sinh t
+

1

2
C1

(
cosh t −

t

sinh t

)
+

C2

sinh t
,

• SL(2,R) rotated version of a solution of Kuperstein and
Sonnenschein

• ~P0 × ~P1 6= 0 unless C1 = C̃1 = 0

• Also, unless Ci = C̃i = 0 the solution is singular
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NS-sector
Prepotentials:

P0 = i
[(

3− 1
2e
φ/2−2u1 (e−2u2 ((1 + |v |2)P − 6(vb0 + v̄ b̄0))− e2u2P)

)
σ3

−
(

3v̄ + 2ieφ/2−2u1 (3ib0 − i
2 v̄P)

)
σ+ − (c .c)σ−

]
,

P1 = i
[
eφ/2−2u1 (e−2u2 (1− |v |2) + e2u2 )σ3 − 2v̄ eφ/2−2u1σ+ − 2veφ/2−2u1σ−

]
,

P2 = 0 .

• ~PI × ~Pj = 0 imposes 2 non-trivial constraints on prepotentials

• No Wfake found for this truncation but imposing contraints gives a
true superpotential Wtrue

• However, can construct Wtrue =
√
P rP r while imposing paraller

constraint.

• Wtrue system then reproduces an ansatz of Maldacena and Martelli
which maps to the baryonic branch of the KS gauge theory via TST
transformation.
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N = 2 Truncations on T 1,1
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Recap – Consistent truncations have many uses

Considered several N = 2 truncations of IIB on T 1,1

• Mapped generic reduction on T 1,1 to various N = 2 theories

• Studying the scalar sector in detail – shed some light onto
”susy”-ness of some scalar superpotentials

• In progress – can we gain more insight into TST transformation? In
particular understanding the N = 4 coset better might help with
this.

• Also, perhaps there are more interesting AdS/CMT types of
applications to explore within these and other consistent
truncations.

In short, I think consistent truncations of maximal supergravity theories
provide a useful tool in the study of string/M-theory solutions.
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Thank you!
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