On $\mathcal{N}=2$ Truncations of IIB on $T^{1,1}$

Phillip Szepietowski

University of Virginia

March 2, 2012 - GLSC - Purdue University based on: 1111.6567 [Liu, PS, Halmagyi]

Outline

Consistent Truncations of Supergravity Theories
$\mathcal{N}=2$ Truncations on $T^{1,1}$

Important features from $\mathcal{N}=2$ matter coupled gauged supergravity

Recap

Outline

Consistent Truncations of Supergravity Theories

$\mathcal{N}=2$ Truncations on $T^{1,1}$

Important features from $\mathcal{N}=2$ matter coupled gauged supergravity

Recap

Consistent Truncations

There has been much recent interest in consistent truncations of string and M-theory...

- AdS/CFT applications, mostly focused towards AdS/CMT
- Holographic superconductors, nonrelativistic geometries, etc.

Consistent Truncations

There has been much recent interest in consistent truncations of string and M-theory...

- AdS/CFT applications, mostly focused towards AdS/CMT
- Holographic superconductors, nonrelativistic geometries, etc.

Benefits of embedding in string theory

- Allows for more precise understanding of dual gauge theory and operator mapping
- Higher derivative and other stringy effects can be systematically included and studied

Consistent Truncations

There has been much recent interest in consistent truncations of string and M-theory...

- AdS/CFT applications, mostly focused towards AdS/CMT
- Holographic superconductors, nonrelativistic geometries, etc.

Benefits of embedding in string theory

- Allows for more precise understanding of dual gauge theory and operator mapping
- Higher derivative and other stringy effects can be systematically included and studied

Today I'll focus on another motivation...

- Constructing and understanding string solutions

Conifold Solutions

Conifold solutions of IIB have provided much insight into gauge/gravity duality

- Provide examples of gravity duals to gauge theories exhibiting confinement, duality cascade, etc.

Conifold Solutions

Conifold solutions of IIB have provided much insight into gauge/gravity duality

- Provide examples of gravity duals to gauge theories exhibiting confinement, duality cascade, etc.

What can we learn by studying these reductions within actual supergravity truncations?

- Many times one directly reduces theory to one dimension (the "cone" coordinate over the compact manifold) and analyzes equations there. Embedding these into 5d supergravities gives another tool for analysis.
- Supergravity techniques allow for systematic construction of a scalar "superpotential."
- Perhaps knowledge of (5 d) supergravity scalar coset will give insight into dualities/solution generating techniques.

Philosophy of consistent truncations

Dimensional Reduction

- Would like to dimensionally reduce IIB (or M-theory or whatever) on a compact manifold to an effective lower dimensional theory - in present case a five-dimensional supergravity.
- Usual procedure - KK reduction, gives infinite tower of states.
- Truncating the KK reduction to a subset of fields in such a way that the higher dimensional equations are satisfied is termed a "consistent truncation."

Philosophy of consistent truncations

Dimensional Reduction

- Would like to dimensionally reduce IIB (or M-theory or whatever) on a compact manifold to an effective lower dimensional theory - in present case a five-dimensional supergravity.
- Usual procedure - KK reduction, gives infinite tower of states.
- Truncating the KK reduction to a subset of fields in such a way that the higher dimensional equations are satisfied is termed a "consistent truncation."

Truncation procedure

- A convenient way to do this is to reduce on a set of forms defined on internal manifold which close under exterior differentiation and wedge products.
- Recently, this has been applied to many reductions, (nearly Kahler manifolds, cosets, $S E_{5}$ in M-theory and IIB, and various flux compactifications)
$S U(2) \times S U(2)$ Singlet Reduction on $T^{1,1}$
Structure of $T^{1,1}$ allows for many deformations
[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]
$S U(2) \times S U(2)$ Singlet Reduction on $T^{1,1}$

Structure of $T^{1,1}$ allows for many deformations

[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

- Metric is $U(1)$ fiber over Kahler base $-\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ allows for "twisting" and "squashing", also there are two individual Kahler two-forms (one for each $\mathbb{C P}^{1}$.), and a holomorphic $(2,0)$ form.

$$
\begin{gathered}
d s_{10}^{2}=e^{2 u_{3}-2 u_{1}} d s_{5}^{2}+e^{2 u_{1}+2 u_{2}} E_{1} \bar{E}_{1}+e^{2 u_{1}-2 u_{2}} E_{2}^{\prime} \bar{E}_{2}^{\prime}+e^{-6 u_{3}-2 u_{1}} E_{5} E_{5} \\
E_{2}^{\prime}=E_{2}+v \bar{E}_{1} \\
J_{1}=\frac{i}{2} E_{1} \wedge \bar{E}_{1}, \quad J_{2}=\frac{i}{2} E_{2} \wedge \bar{E}_{2}, \quad \Omega=E_{1} \wedge E_{2}, \quad E_{5}=g_{5}+A_{1}
\end{gathered}
$$

$S U(2) \times S U(2)$ Singlet Reduction on $T^{1,1}$

Structure of $T^{1,1}$ allows for many deformations

[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

- Metric is $U(1)$ fiber over Kahler base $-\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ allows for "twisting" and "squashing", also there are two individual Kahler two-forms (one for each $\mathbb{C P}^{1}$.), and a holomorphic $(2,0)$ form.

$$
\begin{gathered}
d s_{10}^{2}=e^{2 u_{3}-2 u_{1}} d s_{5}^{2}+e^{2 u_{1}+2 u_{2}} E_{1} \bar{E}_{1}+e^{2 u_{1}-2 u_{2}} E_{2}^{\prime} \bar{E}_{2}^{\prime}+e^{-6 u_{3}-2 u_{1}} E_{5} E_{5} \\
E_{2}^{\prime}=E_{2}+v \bar{E}_{1} \\
J_{1}=\frac{i}{2} E_{1} \wedge \bar{E}_{1}, \quad J_{2}=\frac{i}{2} E_{2} \wedge \bar{E}_{2}, \quad \Omega=E_{1} \wedge E_{2}, \quad E_{5}=g_{5}+A_{1}
\end{gathered}
$$

- Expanding forms yields eight vectors and eleven scalars and allows for three form flux:

$$
\begin{gathered}
\widetilde{F}_{5}=(1+*)\left[e^{z} J_{1} \wedge J_{2} \wedge E_{5}+K_{1} \wedge J_{1} \wedge J_{2}+K_{21} \wedge J_{1} \wedge E_{5}\right. \\
\left.+K_{22} \wedge J_{2} \wedge E_{5}+2 \Re\left(L_{2} \wedge \Omega \wedge E_{5}\right)\right] \\
B_{2}^{i}=b_{2}^{i}+b_{1}^{i} \wedge E_{5}+c_{0}^{i} J_{+}+e_{0}^{i} J_{-}+2 \Re\left(b_{0}^{i} \Omega\right), \\
F_{3}^{i}=d B_{2}^{i}+j_{0}^{i} J_{-} \wedge E_{5} .
\end{gathered}
$$

Outline

Consistent Truncations of Supergravity Theories

$\mathcal{N}=2$ Truncations on $T^{1,1}$

Important features from $\mathcal{N}=2$ matter coupled gauged supergravity

Recap

The three $\mathcal{N}=2$ Truncations

Full reduction $-\mathcal{N}=4$ coupled to three vector multiplets
[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

$$
\begin{aligned}
& \text { gravity: } \frac{\mathcal{N}=4 \text { theory }}{\text { metric }+6 \times 1 \text {-forms }+1 \operatorname{scalar}\left(u_{3}\right),} \\
& 3 \text { vectors }(\mathcal{N}=4): 3 \times 1 \text {-forms }+\left(u_{1}, u_{2}, k, c_{0}^{i}, e_{0}^{i}, b_{0}^{i}, \bar{b}_{0}^{i}, \tau, \bar{\tau}, v, \bar{v}\right) . \\
& \text { scalar-coset: } \frac{S O(5,3)}{S O(5) \times S O(3)} \times S O(1,1)
\end{aligned}
$$

The three $\mathcal{N}=2$ Truncations

Full reduction $-\mathcal{N}=4$ coupled to three vector multiplets
[Cassani,Faedo;Bena,Giecold,Graña,Halmagyi,Orsi]

$$
\underline{\mathcal{N}=4 \text { theory }}
$$

$$
\text { gravity: } \quad \text { metric }+6 \times 1 \text {-forms }+1 \text { scalar }\left(u_{3}\right)
$$

3 vectors $(\mathcal{N}=4): \quad 3 \times 1$-forms $+\left(u_{1}, u_{2}, k, c_{0}^{i}, e_{0}^{i}, b_{0}^{i}, \bar{b}_{0}^{i}, \tau, \bar{\tau}, v, \bar{v}\right)$.

$$
\text { scalar-coset: } \frac{S O(5,3)}{S O(5) \times S O(3)} \times S O(1,1)
$$

- This contains the Papadopoulos-Tseytlin ansatz as a subtruncation. Which has been used to discuss structure of many solutions on the conifold.

The three $\mathcal{N}=2$ Truncations

1. Betti-vector sector - 2 hyper-multiplets \& 2 vector multiplets

$$
\text { scalar-coset: } \frac{S O(4,2)}{S O(4) \times S O(2)} \times S O(1,1) \times S O(1,1)
$$

$$
\begin{aligned}
& \text { gravity }+2 \text { vectors: } \frac{\text { Betti-vector truncation }}{} \\
& 2 \text { hypers: }\left(g_{\mu \nu} ; A_{1}, k_{11}, k_{12} ; u_{2}, u_{3}\right), \\
&\left(u_{1}, k, \tau, \bar{\tau}, b_{0}^{i}, \bar{b}_{0}^{i}\right) .
\end{aligned}
$$

The three $\mathcal{N}=2$ Truncations

1. Betti-vector sector - 2 hyper-multiplets \& 2 vector multiplets

$$
\begin{array}{cl}
\text { scalar-coset: } \frac{S O(4,2)}{S O(4) \times S O(2)} \times S O(1,1) \times S O(1,1) \\
\text { gravity }+2 \text { vectors: } & \frac{\text { Betti-vector truncation }}{\left(g_{\mu \nu} ; A_{1}, k_{11}, k_{12} ; u_{2}, u_{3}\right),} \\
2 \text { hypers: } & \left(u_{1}, k, \tau, \bar{\tau}, b_{0}^{i}, \bar{b}_{0}^{i}\right) .
\end{array}
$$

- This can be further truncated to the universal $S E_{5}$ sector. Which in turn allows a truncation to pure $\mathcal{N}=2$ supergravity.

The three $\mathcal{N}=2$ Truncations

2. Betti-hyper sector - $\mathbf{3}$ hyper-multiplets \& 1 vector multiplets

$$
\text { scalar-coset: } \frac{S O(4,3)}{S O(4) \times S O(3)} \times S O(1,1)
$$

Betti-hyper truncation
gravity + vector:
$\left(g_{\mu \nu} ; A_{1}, k_{11}+k_{12} ; u_{3}\right)$,
3 hypers:
$\left(u_{1}, k, e_{0}^{i}, \tau, \bar{\tau}, b_{0}^{i}, \bar{b}_{0}^{i}, v, \bar{v}\right)$.

The three $\mathcal{N}=2$ Truncations

2. Betti-hyper sector - $\mathbf{3}$ hyper-multiplets \& 1 vector multiplets

$$
\text { scalar-coset: } \frac{S O(4,3)}{S O(4) \times S O(3)} \times S O(1,1)
$$

Betti-hyper truncation

$$
\begin{aligned}
\text { gravity + vector: } & \left(g_{\mu \nu} ; A_{1}, k_{11}+k_{12} ; u_{3}\right), \\
3 \text { hypers: } & \left(u_{1}, k, e_{0}^{i}, \tau, \bar{\tau}, b_{0}^{i}, \bar{b}_{0}^{i}, v, \bar{v}\right) .
\end{aligned}
$$

- This also can be further truncated to the universal $S E_{5}$ sector and to pure $\mathcal{N}=2$ supergravity.
- Contains the Klebanov-Strassler solution.

The three $\mathcal{N}=2$ Truncations

3. NS sector - 2 hyper-multiplets \& 2 vector multiplets

$$
\text { scalar-coset: } \frac{S O(4,2)}{S O(4) \times S O(2)} \times S O(1,1) \times S O(1,1)
$$

NS truncation
gravity +2 vectors:
2 hypers:

$$
\begin{aligned}
& \left(g_{\mu \nu} ; A_{1}, b_{1}^{2}, b_{2}^{2} ; \phi+4 u_{1}, u_{3}\right) \\
& \left(\phi-4 u_{1}, u_{2}, c_{0}^{2}, e_{0}^{2}, b_{0}^{2}, \bar{b}_{0}^{2}, v, \bar{v}\right) .
\end{aligned}
$$

The three $\mathcal{N}=2$ Truncations

3. NS sector - 2 hyper-multiplets \& 2 vector multiplets

$$
\text { scalar-coset: } \frac{S O(4,2)}{S O(4) \times S O(2)} \times S O(1,1) \times S O(1,1)
$$

NS truncation

$$
\begin{aligned}
\text { gravity }+2 \text { vectors: } & \left(g_{\mu \nu} ; A_{1}, b_{1}^{2}, b_{2}^{2} ; \phi+4 u_{1}, u_{3}\right), \\
2 \text { hypers: } & \left(\phi-4 u_{1}, u_{2}, c_{0}^{2}, e_{0}^{2}, b_{0}^{2}, \bar{b}_{0}^{2}, v, \bar{v}\right) .
\end{aligned}
$$

- Same scalar coset as Betti-vector, but with different gauging.
- Does not allow a truncation to minimal $\mathcal{N}=2$ supergravity.
- Contains the Maldacena-Nunez solution.
- More generally, there is an interpolating solution which demonstrates a geometric transition and can be related to the baryonic branch of the Klebanov-Strassler solution through a TST transformation [Maldacena,Martelli].

Focus on two particular truncations

In the following we will focus on the second two truncations

Focus on two particular truncations

In the following we will focus on the second two truncations

1. The Betti-hyper truncation (includes KS)
2. The NS truncation (includes MN and interpolating solution)

Focus on two particular truncations

In the following we will focus on the second two truncations

1. The Betti-hyper truncation (includes KS)
2. The NS truncation (includes MN and interpolating solution)

- Today I will be mostly interested in understanding the scalar sectors of these truncations
- Idea: use techniques of 5d gauged supergravity to understand various features.
- In particular, we wish to understand the existence of scalar superpotentials and the constraints imposed by supersymmetry.

Focus on two particular truncations

In the following we will focus on the second two truncations

1. The Betti-hyper truncation (includes KS)
2. The NS truncation (includes MN and interpolating solution)

- Today I will be mostly interested in understanding the scalar sectors of these truncations
- Idea: use techniques of 5d gauged supergravity to understand various features.
- In particular, we wish to understand the existence of scalar superpotentials and the constraints imposed by supersymmetry.

But first, I should explain the relevant details of 5d gauged supergravity...

Outline

Consistent Truncations of Supergravity Theories

$\mathcal{N}=2$ Truncations on $T^{1,1}$
 Important features from $\mathcal{N}=2$ matter coupled gauged supergravity

Recap

Review of $5 d \mathcal{N}=2$ matter coupled gauged supergravity

Supersymmetry Variations [Ceresole, Dall'agata]
Gravity multiplet coupled to vector and hyper matter.

$$
\begin{aligned}
\delta \psi_{\mu i} & =\left[D_{\mu}+\frac{i}{24} X^{\prime}\left(\gamma_{\mu}^{\nu \rho}-4 \delta_{\mu}^{\nu} \gamma^{\rho}\right) F_{I \nu \rho}\right] \epsilon_{i}+\frac{i}{6} X^{\prime}\left(P_{l}\right)_{i}{ }^{j} \epsilon_{j} \\
\delta \lambda_{i}^{X} & =\left(-\frac{i}{2} \gamma \cdot D \phi^{x}-\frac{1}{4} g^{x y} \partial_{y} X^{\prime} \gamma^{\mu \nu} F_{I \mu \nu}\right) \epsilon_{i}-g^{x y} \partial_{y} X^{\prime}\left(P_{I}\right)_{i}{ }^{j} \epsilon_{j} \\
\delta \zeta^{A} & =f_{X}^{i A}\left(-\frac{i}{2} \gamma \cdot D q^{X}+\frac{1}{2} X^{\prime} K_{l}^{X}\right) \epsilon_{i}
\end{aligned}
$$

Review of $5 d \mathcal{N}=2$ matter coupled gauged supergravity

Supersymmetry Variations [Ceresole, Dall'agata]
Gravity multiplet coupled to vector and hyper matter.

$$
\begin{aligned}
\delta \psi_{\mu i} & =\left[D_{\mu}+\frac{i}{24} X^{\prime}\left(\gamma_{\mu}^{\nu \rho}-4 \delta_{\mu}^{\nu} \gamma^{\rho}\right) F_{I \nu \rho}\right] \epsilon_{i}+\frac{i}{6} X^{\prime}\left(P_{l}\right)_{i}{ }^{j} \epsilon_{j} \\
\delta \lambda_{i}^{X} & =\left(-\frac{i}{2} \gamma \cdot D \phi^{x}-\frac{1}{4} g^{x y} \partial_{y} X^{\prime} \gamma^{\mu \nu} F_{I \mu \nu}\right) \epsilon_{i}-g^{x y} \partial_{y} X^{\prime}\left(P_{I}\right)_{i}{ }^{j} \epsilon_{j} \\
\delta \zeta^{A} & =f_{X}^{i A}\left(-\frac{i}{2} \gamma \cdot D q^{X}+\frac{1}{2} X^{\prime} K_{l}^{X}\right) \epsilon_{i}
\end{aligned}
$$

Important Features

Review of $5 d \mathcal{N}=2$ matter coupled gauged supergravity

Supersymmetry Variations [Ceresole,Dall agata]
Gravity multiplet coupled to vector and hyper matter.

$$
\begin{aligned}
\delta \psi_{\mu i} & =\left[D_{\mu}+\frac{i}{24} X^{\prime}\left(\gamma_{\mu}{ }^{\nu \rho}-4 \delta_{\mu}^{\nu} \gamma^{\rho}\right) F_{l \nu \rho}\right] \epsilon_{i}+\frac{i}{6} X^{\prime}\left(P_{l}\right)_{i}^{j} \epsilon_{j} \\
\delta \lambda_{i}^{x} & =\left(-\frac{i}{2} \gamma \cdot D \phi^{x}-\frac{1}{4} g^{x y} \partial_{y} X^{\prime} \gamma^{\mu \nu} F_{l \mu \nu}\right) \epsilon_{i}-g^{x y} \partial_{y} X^{\prime}\left(P_{l}\right)_{i}^{j} \epsilon_{j} \\
\delta \zeta^{A} & =f_{X}^{i A}\left(-\frac{i}{2} \gamma \cdot D q^{x}+\frac{1}{2} X^{\prime} K_{l}^{X}\right) \epsilon_{i}
\end{aligned}
$$

Important Features

- Theory "specified" by scalar manifold and killing vectors K_{l}^{X} or prepotentials $\left(P_{l}\right)_{i}^{j} \equiv P_{l}^{r}\left(\sigma^{r}\right)^{i}{ }_{j}$.

Review of $5 d \mathcal{N}=2$ matter coupled gauged supergravity

Supersymmetry Variations [Ceresole,Dall agata]
Gravity multiplet coupled to vector and hyper matter.

$$
\begin{aligned}
\delta \psi_{\mu i} & =\left[D_{\mu}+\frac{i}{24} X^{\prime}\left(\gamma_{\mu}{ }^{\nu \rho}-4 \delta_{\mu}^{\nu} \gamma^{\rho}\right) F_{l \nu \rho}\right] \epsilon_{i}+\frac{i}{6} X^{\prime}\left(P_{l}\right)_{i}^{j} \epsilon_{j} \\
\delta \lambda_{i}^{\times} & =\left(-\frac{i}{2} \gamma \cdot D \phi^{x}-\frac{1}{4} g^{x y} \partial_{y} X^{\prime} \gamma^{\mu \nu} F_{l \mu \nu}\right) \epsilon_{i}-g^{x y} \partial_{y} X^{\prime}\left(P_{l}\right)_{i}^{j} \epsilon_{j} \\
\delta \zeta^{A} & =f_{X}^{i A}\left(-\frac{i}{2} \gamma \cdot D q^{X}+\frac{1}{2} X^{\prime} K_{l}^{X}\right) \epsilon_{i}
\end{aligned}
$$

Important Features

- Theory "specified" by scalar manifold and killing vectors K_{l}^{X} or prepotentials $\left(P_{I}\right)_{i}^{j} \equiv P_{I}^{r}\left(\sigma^{r}\right)^{i}{ }_{j}$.
- Can define a "superpotential" : $W=\sqrt{P^{r} P^{r}}\left(P^{r} \equiv X^{\prime} P_{I}^{r}\right)$ - which under certain conditions satisfies:

$$
V=2 g^{\wedge \Sigma} \partial_{\Lambda} W \partial_{\Sigma} W-\frac{4}{3} W^{2}
$$

BPS Domain Wall Equations

Domain Wall Ansatz \& BPS Equations

Break 5d space-time metric into a warped product of radial coordinate and Minkowski space,

$$
d s_{5}^{2}=d r^{2}+a(r)^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

BPS Domain Wall Equations

Domain Wall Ansatz \& BPS Equations

Break 5d space-time metric into a warped product of radial coordinate and Minkowski space,

$$
d s_{5}^{2}=d r^{2}+a(r)^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

Standard BPS equations can be written as

$$
\begin{aligned}
\frac{1}{a} \frac{d a(r)}{d r} & = \pm \frac{1}{3} W \\
\frac{d \phi^{\wedge}}{d r} & =\mp 2 g^{\wedge \Sigma} \partial_{\Sigma} W,
\end{aligned}
$$

BPS Domain Wall Equations

Domain Wall Ansatz \& BPS Equations

Break 5d space-time metric into a warped product of radial coordinate and Minkowski space,

$$
d s_{5}^{2}=d r^{2}+a(r)^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

Standard BPS equations can be written as

$$
\begin{aligned}
\frac{1}{a} \frac{d a(r)}{d r} & = \pm \frac{1}{3} W \\
\frac{d \phi^{\wedge}}{d r} & =\mp 2 g^{\wedge \Sigma} \partial_{\Sigma} W,
\end{aligned}
$$

only IF [Ceresole,Dall'Agata,Kallosh,Van Proeyen]

BPS Domain Wall Equations

Domain Wall Ansatz \& BPS Equations
Break 5d space-time metric into a warped product of radial coordinate and Minkowski space,

$$
d s_{5}^{2}=d r^{2}+a(r)^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

Standard BPS equations can be written as

$$
\begin{aligned}
\frac{1}{a} \frac{d a(r)}{d r} & = \pm \frac{1}{3} W \\
\frac{d \phi^{\wedge}}{d r} & =\mp 2 g^{\wedge \Sigma} \partial_{\Sigma} W
\end{aligned}
$$

only IF [Ceresole,Dall'Agata,Kallosh,Van Proeyen]

$$
\partial_{x} Q^{r}=0, \text { where } Q^{r} \equiv P^{r} / \sqrt{P^{r} P^{r}}
$$

BPS Domain Wall Equations

Domain Wall Ansatz \& BPS Equations

Break 5d space-time metric into a warped product of radial coordinate and Minkowski space,

$$
d s_{5}^{2}=d r^{2}+a(r)^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

Standard BPS equations can be written as

$$
\begin{aligned}
\frac{1}{a} \frac{d a(r)}{d r} & = \pm \frac{1}{3} W \\
\frac{d \phi^{\wedge}}{d r} & =\mp 2 g^{\wedge \Sigma} \partial_{\Sigma} W,
\end{aligned}
$$

only IF [Ceresole,Dall'Agata,Kallosh,Van Proeyen]

$$
\partial_{x} Q^{r}=0, \text { where } Q^{r} \equiv P^{r} / \sqrt{P^{r} P^{r}}
$$

which can be shown to be equivalent to all prepotentials being "parallel"

$$
\vec{P}_{I} \times \vec{P}_{J}=0, \quad I, J=1, . ., n_{V}+1 .
$$

True vs. Fake Superpotentials

In what follows we encounter two types of superpotentials:

True vs. Fake Superpotentials

In what follows we encounter two types of superpotentials:
True superpotential

- $W_{\text {true }} \equiv \sqrt{P^{r} P^{r}}$
- $W_{\text {true }}$ satisfies superpotential/potential relation ONLY when $\vec{P}_{I} \times \vec{P}_{J}=0$ is satisfied
- In which case, solutions of BPS conditions are necessarily SUSY

True vs. Fake Superpotentials

In what follows we encounter two types of superpotentials:
True superpotential

- $W_{\text {true }} \equiv \sqrt{P^{r} P^{r}}$
- $W_{\text {true }}$ satisfies superpotential/potential relation ONLY when $\vec{P}_{I} \times \vec{P}_{J}=0$ is satisfied
- In which case, solutions of BPS conditions are necessarily SUSY

Fake superpotential

- $W_{\text {fake }} \equiv P^{3}$ (because it works)

True vs. Fake Superpotentials

In what follows we encounter two types of superpotentials:
True superpotential

- $W_{\text {true }} \equiv \sqrt{P^{r} P^{r}}$
- $W_{\text {true }}$ satisfies superpotential/potential relation ONLY when $\vec{P}_{I} \times \vec{P}_{J}=0$ is satisfied
- In which case, solutions of BPS conditions are necessarily SUSY

Fake superpotential

- $W_{\text {fake }} \equiv P^{3}$ (because it works)
* In addition $W_{\text {fake }}$ is often constructed by considering the action of a reduced one-dimensional system in r but relation to P_{3} not completely understood

True vs. Fake Superpotentials

In what follows we encounter two types of superpotentials:
True superpotential

- $W_{\text {true }} \equiv \sqrt{P^{r} P^{r}}$
- $W_{\text {true }}$ satisfies superpotential/potential relation ONLY when $\vec{P}_{I} \times \vec{P}_{J}=0$ is satisfied
- In which case, solutions of BPS conditions are necessarily SUSY

Fake superpotential

- $W_{\text {fake }} \equiv P^{3}$ (because it works)
- In general, $W_{\text {fake }}$ satisfies superpotential/potential relation and yields BPS-like system of first order equations
- Solutions of "BPS" flow equations not necessarily SUSY
- However, when $\vec{P}_{I} \times \vec{P}_{J}=0$ is enforced, solutions satisfy BPS conditions

Back to truncations

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.
Find prepotentials in two independent ways:

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.
Find prepotentials in two independent ways:

1. Directly reduce IIB fermion supersymmetry variations and compare to generic $\mathcal{N}=2$ supersymmetry variations

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.
Find prepotentials in two independent ways:

1. Directly reduce IIB fermion supersymmetry variations and compare to generic $\mathcal{N}=2$ supersymmetry variations
2. Construct prepotentials from killing vectors on coset manifold - the gauging is determined by the reduction, so killing vectors are known

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.
Find prepotentials in two independent ways:

1. Directly reduce IIB fermion supersymmetry variations and compare to generic $\mathcal{N}=2$ supersymmetry variations
2. Construct prepotentials from killing vectors on coset manifold - the gauging is determined by the reduction, so killing vectors are known

And find agreement between two methods - provides non-trivial consistency check.

Back to truncations

To specify $\mathcal{N}=2$ structure need the prepotentials.
Find prepotentials in two independent ways:

1. Directly reduce IIB fermion supersymmetry variations and compare to generic $\mathcal{N}=2$ supersymmetry variations
2. Construct prepotentials from killing vectors on coset manifold - the gauging is determined by the reduction, so killing vectors are known

And find agreement between two methods - provides non-trivial consistency check.

Lets look at BPS conditions for domain wall solutions in the Betti-hyper and NS truncations...

Betti-hyper sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & -i\left[\left(\frac{3}{2 \rho_{2}}\left(1+|\rho|^{2}\right)-\frac{1}{2} e^{-4 u_{1}} e^{Z}\right) \sigma_{3}\right. \\
& \quad+\frac{1}{2 \rho} e^{-2 u_{1}} v_{i}\left(3(\bar{\rho}-i)^{2} \bar{b}_{0}^{i}+3(\bar{\rho}+i)^{2} b_{0}^{i}-(1-i \bar{\rho})(1+i \bar{\rho}) j_{0}^{i}\right) \sigma_{+} \\
& \left.\quad-\frac{1}{2 \rho} e^{-2 u_{1}} \bar{v}_{i}\left(3(\rho+i)^{2} b_{0}^{i}+3(\rho-i)^{2} \bar{b}_{0}^{i}-(1+i \rho)(1-i \rho) j_{0}^{i}\right) \sigma_{-}\right] \\
P_{1}= & -2 i e^{-4 u_{1}} \sigma_{3}
\end{aligned}
$$

Betti-hyper sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & -i\left[\left(\frac{3}{2 \rho_{2}}\left(1+|\rho|^{2}\right)-\frac{1}{2} e^{-4 u_{1}} e^{Z}\right) \sigma_{3}\right. \\
& \quad+\frac{1}{2 \rho} e^{-2 u_{1}} v_{i}\left(3(\bar{\rho}-i)^{2} \bar{b}_{0}^{i}+3(\bar{\rho}+i)^{2} b_{0}^{i}-(1-i \bar{\rho})(1+i \bar{\rho}) j_{0}^{i}\right) \sigma_{+} \\
& \left.\quad-\frac{1}{2 \rho} e^{-2 u_{1}} \bar{v}_{i}\left(3(\rho+i)^{2} b_{0}^{i}+3(\rho-i)^{2} \bar{b}_{0}^{i}-(1+i \rho)(1-i \rho) j_{0}^{i}\right) \sigma_{-}\right] \\
P_{1}= & -2 i e^{-4 u_{1}} \sigma_{3} .
\end{aligned}
$$

A fake superpotential emerges from $P^{3}\left(=X^{\prime} P_{I}^{3}\right)$ (reproduces potential but is known to have non-SUSY solutions!):

$$
W_{\text {fake }} \equiv P^{3}=-\frac{1}{2} e^{-4 u_{1}+4 u_{3}} e^{Z}+2 e^{-4 u_{1}-2 u_{3}}+\frac{3}{2 \tau_{2}}\left(1+|\tau|^{2}\right) e^{4 u_{3}}
$$

Betti-hyper sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & -i\left[\left(\frac{3}{2 \rho_{2}}\left(1+|\rho|^{2}\right)-\frac{1}{2} e^{-4 u_{1}} e^{Z}\right) \sigma_{3}\right. \\
& \quad+\frac{1}{2 \rho} e^{-2 u_{1}} v_{i}\left(3(\bar{\rho}-i)^{2} \bar{b}_{0}^{i}+3(\bar{\rho}+i)^{2} b_{0}^{i}-(1-i \bar{\rho})(1+i \bar{\rho}) j_{0}^{i}\right) \sigma_{+} \\
& \left.\quad-\frac{1}{2 \rho} e^{-2 u_{1}} \bar{v}_{i}\left(3(\rho+i)^{2} b_{0}^{i}+3(\rho-i)^{2} \bar{b}_{0}^{i}-(1+i \rho)(1-i \rho) j_{0}^{i}\right) \sigma_{-}\right] \\
P_{1}= & -2 i e^{-4 u_{1}} \sigma_{3} .
\end{aligned}
$$

A fake superpotential emerges from $P^{3}\left(=X^{\prime} P_{I}^{3}\right)$ (reproduces potential but is known to have non-SUSY solutions!):

$$
W_{\text {fake }} \equiv P^{3}=-\frac{1}{2} e^{-4 u_{1}+4 u_{3}} e^{Z}+2 e^{-4 u_{1}-2 u_{3}}+\frac{3}{2 \tau_{2}}\left(1+|\tau|^{2}\right) e^{4 u_{3}}
$$

- This slightly generalizes superpotential constructed in literature for the KS ansatz.

Betti-hyper sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & -i\left[\left(\frac{3}{2 \rho_{2}}\left(1+|\rho|^{2}\right)-\frac{1}{2} e^{-4 u_{1}} e^{Z}\right) \sigma_{3}\right. \\
& \quad+\frac{1}{2 \rho} e^{-2 u_{1}} v_{i}\left(3(\bar{\rho}-i)^{2} \bar{b}_{0}^{i}+3(\bar{\rho}+i)^{2} b_{0}^{i}-(1-i \bar{\rho})(1+i \bar{\rho}) j_{0}^{i}\right) \sigma_{+} \\
& \left.\quad-\frac{1}{2 \rho} e^{-2 u_{1}} \bar{v}_{i}\left(3(\rho+i)^{2} b_{0}^{i}+3(\rho-i)^{2} \bar{b}_{0}^{i}-(1+i \rho)(1-i \rho) j_{0}^{i}\right) \sigma_{-}\right] \\
P_{1}= & -2 i e^{-4 u_{1}} \sigma_{3} .
\end{aligned}
$$

A fake superpotential emerges from $P^{3}\left(=X^{\prime} P_{I}^{3}\right)$ (reproduces potential but is known to have non-SUSY solutions!):

$$
W_{\text {fake }} \equiv P^{3}=-\frac{1}{2} e^{-4 u_{1}+4 u_{3}} e^{Z}+2 e^{-4 u_{1}-2 u_{3}}+\frac{3}{2 \tau_{2}}\left(1+|\tau|^{2}\right) e^{4 u_{3}}
$$

- This slightly generalizes superpotential constructed in literature for the KS ansatz.
- Constraint $\vec{P}_{I} \times \vec{P}_{J}=0$ in general not satisfied for solutions to the $W_{\text {fake }}$ system.

Betti-hyper sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & -i\left[\left(\frac{3}{2 \rho_{2}}\left(1+|\rho|^{2}\right)-\frac{1}{2} e^{-4 u_{1}} e^{Z}\right) \sigma_{3}\right. \\
& \quad+\frac{1}{2 \rho} e^{-2 u_{1}} v_{i}\left(3(\bar{\rho}-i)^{2} \bar{b}_{0}^{i}+3(\bar{\rho}+i)^{2} b_{0}^{i}-(1-i \bar{\rho})(1+i \bar{\rho}) j_{0}^{i}\right) \sigma_{+} \\
& \left.\quad-\frac{1}{2 \rho} e^{-2 u_{1}} \bar{v}_{i}\left(3(\rho+i)^{2} b_{0}^{i}+3(\rho-i)^{2} \bar{b}_{0}^{i}-(1+i \rho)(1-i \rho) j_{0}^{i}\right) \sigma_{-}\right] \\
P_{1}= & -2 i e^{-4 u_{1}} \sigma_{3} .
\end{aligned}
$$

A fake superpotential emerges from $P^{3}\left(=X^{\prime} P_{I}^{3}\right)$ (reproduces potential but is known to have non-SUSY solutions!):

$$
W_{\text {fake }} \equiv P^{3}=-\frac{1}{2} e^{-4 u_{1}+4 u_{3}} e^{Z}+2 e^{-4 u_{1}-2 u_{3}}+\frac{3}{2 \tau_{2}}\left(1+|\tau|^{2}\right) e^{4 u_{3}}
$$

- This slightly generalizes superpotential constructed in literature for the KS ansatz.
- Constraint $\vec{P}_{I} \times \vec{P}_{J}=0$ in general not satisfied for solutions to the $W_{\text {fake }}$ system.
- $W_{\text {fake }}$ also exists in Betti-vector and generic SE reductions.

A non-supersymmetric solution

Can solve BPS flow equations on the deformed conifold using $W_{\text {fake }}$:

A non-supersymmetric solution

Can solve BPS flow equations on the deformed conifold using $W_{\text {fake }}$:

$$
\begin{array}{ll}
j_{0}^{1}=R, & b_{0}^{1}=-\frac{R}{3}\left(\tilde{F}-\frac{1}{2}\right)-i \frac{P}{6}\left(f_{K S}-k_{K S}\right),
\end{array} \quad e_{0}^{1}=\frac{P}{3}\left(f_{K S}+k_{K S}\right), ~ 子 b_{0}^{2}=-\frac{P}{3}\left(F_{K S}-\frac{1}{2}\right)+i \frac{R}{6}(\tilde{f}-\tilde{k}), \quad e_{0}^{2}=-\frac{R}{3}(\tilde{f}+\tilde{k}) .
$$

A non-supersymmetric solution

Can solve BPS flow equations on the deformed conifold using $W_{\text {fake }}$:

$$
\begin{aligned}
j_{0}^{1}= & R, \quad b_{0}^{1}=-\frac{R}{3}\left(\tilde{F}-\frac{1}{2}\right)-i \frac{P}{6}\left(f_{K S}-k_{K S}\right), \quad e_{0}^{1}=\frac{P}{3}\left(f_{K S}+k_{K S}\right), \\
j_{0}^{2}= & P, \quad b_{0}^{2}=-\frac{P}{3}\left(F_{K S}-\frac{1}{2}\right)+i \frac{R}{6}(\tilde{f}-\tilde{k}), \quad e_{0}^{2}=-\frac{R}{3}(\tilde{f}+\tilde{k}) . \\
f_{K S}(t)= & \frac{(-t \operatorname{coth} t+1)}{2 \sinh t}(-1+\cosh t) \\
& +C_{1}\left(-t+\frac{1}{2} \sinh t+\frac{t}{2(1+\cosh t)}+\frac{1}{2} \tanh \frac{t}{2}\right)-\frac{C_{2}}{1+\cosh t}+C_{3}, \\
k_{K S}(t)= & \frac{(-t \operatorname{coth} t+1)}{2 \sinh t}(1+\cosh t) \\
& +C_{1}\left(-t-\frac{1}{2} \sinh t-\frac{t}{2(-1+\cosh t)}+\frac{1}{2} \operatorname{coth} \frac{t}{2}\right)-\frac{C_{2}}{1-\cosh t}+C_{3}, \\
F_{K S}(t)= & \frac{1}{2}-\frac{t}{2 \sinh t}+\frac{1}{2} C_{1}\left(\cosh t-\frac{t}{\sinh t}\right)+\frac{C_{2}}{\sinh t},
\end{aligned}
$$

A non-supersymmetric solution

Can solve BPS flow equations on the deformed conifold using $W_{\text {fake }}$:

$$
\begin{aligned}
j_{0}^{1}= & R, \quad b_{0}^{1}=-\frac{R}{3}\left(\tilde{F}-\frac{1}{2}\right)-i \frac{P}{6}\left(f_{K S}-k_{K S}\right), \quad e_{0}^{1}=\frac{P}{3}\left(f_{K S}+k_{K S}\right), \\
j_{0}^{2}= & P, \quad b_{0}^{2}=-\frac{P}{3}\left(F_{K S}-\frac{1}{2}\right)+i \frac{R}{6}(\tilde{f}-\tilde{k}), \quad e_{0}^{2}=-\frac{R}{3}(\tilde{f}+\tilde{k}) . \\
f_{K S}(t)= & \frac{(-t \operatorname{coth} t+1)}{2 \sinh t}(-1+\cosh t) \\
& +C_{1}\left(-t+\frac{1}{2} \sinh t+\frac{t}{2(1+\cosh t)}+\frac{1}{2} \tanh \frac{t}{2}\right)-\frac{C_{2}}{1+\cosh t}+C_{3}, \\
k_{K S}(t)= & \frac{(-t \operatorname{coth} t+1)}{2 \sinh t}(1+\cosh t) \\
& +C_{1}\left(-t-\frac{1}{2} \sinh t-\frac{t}{2(-1+\cosh t)}+\frac{1}{2} \operatorname{coth} \frac{t}{2}\right)-\frac{C_{2}}{1-\cosh t}+C_{3}, \\
F_{K S}(t)= & \frac{1}{2}-\frac{t}{2 \sinh t}+\frac{1}{2} C_{1}\left(\cosh t-\frac{t}{\sinh t}\right)+\frac{C_{2}}{\sinh t},
\end{aligned}
$$

- $S L(2, R)$ rotated version of a solution of Kuperstein and Sonnenschein
- $\vec{P}_{0} \times \vec{P}_{1} \neq 0$ unless $C_{1}=\tilde{C}_{1}=0$
- Also, unless $C_{i}=\tilde{C}_{i}=0$ the solution is singular

NS-sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & i\left[\left(3-\frac{1}{2} e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(\left(1+|v|^{2}\right) P-6\left(v b_{0}+\bar{v} \bar{b}_{0}\right)\right)-e^{2 u_{2}} P\right)\right) \sigma_{3}\right. \\
& \left.-\left(3 \bar{v}+2 i e^{\phi / 2-2 u_{1}}\left(3 i b_{0}-\frac{i}{2} \bar{v} P\right)\right) \sigma_{+}-(c . c) \sigma_{-}\right], \\
& \quad-\left[e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(1-|v|^{2}\right)+e^{2 u_{2}}\right) \sigma_{3}-2 \bar{v} e^{\phi / 2-2 u_{1}} \sigma_{+}-2 v e^{\phi / 2-2 u_{1}} \sigma_{-}\right] \\
P_{1}= & i .
\end{aligned}
$$

NS-sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & i\left[\left(3-\frac{1}{2} e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(\left(1+|v|^{2}\right) P-6\left(v b_{0}+\bar{v} \bar{b}_{0}\right)\right)-e^{2 u_{2}} P\right)\right) \sigma_{3}\right. \\
& \left.-\left(3 \bar{v}+2 i e^{\phi / 2-2 u_{1}}\left(3 i b_{0}-\frac{i}{2} \bar{v} P\right)\right) \sigma_{+}-(c . c) \sigma_{-}\right], \\
& \quad-\left[e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(1-|v|^{2}\right)+e^{2 u_{2}}\right) \sigma_{3}-2 \bar{v} e^{\phi / 2-2 u_{1}} \sigma_{+}-2 v e^{\phi / 2-2 u_{1}} \sigma_{-}\right] \\
P_{1}= & i .
\end{aligned}
$$

- $\vec{P}_{I} \times \vec{P}_{j}=0$ imposes 2 non-trivial constraints on prepotentials

NS-sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & i\left[\left(3-\frac{1}{2} e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(\left(1+|v|^{2}\right) P-6\left(v b_{0}+\bar{v} \bar{b}_{0}\right)\right)-e^{2 u_{2}} P\right)\right) \sigma_{3}\right. \\
& \left.\quad-\left(3 \bar{v}+2 i e^{\phi / 2-2 u_{1}}\left(3 i b_{0}-\frac{i}{2} \bar{v} P\right)\right) \sigma_{+}-(c . c) \sigma_{-}\right], \\
P_{1}= & i\left[e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(1-|v|^{2}\right)+e^{2 u_{2}}\right) \sigma_{3}-2 \bar{v} e^{\phi / 2-2 u_{1}} \sigma_{+}-2 v e^{\phi / 2-2 u_{1}} \sigma_{-}\right] \\
P_{2}= & 0 .
\end{aligned}
$$

- $\vec{P}_{I} \times \vec{P}_{j}=0$ imposes 2 non-trivial constraints on prepotentials
- No $W_{\text {fake }}$ found for this truncation but imposing contraints gives a true superpotential $W_{\text {true }}$

NS-sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & i\left[\left(3-\frac{1}{2} e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(\left(1+|v|^{2}\right) P-6\left(v b_{0}+\bar{v} \bar{b}_{0}\right)\right)-e^{2 u_{2}} P\right)\right) \sigma_{3}\right. \\
& \left.\quad-\left(3 \bar{v}+2 i e^{\phi / 2-2 u_{1}}\left(3 i b_{0}-\frac{i}{2} \bar{v} P\right)\right) \sigma_{+}-(c . c) \sigma_{-}\right], \\
P_{1}= & i\left[e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(1-|v|^{2}\right)+e^{2 u_{2}}\right) \sigma_{3}-2 \bar{v} e^{\phi / 2-2 u_{1}} \sigma_{+}-2 v e^{\phi / 2-2 u_{1}} \sigma_{-}\right] \\
P_{2}= & 0 .
\end{aligned}
$$

- $\vec{P}_{I} \times \vec{P}_{j}=0$ imposes 2 non-trivial constraints on prepotentials
- No $W_{\text {fake }}$ found for this truncation but imposing contraints gives a true superpotential $W_{\text {true }}$
- However, can construct $W_{\text {true }}=\sqrt{P^{r} P^{r}}$ while imposing paraller constraint.

NS-sector

Prepotentials:

$$
\begin{aligned}
P_{0}= & i\left[\left(3-\frac{1}{2} e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(\left(1+|v|^{2}\right) P-6\left(v b_{0}+\bar{v} \bar{b}_{0}\right)\right)-e^{2 u_{2}} P\right)\right) \sigma_{3}\right. \\
& \left.\quad-\left(3 \bar{v}+2 i e^{\phi / 2-2 u_{1}}\left(3 i b_{0}-\frac{i}{2} \bar{v} P\right)\right) \sigma_{+}-(c . c) \sigma_{-}\right], \\
P_{1}= & i\left[e^{\phi / 2-2 u_{1}}\left(e^{-2 u_{2}}\left(1-|v|^{2}\right)+e^{2 u_{2}}\right) \sigma_{3}-2 \bar{v} e^{\phi / 2-2 u_{1}} \sigma_{+}-2 v e^{\phi / 2-2 u_{1}} \sigma_{-}\right] \\
P_{2}= & 0 .
\end{aligned}
$$

- $\vec{P}_{I} \times \vec{P}_{j}=0$ imposes 2 non-trivial constraints on prepotentials
- No $W_{\text {fake }}$ found for this truncation but imposing contraints gives a true superpotential $W_{\text {true }}$
- However, can construct $W_{\text {true }}=\sqrt{P^{r} P^{r}}$ while imposing paraller constraint.
- $W_{\text {true }}$ system then reproduces an ansatz of Maldacena and Martelli which maps to the baryonic branch of the KS gauge theory via TST transformation.

Outline

> Consistent Truncations of Supergravity Theories
> $\mathcal{N}=2$ Truncations on $T^{1,1}$

> Important features from $\mathcal{N}=2$ matter coupled gauged supergravity

Recap

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

- Mapped generic reduction on $T^{1,1}$ to various $\mathcal{N}=2$ theories

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

- Mapped generic reduction on $T^{1,1}$ to various $\mathcal{N}=2$ theories
- Studying the scalar sector in detail - shed some light onto "susy"-ness of some scalar superpotentials

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

- Mapped generic reduction on $T^{1,1}$ to various $\mathcal{N}=2$ theories
- Studying the scalar sector in detail - shed some light onto "susy"-ness of some scalar superpotentials
- In progress - can we gain more insight into TST transformation? In particular understanding the $\mathcal{N}=4$ coset better might help with this.

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

- Mapped generic reduction on $T^{1,1}$ to various $\mathcal{N}=2$ theories
- Studying the scalar sector in detail - shed some light onto "susy"-ness of some scalar superpotentials
- In progress - can we gain more insight into TST transformation? In particular understanding the $\mathcal{N}=4$ coset better might help with this.
- Also, perhaps there are more interesting AdS/CMT types of applications to explore within these and other consistent truncations.

Recap - Consistent truncations have many uses

Considered several $\mathcal{N}=2$ truncations of IIB on $T^{1,1}$

- Mapped generic reduction on $T^{1,1}$ to various $\mathcal{N}=2$ theories
- Studying the scalar sector in detail - shed some light onto "susy"-ness of some scalar superpotentials
- In progress - can we gain more insight into TST transformation? In particular understanding the $\mathcal{N}=4$ coset better might help with this.
- Also, perhaps there are more interesting AdS/CMT types of applications to explore within these and other consistent truncations.

In short, I think consistent truncations of maximal supergravity theories provide a useful tool in the study of string/M-theory solutions.

Thank you!

