Semiclassical approach to string spectrum in AdS/CFT

Arkady Tseytlin

R. Roiban, AT, arXiv:0906.4294, arXiv:1102.1209
M. Beccaria, S. Giombi, R. Roiban, AT, to appear

General aims:

- understand quantum gauge theories at any coupling
- understand string theories in non-trivial backgrounds

Maximally symmetric case of gauge-string duality:
$\mathcal{N}=4 \mathrm{SYM}-A d S_{5} \times S^{5}$ superstring
Integrability:
allows "in principle" to solve the problem of spectrum of anomalous dimensions / string energies

Spectrum of states

I. Spectrum of "long" operators = "semiclassical" string states determined by Asymptotic Bethe Ansatz (2002-2007)

- its final (BES) form found after intricate superposition of information from perturbative gauge theory (spin chain, BA,...) and perturbative string theory (classical and 1-loop phase,...), symmetries (S-matrix), assumption of exact integrability
- consequences checked against available gauge and string data

Key example: cusp anomalous dimension $\operatorname{Tr}\left(\Phi D^{S} \Phi\right)$

$$
\Delta=S+2+f(\lambda) \ln S+\ldots, \quad S \gg 1
$$

$f(\lambda \ll 1)=\frac{\lambda}{2 \pi^{2}}\left[1-\frac{\lambda}{48}+\frac{11 \lambda^{2}}{2^{8} \cdot 45}-\left(\frac{73}{630}+\frac{4 \zeta^{2}(3)}{\pi^{6}}\right) \frac{\lambda^{3}}{2^{7}}+\ldots\right]$

$$
f(\lambda \gg 1)=\frac{\sqrt{\lambda}}{\pi}\left[1-\frac{3 \ln 2}{\sqrt{\lambda}}-\frac{K}{(\sqrt{\lambda})^{2}}-\ldots\right]
$$

exact equation [Basso, Korchemsky, Kotanski]
II. Spectrum of "short" operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)
[Ambjorn, Janik, Kristjansen; Arutyunov, Frolov;
Gromov, Kazakov, Vieira; Banjok, Janik; ...]

- reconstructed from ABA using solely methods/intuition of 2-d integrable QFT, i.e. string-theory side
- highly non-trivial construction - lack of 2-d Lorentz invariance in the standard "BMN-vacuum-adapted" l.c. gauge
- in few cases ABA "improved" by Luscher corrections is enough:

4 and 5-loop Konishi dimension, 4-loop minimal twist op. dim

- need more data to check predictions at $\lambda \ll 1$ and $\lambda \gg 1$:
against perturbative gauge-theory and string-theory data

Key example:
dimension $\Delta=\Delta_{0}+\gamma(\lambda)$ of Konishi operator $\operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right)$

$$
\begin{aligned}
\Delta(\lambda \ll 1)=2 & +\frac{12 \lambda}{(4 \pi)^{2}}\left[1-\frac{4 \lambda}{(4 \pi)^{2}}+\frac{28 \lambda^{2}}{(4 \pi)^{4}}\right. \\
& \quad-[208-48 \zeta(3)+120 \zeta(5)] \frac{\lambda^{3}}{(4 \pi)^{6}} \\
+8[158+ & \left.\left.72 \zeta(3)-54 \zeta^{2}(3)-90 \zeta(5)+315 \zeta(7)\right] \frac{\lambda^{4}}{(4 \pi)^{8}}+\ldots\right]
\end{aligned}
$$

5-loop result from integrability confirmed [Eden et al 2012]
Suppose can sum up $\lambda \ll 1$ expansion and re-expand at $\lambda \gg 1$
String theory suggests structure of strong-coupling expansion:
[Roiban, AT 09]

$$
\begin{aligned}
\Delta(\lambda \gg 1) & =2 \sqrt[4]{\lambda}+\mathrm{b}_{0}+\frac{b_{1}}{\sqrt[4]{\lambda}}+\frac{b_{2}}{(\sqrt[4]{\lambda})^{3}}+\ldots \\
& =2 \sqrt[4]{\lambda}\left[1+\frac{b_{1}}{2 \sqrt{\lambda}}+\frac{b_{2}}{2(\sqrt{\lambda})^{2}}+\ldots\right]+\mathrm{b}_{0}
\end{aligned}
$$

Recent progress:
values of b_{1}, b_{2}, \ldots matched between TBA and string theory
Extracting direct TBA predictions at strong coupling is hard start at weak coupling for $\operatorname{sl}(2)$ descendant $\operatorname{Tr}\left(\Phi D^{2} \Phi\right)\left(\Delta_{0}=4\right)$; plot numerically $\Delta(\lambda)$;
match to expected strong-coupling expansion - extract b_{i}
[Gromov, Kazakov, Vieira 09, Frolov 10]

$$
\mathrm{b}_{0}=0, \quad b_{1} \approx 1.988, \quad b_{2} \approx-3.1
$$

string theory computation
[Roiban, AT 09, 11; Gromov,Serban, Shenderovich, Volin 11]

$$
\mathrm{b}_{0}=0, \quad b_{1}=2
$$

more recent [Gromov, Valatka 11]

$$
b_{2}=\frac{1}{2}-3 \zeta(3)
$$

using "2-loop" result of [Basso 11] (see below)

Many open questions:
Analytic form of strong-coupling expansion from TBA/Y-system?
Other quantum states?
How to match to string spectrum in near-flat-space expansion?
general structure of the spectrum?

Dimensions of short operators
$=$ energies of quantum string states:

Aims:

- compute leading $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ correction to energy of "lightest" massive string states on first massive level dual to operators in Konishi multiplet in SYM theory
- check against predictions of TBA approach
- understand structure of energy of higher spin states on leading Regge trajectory

Konishi operator multiplet:
long multiplet related to singlet by susy
$\left[J_{2}-J_{3}, J_{1}-J_{2}, J_{2}+J_{3}\right]_{\left(s_{L}, s_{R}\right)}=[0,0,0]_{(0,0)}$
$s_{L, R}=\frac{1}{2}\left(S_{1} \pm S_{2}\right)$
$S O(6)\left(J_{1}, J_{2}, J_{3}\right)$ and $S O(4)\left(S_{1}, S_{2}\right)$ labels
of $S O(2,4) \times S O(6)$ global symmetry
[Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]
see table
$\Delta=\Delta_{0}+\gamma(\lambda), \quad \Delta_{0}=2, \frac{5}{2}, 3, \ldots, 10$

- same anomalous dimension γ
singlet eigen-state of anom. dim. matrix with lowest eigenvalue
examples of gauge theory operators in Konishi multiplet:
$[0,0,0]_{(0,0)}$:
$\operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right), \quad i=1,2,3, \quad \Delta_{0}=2$
$[2,0,2]_{(0,0)}$:
$\operatorname{Tr}\left(\left[\Phi_{1}, \Phi_{2}\right]^{2}\right)$ in $s u(2)$ sector, $\Delta_{0}=4$
$[0,2,0]_{(1,1)}$:
$\operatorname{Tr}\left(\Phi_{1} D^{2} \Phi_{1}\right)$ in $s l(2)$ sector, $\Delta_{0}=4$

AdS/CFT duality:

Konishi operator dual to
"lightest" among massive $A d S_{5} \times S^{5}$ string states
large $\sqrt{\lambda}=\frac{\mathrm{R}^{2}}{\alpha^{\prime}}$:

- "small" string at "center" of $A d S_{5}$ - in nearly flat space

Comparison between gauge and string theory states:

GT $(\lambda \ll 1)$: operators built out of free fields, canonical dim. Δ_{0} determines operators that can mix

ST $(\lambda \gg 1)$: near-flat-space string states built out of free oscillators, level n determines states that can mix
(i) relate states with same global charges
(ii) assume "non-intersection principle"
no level crossing for states with same quantum numbers as λ changes from strong to weak coupling

Flat space case:
$m^{2}=\frac{4 n}{\alpha^{\prime}}, \quad n=\frac{1}{2}(N+\bar{N})=0,1,2, \ldots, \quad N=\bar{N}$
$n=0$: massless IIB supergravity (BPS) level
1.c. vacuum $\mid 0>:(8+8)^{2}=256$ states
$n=1$: first massive level (many states, highly degenerate)
$\left[\left(a_{-1}^{i}+S_{-1}^{a}\right) \mid 0>\right]^{2}=[(8+8) \times(8+8)]^{2}$
in $S O(9)$ reps:
$([2,0,0,0]+[0,0,1,0]+[1,0,0,1])^{2}=(44+84+128)^{2}$
e.g. $44 \times 44=1+36+44+450+495+910$
$84 \times 84=1+36+44+84+126+495+594+924+1980+2772$
switching on $A d S_{5} \times S^{5}$ background fields lifts degeneracy
states with "lightest mass" at first excited string level
should correspond to Konishi multiplet
string spectrum in $A d S_{5} \times S^{5}$:
long multiplets $\mathcal{A}_{[k, p, q]\left(s, s^{\prime}\right)}^{\Delta}$ of $\operatorname{PSU}(2,2 \mid 4)$
highest weight states: $[k, p, q]_{\left(s, s^{\prime}\right)}$

Remarkably, flat-space string spectrum can be re-organized in multiplets of $S O(2,4) \times S O(6) \subset P S U(2,2 \mid 4)$
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
$S O(4) \times S O(5) \subset S O(9)$ rep.
lifted to $S O(4) \times S O(6)$ rep. of $S O(2,4) \times S O(6)$

Konishi long multiplet
$\widehat{T}_{1}=(1+Q+Q \wedge Q+\ldots)[0,0,0]_{(0,0)}$
determines the KK "floor" of 1-st excited string level
$H_{1}=\sum_{J=0}^{\infty}[0, J, 0]_{(0,0)} \times \widehat{T}_{1}$

What one should expect for energy of scalar massive state in $A d S_{5}$:

$$
\begin{aligned}
& \left(-\nabla^{2}+m^{2}\right) \Phi+\ldots=0 \\
& \Delta(\Delta-4)=(m \mathrm{R})^{2}+O\left(\alpha^{\prime}\right)=4 n \frac{\mathrm{R}^{2}}{\alpha^{\prime}}+O\left(\alpha^{\prime}\right) \\
& \Delta=2+\sqrt{(m \mathrm{R})^{2}+4+O\left(\alpha^{\prime}\right)}
\end{aligned}
$$

$$
\Delta(\lambda \gg 1)=\sqrt{4 n \sqrt{\lambda}}+\ldots, \quad \sqrt{\lambda}=\frac{\mathrm{R}^{2}}{\alpha^{\prime}}
$$

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:
$n=1: \quad \Delta=2 \sqrt[4]{\lambda}+\ldots$

Subleading corrections?

Approaches to computation of corrections to string energies:
(i) vertex operator approach:
use $A d S_{5} \times S^{5}$ string sigma model perturbation theory to find leading terms in anomalous dimension of corresponding vertex operators [Polyakov 01; AT 03]
(ii) space-time effective action approach: use near-flat-space expansion and NSR vertex operators to reconstruct $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ corrections to corresponding massive string state equation of motion [Burrington, Liu 05]
(iii) "light-cone" quantization approach:
start with light-cone gauge $A d S_{5} \times S^{5}$ string action and compute corrections to energy of corresponding flat-space oscillator string state [Metsaev, Thorn, AT 00]
(iv) semiclassical approach:
identify short string state as small-spin limit of
semiclassical string state

- reproduce the structure of strong-coupling corrections
to short operators
[Tirziu, AT 08; Roiban, AT 09, 11]

Spectrum of quantum string states
from target space anomalous dimension operator
Flat space: $k^{2}=m^{2}=\frac{4(n-1)}{\alpha^{\prime}}$ (bosonic string)
e.g. leading Regge trajectory $(\partial x \bar{\partial} x)^{S / 2} e^{i k x}, \quad n=S / 2$
spectrum in (weakly) curved background:
solve marginality $(1,1)$ conditions on vertex operators
e.g. scalar anomalous dimension operator $\widehat{\gamma}(G)$ on $T(x)=\sum c_{n \ldots m} x^{n} \ldots x^{m}$ or on coefficients $c_{n \ldots m}$
differential operator in target space
found from β-function for the corresponding perturbation

$$
\begin{aligned}
& I=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} z\left[G_{m n}(x) \partial x^{m} \bar{\partial} x^{n}+T(x)\right] \\
& \beta_{T}=-2 T-\frac{\alpha^{\prime}}{2} \widehat{\gamma} T+O\left(T^{2}\right) \\
& \widehat{\gamma}=\Omega^{m n} D_{m} D_{n}+\ldots+\Omega^{m \ldots k} D_{m} \ldots D_{k}+\ldots \\
& \Omega^{m n}=G^{m n}+O\left(\alpha^{\prime 3}\right), \quad \Omega^{\cdots} \sim \alpha^{\prime n} R_{\ldots}^{p}
\end{aligned}
$$

Solve $-\widehat{\gamma} T+m^{2} T=0$: diagonalize $\widehat{\gamma}$
similarly for massless (graviton, ...) and massive states
e.g. $\beta_{m n}^{G}=\alpha^{\prime} R_{m n}+O\left(\alpha^{3}\right)$
gives Lichnerowitz operator as anomalous dimension operator
$(\widehat{\gamma} h)_{m n}=-D^{2} h_{m n}+2 R_{m k n l} h^{k l}-2 R_{k(m} h_{n)}^{k}+O\left(\alpha^{\prime 3}\right)$
Massive string states in curved background:

$$
\begin{aligned}
& \int d^{D} x \sqrt{g}\left[\Phi_{\ldots}\left(-D^{2}+m^{2}+X\right) \Phi_{\ldots}+\ldots\right] \\
& m^{2}=\frac{4}{\alpha^{\prime}} n, \quad X=R_{\ldots}+O\left(\alpha^{\prime}\right)
\end{aligned}
$$

case of $A d S_{5} \times S^{5}$ background

$$
R_{m n}-\frac{1}{96}\left(F_{5} F_{5}\right)_{m n}=0, \quad R=0, \quad F_{5}^{2}=0
$$

Find leading-order term in X ?
leading α^{\prime} correction to scalar string state mass $=0(?!)$

$$
\begin{aligned}
& {\left[-D^{2}+m^{2}+O\left(\frac{1}{\sqrt{\lambda}}\right)\right] \Phi=0} \\
& \Delta=2+\sqrt{4 n+4+O\left(\frac{1}{\sqrt{\lambda}}\right)} \\
& \Delta_{(n=1)}=2+2 \sqrt[4]{\lambda}\left[1+\frac{1}{2 \sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

prediction for leading term in strong-coupling expansion of singlet Konishi state dimension?
Too naive:
various subtleties (10d scalar vs singlet state, mixing, etc.)

What about non-singlet (susy descendant) Konishi states? should have the same dimension
$\operatorname{Tr}\left[\Phi_{1}, \Phi_{2}\right]^{2}$ corresponds to $S O(6)$ state $J_{1}=J_{2}=2$
tensor wave function $\Phi_{m n ; k l}$
or vertex operator $\sim Y_{+}^{-\Delta} \partial X_{x} \bar{\partial} X_{x} \partial X_{y} \bar{\partial} X_{y}$

Vertex operator approach

calculate 2 d anomalous dimensions from "first principles"superstring theory in $\operatorname{AdS} S_{5} \times S^{5}$:

$$
\begin{gathered}
I=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma\left[\partial Y_{p} \bar{\partial} Y^{p}+\partial X_{k} \bar{\partial} X_{k}+\text { fermions }\right] \\
Y_{+} Y_{-}-Y_{u} Y_{u}^{*}-Y_{v} Y_{v}^{*}=1, \quad X_{x} X_{x}^{*}+X_{y} X_{y}^{*}+X_{z} X_{z}^{*}=1 \\
Y_{ \pm}=Y_{0} \pm i Y_{5}, \quad Y_{u}=Y_{1}+i Y_{2}, \ldots, \quad X_{x}=X_{1}+i X_{2}, \ldots
\end{gathered}
$$

construct marginal (1,1) operators in terms of Y_{p} and X_{k} e.g. vertex operator for dilaton mode (NSR framework)

$$
\begin{aligned}
\mathrm{V}_{J} & =\left(Y_{+}\right)^{-\Delta}\left(X_{x}\right)^{J}\left[-\partial Y_{p} \bar{\partial} Y^{p}+\partial X_{k} \bar{\partial} X_{k}+\text { fermions }\right] \\
Y_{+} & \equiv Y_{0}+i Y_{5}=\frac{1}{z}\left(z^{2}+x_{m} x_{m}\right) \sim e^{i t} \\
X_{x} & \equiv X_{1}+i X_{2} \sim e^{i \varphi} \\
2 & =2+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)-J(J+4)]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right) \\
\text { i.e. } \Delta & =4+J \text { (BPS) }
\end{aligned}
$$

Vertex operator for bosonic string state on leading Regge trajectory in flat space: $\alpha^{\prime} E^{2}=2(S-2)$

$$
\mathrm{V}_{S}=e^{-i E t}(\partial x \bar{\partial} x)^{S / 2}, \quad x=x_{1}+i x_{2}
$$

candidate operators for states on leading Regge trajectory:

$$
\begin{array}{cc}
\mathrm{V}_{J}=\left(Y_{+}\right)^{-\Delta}\left(\partial X_{x} \bar{\partial} X_{x}\right)^{J / 2}, & X_{x} \equiv X_{1}+i X_{2} \\
\mathrm{~V}_{S}(\xi)=\left(Y_{+}\right)^{-\Delta}\left(\partial Y_{u} \bar{\partial} Y_{u}\right)^{S / 2}, & Y_{u} \equiv Y_{1}+i Y_{2}
\end{array}
$$

+ fermionic terms
$+\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ terms from diagonalization of anom. dim. op. mix with operators with same charges and dimension in general $\left(\partial X_{x} \bar{\partial} X_{x}\right)^{J / 2}$ mixes with singlets

$$
\left(X_{x}\right)^{2 p+2 q}\left(\partial X_{x}\right)^{J / 2-2 p}\left(\bar{\partial} X_{x}\right)^{J / 2-2 q}\left(\partial X_{m} \partial X_{m}\right)^{p}\left(\bar{\partial} X_{k} \partial X_{k}\right)^{q}
$$

true vertex operators
$=$ eigenstates of 2 d anomalous dimension matrix

- particular linear combinations
operators for states on leading Regge trajectory

$$
O_{\ell, s}=f_{k_{1} \ldots k_{\ell} m_{1} \ldots m_{2 s}} X_{k_{1} \ldots X_{k_{\ell}} \partial X_{m_{1}} \bar{\partial} X_{m_{2}} \ldots \partial X_{m_{2 s-1}} \bar{\partial} X_{m_{2 s}} .}
$$

their renormalization studied before [Wegner 90]
simplest case: $f_{k_{1} \ldots k_{\ell}} X_{k_{1} \ldots} X_{k_{\ell}}$ with traceless $f_{k_{1} \ldots k_{\ell}}$ same anom. dim. $\widehat{\gamma}$ as its highest-weight rep $V_{J}=\left(X_{x}\right)^{J}$

$$
\widehat{\gamma}=2-\frac{1}{2 \sqrt{\lambda}} J(J+4)+\ldots
$$

scalar spherical harmonic that solves Laplace eq. on S^{5}

Example of higher-level scalar operator:

$$
Y_{+}^{-\Delta}\left[\left(\partial X_{k} \bar{\partial} X_{k}\right)^{r}+\ldots\right], \quad r=1,2, \ldots
$$

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

$$
\begin{aligned}
0 & =-2(r-1)+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)+2 r(r-1)] \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left[\frac{2}{3} r(r-1)\left(r-\frac{7}{2}\right)+4 r\right]+\ldots
\end{aligned}
$$

$r=1$: ground level
fermionic contributions should make $r=1$ exact zero of $\widehat{\gamma}$
$r=2$: excited level - candidate for singlet Konishi state $\Delta_{0}=2$

$$
\begin{aligned}
& \Delta(\Delta-4)=4 \sqrt{\lambda}-4+O\left(\frac{1}{\sqrt{\lambda}}\right) \\
& \Delta-\Delta_{0}=2 \sqrt[4]{\lambda}\left[1+0 \times \frac{1}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

fermionic contribution may change this

Bosonic operators with two spins $J_{1}=J, J_{2} \equiv K$ in S^{5} :

$$
\begin{aligned}
V_{K, J} & =Y_{+}^{-\Delta} \sum_{u, v=0}^{K / 2} c_{u v} M_{u v} \\
M_{u v} & \equiv X_{y}^{J-u-v} X_{x}^{u+v}\left(\partial X_{y}\right)^{u}\left(\partial X_{x}\right)^{K / 2-u}\left(\bar{\partial} X_{y}\right)^{v}\left(\bar{\partial} X_{x}\right)^{K / 2-v}
\end{aligned}
$$

highest and lowest eigen-values of 1-loop anom. dim. matrix

$$
\begin{aligned}
& \widehat{\gamma}_{\min }=2-K+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)-J(J+4) \\
&\left.-\frac{1}{2} K(K+10)-2 J K\right]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right) \\
& \widehat{\gamma}_{\max }= 2-K+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)-J(J+4) \\
&\left.-\frac{1}{2} K(K+6)\right]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)
\end{aligned}
$$

fermions may alter terms linear in K
How to take fermionic contributions into account?

General structure of dimension $\Delta=$ energy E

vertex operators on $R^{2} \leftrightarrow$ string states on $R \times S^{1}$
aim: understand structure of dependence of string energy on string tension and quantum numbers (spins)
guided by form of string vertex op. marginality condition structure of dependence of energy E of quantum string state on quantum charges Q_{i} in the large string tension expansion $\sqrt{\lambda} \gg 1$ from α^{\prime} expansion of 2 d anomalous dimensions of $A d S_{5} \times S^{5}$ vertex ops \rightarrow solution of marginality condition should give $E=E(Q, \sqrt{\lambda})$ in the form [Roiban, AT 09, 11]

$$
\begin{aligned}
E^{2} & =2 \sqrt{\lambda} \sum_{i} a_{i} Q_{i}+\sum_{i, j} b_{i j} Q_{i} Q_{j}+\sum_{i} c_{i} Q_{i} \\
& +\frac{1}{\sqrt{\lambda}}\left(\sum_{i, j, k} d_{i j} Q_{i} Q_{j} Q_{k}+\sum_{i, j} e_{i j} Q_{i} Q_{j} Q_{k}+\sum_{i} f_{i} Q_{i}\right)+\ldots
\end{aligned}
$$

$Q_{i}-$ fixed in the limit $\sqrt{\lambda} \gg 1$
string state with S^{5} orbital momentum J and quantum number N
$N=$ effective string level, e.g., spin component $S=N$
E^{2} from the 2d marginality condition
(ignore shifts of N and E by integers: depend on choice of vac.)

$$
\begin{aligned}
0 & =N+\frac{1}{2 \sqrt{\lambda}}\left(-E^{2}+J^{2}+n_{02} N^{2}+n_{11} N\right) \\
& +\frac{1}{2(\sqrt{\lambda})^{2}}\left(n_{01} N J^{2}+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right)+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)
\end{aligned}
$$

then E^{2} takes form:

$$
\begin{aligned}
E^{2} & =2 \sqrt{\lambda} N+J^{2}+n_{02} N^{2}+n_{11} N \\
& +\frac{1}{\sqrt{\lambda}}\left(n_{01} J^{2} N+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right) \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left(\widetilde{n}_{11} J^{2} N+n_{04} N^{4}+\ldots\right)+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)
\end{aligned}
$$

expanding in large $\sqrt{\lambda}$ for fixed N, J

$$
\begin{aligned}
& E=\sqrt{2 \sqrt{\lambda} N}\left[1+\frac{A_{1}}{\sqrt{\lambda}}+\frac{A_{2}}{(\sqrt{\lambda})^{2}}+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right] \\
& A_{1}=\frac{1}{4 N} J^{2}+\frac{1}{4}\left(n_{02} N+n_{11}\right), \\
& A_{2}=-\frac{1}{2} A_{1}^{2}+\frac{1}{4}\left(n_{01} J^{2}+n_{03} N^{2}+n_{12} N+n_{21}\right)
\end{aligned}
$$

Gives for particular quantum string state values of N and J strong-coupling expansion of energy/dimension of the corresponding gauge-theory operator

Plan: determine the coefficients $n_{k m}$
using semiclassical "short string" expansion approach

Approach based on interpolation of semiclassical expansion

start with a solitonic string carrying same charges
as vertex operator representing particular quantum string state
(i) first perform semiclassical expansion $\sqrt{\lambda} \gg 1$
for fixed classical parameters
$\mathcal{Q}_{i}=\frac{1}{\sqrt{\lambda}} Q_{i}$, i.e. $(\mathcal{N}, \mathcal{J})=\frac{1}{\sqrt{\lambda}}(N, J)$
(ii) then expand E in small values of \mathcal{Q}_{i}
(iii) re-interpret the resulting expression in terms of N, J
limit $\mathcal{Q}_{i}=\frac{Q_{i}}{\sqrt{\lambda}} \rightarrow 0$ should correspond to $\frac{1}{\sqrt{\lambda}} \rightarrow 0$ for fixed
values of quantum charges Q_{i}
same coefficients $n_{k m}$ should be found
in direct vertex operator approach
E in terms of $\mathcal{N}, \mathcal{J}:$

$$
\begin{aligned}
& \left(\frac{E}{\sqrt{\lambda}}\right)^{2}=\left(2 \mathcal{N}+\mathcal{J}^{2}+n_{01} \mathcal{J}^{2} \mathcal{N}+n_{02} \mathcal{N}^{2}+n_{03} \mathcal{N}^{3}+n_{04} \mathcal{N}^{4}+\ldots\right) \\
& \quad+\frac{1}{\sqrt{\lambda}}\left(n_{11} \mathcal{N}+\widetilde{n}_{11} \mathcal{J}^{2} \mathcal{N}+n_{12} \mathcal{N}^{2}+\ldots\right) \\
& \quad+\frac{1}{(\sqrt{\lambda})^{2}}\left(n_{21} \mathcal{N}+\ldots\right)+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)
\end{aligned}
$$

interpret $n_{k m}$ as semiclassical k-loop contribution to \mathcal{N}^{m} term

- quantum string loop (i.e. $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}} \ll 1$) expansion in 2 d anom. dim. is different from semiclassical loop expansion: $n_{k m}$ in general appear at different orders in two expansions (but n_{11} and n_{21} are 1-loop and 2-loop in both expansions)
- each loop term in exact expansion polynomial in charges but in semiclassical expansion each term may contain infinite series in small \mathcal{J}, \mathcal{N} expansion
- to relate two expansions need to reorganize them

Semiclassical expansion of E^{2} organized as expansion in small \mathcal{N} formally looks like an expansion in powers of N :
$E^{2}=J^{2}+h_{1}(\lambda, J) N+h_{2}(\lambda, J) N^{2}+h_{3}(\lambda, J) N^{3}+\ldots$
where for fixed J and large λ

$$
\begin{aligned}
& h_{1}=2 \sqrt{\lambda}+n_{11}+\frac{n_{21}}{\sqrt{\lambda}}+\frac{n_{31}}{(\sqrt{\lambda})^{2}}+\ldots+J^{2}\left(\frac{n_{01}}{\sqrt{\lambda}}+\frac{\widetilde{n}_{11}}{(\sqrt{\lambda})^{2}}+\ldots\right)+\ldots \\
& h_{2}=n_{02}+\frac{n_{12}}{\sqrt{\lambda}}+\ldots \\
& h_{3}=\frac{n_{03}}{\sqrt{\lambda}}+\ldots, \quad h_{4}=\frac{n_{03}}{(\sqrt{\lambda})^{2}}+\ldots
\end{aligned}
$$

[exact computation of h_{1} for folded string state: Basso 11]

Will consider examples of "small" semiclassical string states corresponding to quantum string states with angular momentum J and few oscillator modes excited

For $N=2, J=2$ they represent particular states
in the Konishi multiplet on gauge theory side

- should have same 4d anomalous dimension
= same E (modulo constant shifts)

$$
\begin{aligned}
& E=2 \sqrt[4]{\lambda}\left[1+\frac{b_{1}}{2 \sqrt{\lambda}}+\frac{b_{2}}{2(\sqrt{\lambda})^{2}}+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right] \\
& b_{1}=2\left(A_{1}\right)_{N=J=2}=1+n_{02}+\frac{1}{2} n_{11} \\
& b_{2}=2\left(A_{2}\right)_{N=J=2}=-\frac{1}{4} b_{1}^{2}+2 n_{01}+2 n_{03}+n_{12}+\frac{1}{2} n_{21}
\end{aligned}
$$

find the coefficients $n_{k m}$ using semiclassical approach check this universality (implied by susy) identify general patterns in the structure of $n_{k m}$

Semiclassical expansion:
$\sqrt{\lambda} \gg 1, \mathcal{J}=\frac{J}{\sqrt{\lambda}}=$ fixed (e.g. for $J=0$):

$$
\begin{aligned}
& E\left(\frac{N}{\sqrt{\lambda}}, \sqrt{\lambda}\right)=\sqrt{\lambda} \mathcal{E}_{0}(\mathcal{N})+\mathcal{E}_{1}(\mathcal{N})+\frac{1}{\sqrt{\lambda}} \mathcal{E}_{2}(\mathcal{N})+\ldots \\
& \mathcal{E}_{n}=\sqrt{\mathcal{N}}\left(a_{n 0}+a_{n 1} \mathcal{N}+a_{n 2} \mathcal{N}^{2}+\ldots\right), \quad \mathcal{N} \ll 1
\end{aligned}
$$

if know all terms in this expansion - express \mathcal{N} in terms of N fix it to finite value and re-expand in $\sqrt{\lambda}$

$$
E=\sqrt{2 \sqrt{\lambda} N}\left[1+\frac{a_{01} N+a_{10}}{\sqrt{\lambda}}+\frac{a_{02} N^{2}+a_{11} N+a_{20}}{(\sqrt{\lambda})^{2}}+\ldots\right]
$$

$a_{k m}-k$-loop string corrections - related to $n_{k m}$
$a_{01}=\frac{1}{4} n_{02}, \quad a_{10}=\frac{1}{4} n_{11}, \ldots$ etc
to trust the coeff of $\frac{1}{(\sqrt{\lambda})^{n}}$ need coeff of up to n-loop terms
e.g. classical a_{01} and 1-loop a_{10} sufficient to fix $\frac{1}{\sqrt{\lambda}}$ term
[cf. "fast string" expansion $\mathcal{N} \gg 1$ for fixed N

- positive powers of $\sqrt{\lambda}$ - need to resum]
"Short" string: probing flat-space limit of $A d S_{5} \times S^{5}$
(i) start with classical string solutions in flat space representing states at 1 -st excited string level
(ii) embed into $A d S_{5} \times S^{5}$ and find 1-loop correction to E
(iii) interpolate result to finite values N, i.e. $\mathcal{N}=\frac{N}{\sqrt{\lambda}} \rightarrow 0$

Two basic classes of examples ($N=$ spin, $J=$ orbital momentum):

- circular string with 2 spins in two orthogonal planes
- folded spinning string

Rigid circular string rotating in two planes of R^{4}

$$
\begin{aligned}
& t=\kappa \tau, \quad \mathrm{x}_{x} \equiv x_{1}+i x_{2}=a e^{i(\tau+\sigma)}, \quad \mathrm{x}_{y} \equiv x_{3}+i x_{4}=a e^{i(\tau-\sigma)} \\
& E_{\text {flat }}=\frac{\kappa}{\alpha^{\prime}}=\sqrt{\frac{4}{\alpha^{\prime}} J}, \quad J_{1}=J_{2}=\frac{a^{2}}{\alpha^{\prime}}
\end{aligned}
$$

Identifying oscillator modes that are excited associate it with the quantum string state created by

$$
\begin{gathered}
e^{-i E t}\left[\left(\partial \mathrm{x}_{x} \bar{\partial} \mathrm{x}_{x}\right)^{\frac{J_{1}}{2}}\left(\partial \mathrm{x}_{y} \bar{\partial} \mathrm{x}_{y}\right)^{\frac{J_{2}}{2}}+\ldots\right] \\
\alpha^{\prime} E^{2}=2 N=2\left(J_{1}+J_{2}-2\right)
\end{gathered}
$$

$J_{1}=J_{2}$ in bosonic string:

$$
E_{\text {flat }}=\sqrt{\frac{4}{\alpha^{\prime}}(J-1)}
$$

Folded string rotating in a plane

$$
\begin{aligned}
& t=\kappa \tau, \quad \mathrm{x}_{1} \equiv x_{1}+i x_{2}=a \sin \sigma e^{i \tau} \\
& E_{\text {flat }}=\sqrt{\frac{2}{\alpha^{\prime}} S}, \quad S=\frac{a^{2}}{2 \alpha^{\prime}},
\end{aligned}
$$

semiclassical counterpart of quantum string state on leading Regge trajectory
$e^{-i E t}\left[\left(\partial \mathrm{x}_{x} \bar{\partial} \mathrm{x}_{x}\right)^{\frac{S}{2}}+\ldots\right], \quad \alpha^{\prime} E^{2}=2 N=2(S-2)$

3 obvious choices how to embed these solutions into $A d S_{5} \times S^{5}$:
(i) the two 2-planes may belong to $S^{5}: J_{1}=J_{2}$ "small string"
(ii) the two 2-planes may belong to $A d S_{5}: S_{1}=S_{2}$ "small string"
(iii) one plane in $A d S_{5}$ and the other in $S^{5}: S=J$ "small string"
similar choices for folded string

1. study each case in $A d S_{5} \times S^{5}$; interpolate to fixed values of N
2. match to states in Konishi table
3. verify universality of strong-coupling expansion of

4 d anom. dim of dual gauge theory operators
in same supermultiplet

Results:

for several solutions for states on leading Regge trajectory (maximal spin for given energy in flat limit)

$$
\begin{aligned}
E^{2} & =2 \sqrt{\lambda} N+J^{2}+n_{02} N^{2}+n_{11} N \\
& +\frac{1}{\sqrt{\lambda}}\left(n_{01} J^{2} N+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right) \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left(\widetilde{n}_{11} J^{2} N+n_{04} N^{4}+\ldots\right)+\ldots
\end{aligned}
$$

- $n_{01}=1$
follows from near-BMN expansion of classical energy $(J \ll \sqrt{\lambda})$
$E^{2}=J^{2}+2 N \sqrt{\lambda+J^{2}}+\ldots=J^{2}+N\left(2 \sqrt{\lambda}+\frac{J^{2}}{\sqrt{\lambda}}+\ldots\right)$
- tree-level n_{02}, n_{03}, \ldots are rational
- leading 1-loop n_{11} rational [Roiban, AT 09; Gromov et al 11]
- $\widetilde{n}_{11}=-n_{11}$
$h_{1}=2 \sqrt{\lambda} \sqrt{1+\mathcal{J}^{2}}+\frac{n_{11}}{1+\mathcal{J}^{2}}+\ldots$ [Basso; BGRT]
- $n_{12}=n_{12}^{\prime}-3 \zeta(3), \quad n_{12}^{\prime}$ is rational
[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]
$\zeta(3)$ term is universal for states on leading Regge trajectory $n_{1 k}$ contain $\zeta(5), \ldots$ etc; likely to be universal too
- universality of "short-distance" ($n \gg 1$) behaviour
- leading 2-loop coefficient n_{21} is rational and universal:

$$
n_{21}=-\frac{1}{4}
$$

found for folded string state [Basso 11]
evidence from universality [BGRT]
of the Konishi state energy ($J=N=2$)

$$
\begin{aligned}
& E_{N=J=2}=2 \sqrt[4]{\lambda}\left[1+\frac{b_{1}}{2 \sqrt{\lambda}}+\frac{b_{2}}{2(\sqrt{\lambda})^{2}}+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right] \\
& b_{1}=1+n_{02}+\frac{1}{2} n_{11}=2 \\
& b_{2}=-\frac{1}{4} b_{1}^{2}+2 n_{01}+2 n_{03}+n_{12}+\frac{1}{2} n_{21}=\frac{1}{2}-3 \zeta(3)
\end{aligned}
$$

matching TBA predictions interpolated to $\lambda \gg 1$

$$
2 n_{02}+n_{11}=2, \quad 4 n_{03}+2 n_{12}^{\prime}+n_{21}=-1
$$

Need to confirm universality of n_{21} by direct computation generalize exact result for h_{1} [Basso]
for $\mathrm{sl}(2)$ sector state to other string states

Summary of results for $n_{k m}$

I. Folded strings with one spin N and orbital momentum J

- folded string in $A d S_{5}$ with $(S, J), N=S$
[Tirziu,AT08; Gromov,Serban, Shenderovich,Volin 11;
Basso 11; Gromov,Valatka 11]

$$
\begin{aligned}
& n_{01}=1, \quad n_{02}=\frac{3}{2}, \quad n_{03}=-\frac{3}{8} \\
& n_{11}=-1, \quad \widetilde{n}_{11}=1, \quad n_{12}^{\prime}=\frac{3}{8}, \quad n_{21}=-\frac{1}{4}
\end{aligned}
$$

- folded string in S^{5} with $\left(J_{1}, J_{3}=J\right), N=J_{1}$
[Beccaria, Marconi 11; BGRT 12]

$$
\begin{array}{ll}
n_{01}=1, & n_{02}=\frac{1}{2}, \quad n_{03}=\frac{1}{8} \\
n_{11}=1, & \widetilde{n}_{11}=-1, \quad n_{12}^{\prime}=-\frac{5}{8}, \quad n_{21}=-\frac{1}{4}(?)
\end{array}
$$

II. Circular strings with two spins and orbital momentum J
[Roiban, AT 09, 11; BGRT 12]

- "small" circular string with 2 spins in S^{5} :

$$
\begin{aligned}
& \left(J_{1}=J_{2}, J_{3}=J\right), N=J_{1}+J_{2}=2 J_{1} \\
& \quad n_{01}=1, \quad n_{02}=0, \quad n_{03}=0 \\
& n_{11}=2, \quad \widetilde{n}_{11}=-2, \quad n_{12}^{\prime}=-\frac{3}{8}, \quad n_{21}=-\frac{1}{4}(?)
\end{aligned}
$$

- "small" circular string with 2 spins in $A d S_{5}$:

$$
\left(S_{1}=S_{2}, J\right), N=S_{1}+S_{2}=2 S_{1}
$$

$$
\begin{aligned}
& n_{01}=1, \quad n_{02}=2, \quad n_{03}=-1 \\
& n_{11}=-2, \quad \widetilde{n}_{11}=2, \quad n_{12}^{\prime}=\frac{13}{8}, \quad n_{21}=-\frac{1}{4}(?)
\end{aligned}
$$

- "small" circular string with S in $A d S_{5}$ and J_{1} in S^{5} :

$$
\begin{aligned}
& \left(S=J_{1}, J_{3}=J\right), N=S+J_{1}=2 S \\
& n_{01}=1, \quad n_{02}=1, \quad n_{03}=-\frac{1}{2} \\
& n_{11}=0, \quad \widetilde{n}_{11}=0, \quad n_{12}^{\prime}=\frac{5}{8}(?), \quad n_{21}=-\frac{1}{4}(?)
\end{aligned}
$$

III. Circular pulsating strings:
[Beccaria,Dunne,Macorini,Tirziu,AT 10]

- pulsating string in $A d S_{3}: N=$ oscillation number

$$
\begin{aligned}
& n_{01}=1, \quad n_{02}=\frac{5}{2}, \quad n_{03}=-\frac{13}{8} \\
& n_{11}=-3, \quad \widetilde{n}_{11}=3(?), \quad n_{12}^{\prime}=\frac{23}{8}(?), \quad n_{21}=-\frac{1}{4}(?)
\end{aligned}
$$

- pulsating string in $R \times S^{2}$

$$
\begin{array}{ll}
n_{01}=1, & n_{02}=-\frac{1}{2}, \quad n_{03}=-\frac{1}{8} \\
n_{11}=3, & \widetilde{n}_{11}=-3(?), \quad n_{12}^{\prime}=-\frac{1}{8}(?), \quad n_{21}=-\frac{1}{4}(?)
\end{array}
$$

for $N=J=2$ pulsating strings should also represent states on the first excited string level, i.e. from Konishi multiplet predict the same b_{1}, b_{2} with above $n_{n k}$

Examples of states on subleading Regge trajectories

- m-folded spinning string
- spinning string with n spikes [Kruczenski 04]

1-loop corrections:
[Gromov, Valatka 11; Beccaria, Ratti, AT 11]

$$
\begin{aligned}
& E_{\text {folded }}^{2}=2 m \sqrt{\lambda} S\left[1+\frac{1}{\sqrt{\lambda}} b_{\text {folded }}+\ldots\right]+J^{2}+\frac{3}{2} S^{2}+\ldots \\
& E_{\text {spiky }}^{2}=4\left(1-\frac{1}{n}\right) \sqrt{\lambda} S\left[1+\frac{1}{\sqrt{\lambda}} b_{\text {spiky }}+\ldots\right]+J^{2}+4\left(1-\frac{5}{2 n}+\frac{5}{2 n^{2}}\right) S^{2}+\ldots \\
& b_{\text {folded }}=2 F(m), \quad b_{\text {spiky }}=-\frac{1}{4}+F(n-1) \\
& F(r) \equiv-\frac{3}{4 r}+2 H_{r}-H_{2 r}, \quad H_{r} \equiv \sum_{k=1}^{r} \frac{1}{k}
\end{aligned}
$$

coincide in 1-fold string case: $E_{\text {folded }}(m=1)=E_{\text {spiky }}(n=1)$

$$
a_{\text {folded }}(m=1)=a_{\text {spiky }}(n=2)=F(1)=-\frac{1}{4}
$$

Some details

Circular rotating string in S^{5} with $J_{1}=J_{2} \equiv J^{\prime}$:
cf. Konishi descendant with $J_{1}=J_{2}=2: \quad \operatorname{Tr}\left(\left[\Phi_{1}, \Phi_{2}\right]^{2}\right)$
represent it by "short" classical string with same charges
flat space $R_{t} \times R^{4}$: circular string solution

$$
\begin{gathered}
x_{1}+i x_{2}=a e^{i(\tau+\sigma)}, \quad x_{3}+i x_{4}=a e^{i(\tau-\sigma)} \\
E=\sqrt{\frac{4}{\alpha^{\prime}} J^{\prime}}, \quad J^{\prime}=\frac{a^{2}}{\alpha^{\prime}}
\end{gathered}
$$

can be directly embedded into
$R_{t} \times S^{5}$ in $A d S_{5} \times S^{5} \quad$ [Frolov, AT 03] :
string on small sphere inside $S^{5}: X_{1}^{2}+\ldots+X_{6}^{2}=1$

$$
\begin{array}{cc}
X_{1}+i X_{2}=a e^{i(\tau+\sigma)}, & X_{3}+i X_{4}=a e^{i(\tau-\sigma)} \\
X_{5}+i X_{6}=\sqrt{1-2 a^{2}}, & t=\kappa \tau \\
\mathcal{J}^{\prime}=\mathcal{J}_{1}=\mathcal{J}_{2}=a^{2}, & \mathcal{E}^{2}=\kappa^{2}=4 \mathcal{J}^{\prime}
\end{array}
$$

E_{0} is just as in flat space

$$
E_{0}=\sqrt{\lambda} \mathcal{E}=\sqrt{4 \sqrt{\lambda} J^{\prime}}, \quad J^{\prime}=\sqrt{\lambda} \mathcal{J}^{\prime}
$$

1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies ($n=0,1,2, \ldots$)
Bosons (2 massless + massive):

$$
\begin{array}{lll}
A d S_{5}: & 4 \times & \omega_{n}^{2}=n^{2}+4 \mathcal{J}^{\prime} \\
S^{5}: & 2 \times & \omega_{n \pm}^{2}=n^{2}+4\left(1-\mathcal{J}^{\prime}\right) \pm 2 \sqrt{4\left(1-\mathcal{J}^{\prime}\right) n^{2}+4 \mathcal{J}^{\prime 2}}
\end{array}
$$

Fermions:

$$
\begin{array}{r}
4 \times \quad \omega_{n \pm}^{2 f}=n^{2}+1+\mathcal{J}^{\prime} \pm \sqrt{4\left(1-\mathcal{J}^{\prime}\right) n^{2}+4 \mathcal{J}^{\prime}} \\
E_{1}=\frac{1}{2 \kappa} \sum_{n=-\infty}^{\infty}\left[4 \omega_{n}+2\left(\omega_{n+}+\omega_{n-}\right)-4\left(\omega_{n+}^{f}+\omega_{n-}^{f}\right)\right]
\end{array}
$$

expand in small \mathcal{J}^{\prime} and do sums (UV divergences cancel)

$$
\begin{aligned}
& E_{1}=\frac{1}{\sqrt{\mathcal{J}}}\left(\mathcal{J}-[3+\zeta(3)] \mathcal{J}^{\prime 2}-\frac{1}{4}[5+6 \zeta(3)+30 \zeta(5)] \mathcal{J}^{\prime 3}+\ldots\right) \\
& E=E_{0}+E_{1}=2 \sqrt{\sqrt{\lambda} J^{\prime}}\left(1+\frac{1}{2 \sqrt{\lambda}}-\frac{3}{4}[1+2 \zeta(3)] \frac{J^{\prime}}{(\sqrt{\lambda})^{2}}+\ldots\right)
\end{aligned}
$$

include orbital momentum J dependence:
value of b_{1} is shifted by "classical" contribution $\sim J^{2}$ as

$$
b_{1}(J)=b_{1}(0)+\frac{1}{4} J^{2}
$$

universal value $b_{1}(0)=1$ [Roiban, AT 2009] implies $b_{1}(2)=2$
i.e. same as value for the Konishi multiplet state in the $s l(2)$ sector (having $S=J=2$) found from TBA [Gromov et al 2009]
J^{2} term has simple classical origin

$$
\begin{aligned}
& E_{0}^{2}=2 \sqrt{\lambda} N+a N^{2}+J^{2}+\ldots, \quad N, J \ll \sqrt{\lambda} \\
& E_{0}=\sqrt{2 \sqrt{\lambda} N}\left[1+\frac{1}{4 \sqrt{\lambda}}\left(a N+\frac{J^{2}}{N}\right)+\ldots\right]
\end{aligned}
$$

For each solution (with values of spins representing a state on the first excited string level) there will be a state in the corresponding representation in the Konishi multiplet table

- universality of the predicted value $b_{1}=2$
- Small circular string with $J_{1}=J_{2}$ and $J_{3} \neq 0$

$$
\begin{aligned}
& X_{1}=a e^{i(w \tau+\sigma)}, \quad X_{2}=a e^{i(w \tau-\sigma)}, \quad X_{3}=\sqrt{1-2 a^{2}} e^{i \nu \tau} \\
& \mathcal{E}_{0}^{2}=\kappa^{2}=4 a^{2}+\nu^{2}=\nu^{2}+\frac{4 \mathcal{J}^{\prime}}{\sqrt{1+\nu^{2}}}, \quad w^{2}=1+\nu^{2} \\
& \mathcal{J}^{\prime} \equiv \mathcal{J}_{1}=\mathcal{J}_{2}=a^{2} w, \quad \mathcal{J} \equiv \mathcal{J}_{3}=\sqrt{1-2 a^{2}} \nu
\end{aligned}
$$

$$
\text { for } \mathcal{J}^{\prime}=\frac{J^{\prime}}{\sqrt{\lambda}} \ll 1, \mathcal{J}=\frac{J}{\sqrt{\lambda}} \ll 1
$$

$$
E_{0}=2 \sqrt{\sqrt{\lambda} J^{\prime}}\left[1+\frac{1}{\sqrt{\lambda}} \frac{J^{2}}{8 J^{\prime}}-\frac{1}{(\sqrt{\lambda})^{2}} \frac{J^{4}}{128 J^{\prime 2}}+\ldots\right]
$$

leading term in 1-loop correction expanded in $\mathcal{J}=\frac{J}{\sqrt{\lambda}} \ll 1$ does not depend on J - has same value as for $J=0$

To get a state on the first excited string level
we should choose $J^{\prime}=1$, i.e. $J_{1}=J_{2}=1$
for minimal non-trivial value of $J=J_{3}=2$
there is unique corresponding state in Konishi multiplet table:
$[0,1,2]_{(0,0)}$ at level $\Delta_{0}=6$ and thus

$$
b_{1}=2\left(\frac{J^{2}}{8 J^{\prime}}+\frac{1}{2}\right)_{J=2, J^{\prime}=1}=2
$$

- Small circular spinning string with $S_{1}=S_{2}$ and $J \neq 0$ rigid circular string with two equal spins in $A d S^{5}$ and orbital momentum $J=J_{1}$ in S^{5}

$$
\begin{aligned}
& Y_{0}+i Y_{5}=\sqrt{1+2 r^{2}} e^{i \kappa t}, \quad Y_{1}+i Y_{2}=r e^{i(w \tau+\sigma)}, \quad Y_{3}+i Y_{4}=r e^{i(w \tau-\sigma)} \\
& X_{1}+i X_{2}=e^{i \nu \tau}, \quad w^{2}=\kappa^{2}+1, \quad \kappa^{2}\left(1+2 r^{2}\right)=2 r^{2}\left(1+w^{2}\right)+\nu^{2} \\
& \mathcal{E}_{0}=\left(1+2 r^{2}\right) \kappa=\kappa+\frac{2 \kappa \mathcal{S}}{\sqrt{1+\kappa^{2}}}, \quad \mathcal{S}=\mathcal{S}_{1}=\mathcal{S}_{2}=r^{2} w, \quad \mathcal{J}=\nu
\end{aligned}
$$

"short" string expansion of the classical energy $\left(E_{0}=\sqrt{\lambda} \mathcal{E}_{0}\right)$:

$$
\mathcal{E}_{0}=2 \sqrt{\mathcal{S}}\left(1+\mathcal{S}+\frac{\mathcal{J}^{2}}{8 \mathcal{S}}+\ldots\right)
$$

including 1-loop correction:

$$
E_{0}+E_{1}=2 \sqrt{\sqrt{\lambda} S}\left[1+\frac{1}{\sqrt{\lambda}}\left(S+\frac{J^{2}}{8 S}-\frac{1}{2}\right)+\mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
$$

the state on the first excited level associated to string with two equal spins in $A d S_{5}$
has two excited oscillators, i.e. should have $S=S_{1}=S_{2}=1$
for $J=2$ the dual state should be in representation $[0,2,0]_{(1,0)}$ there is just one state in Konishi table with $\Delta_{0}=6$

$$
b_{1}=2\left(S+\frac{J^{2}}{8 S}-\frac{1}{2}\right)_{S=1, J=2}=2
$$

- Small circular spinning string with $S=J_{1}$ and $J_{2} \neq 0$
rigid circular solution with one spin in $A d S_{5}$ and one spin in S^{5} and orbital momentum in S^{5}

$$
\begin{aligned}
& Y_{0}+i Y_{5}=\sqrt{1+r^{2}} e^{i \kappa t}, \quad Y_{1}+i Y_{2}=r e^{i(w \tau+\sigma)}, \quad w^{2}=\kappa^{2}+1 \\
& X_{1}+i X_{2}=a e^{i\left(w^{\prime} \tau-\sigma\right)}, \quad X_{3}+i X_{4}=\sqrt{1-a^{2}} e^{i \nu \tau}, \quad w^{\prime 2}=\nu^{2}+1 \\
& \mathcal{E}_{0}=2 \sqrt{\mathcal{S}}\left(1+\frac{1}{2} \mathcal{S}+\frac{\mathcal{J}_{2}^{2}}{8 \mathcal{S}}+\ldots\right)
\end{aligned}
$$

The leading 1-loop correction to the energy vanishes (cancellation of AdS and sphere contributions)
$E_{0}+E_{1}=2 \sqrt{\sqrt{\lambda} S}\left[1+\frac{1}{\sqrt{\lambda}}\left(\frac{1}{2} S+\frac{J_{2}^{2}}{8 S}\right)+\mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]$
state on the first excited level: $S=J_{1}=1$
for $J_{2}=2$ get state $[1,1,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ at $\Delta_{0}=6$ level

$$
b_{1}=2\left(\frac{1}{2} S+\frac{J_{2}^{2}}{8 S}\right)_{S=1, J_{2}=2}=2
$$

Conclusions

- beginning of understanding quantum string spectrum in $A d S_{5} \times S^{5}=$ spectrum of "short" SYM operators
- agreement with numerical prediction of TBA: non-trivial check of existing TBA equations at strong coupling
- observation of universality of some coefficients
in strong coupling expansion of dimension for states on leading Regge trajectory
- need of systematic study of quantum string theory in $A d S_{5} \times S^{5}$
in particular, in near flat space expansion

Δ_{0}	
2	$[0,0,0]_{(0,0)}$
$\frac{5}{2}$	$[0,0,1]_{\left(0, \frac{1}{2}\right)}+[1,0,0]_{\left(\frac{1}{2}, 0\right)}$
3	$[0,0,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,0,2]_{(0,0)}+[0,1,0]_{(0,1)+(1,0)}+[1,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{(0,0)}$
$\frac{7}{2}$	$[0,0,1]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)+\left(\frac{3}{2}, 0\right)}+[0,1,1]_{\left(0, \frac{1}{2}\right)+\left(1, \frac{1}{2}\right)}+[1,0,0]_{\left(0, \frac{1}{2}\right)+\left(0, \frac{3}{2}\right)+\left(1, \frac{1}{2}\right)}+[1,0,2]_{\left(\frac{1}{2}, 0\right)}$
	$+[1,1,0]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)}+[2,0,1]_{\left(0, \frac{1}{2}\right)}$
4	$[0,0,0]_{(0,0)+(0,2)+(1,1)+(2,0)}+[0,0,2]_{\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)}+[0,1,0]_{2\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)}+[2,0,2]_{(0,0)}$
	$+[0,1,2]_{(1,0)}+[0,2,0]_{2(0,0)+(1,1)}+[1,0,1]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[1,1,1]_{2\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{\left(\frac{1}{2}\right.}$
6	$[0,0,0]_{3(0,0)+3(1,1)+(2,2)}+[0,0,2]_{3\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)}+[0,1,0]_{4\left(\frac{1}{2}, \frac{1}{2}\right)+2\left(\frac{1}{2}, \frac{3}{2}\right)+2\left(\frac{3}{2}, \frac{1}{2}\right)+}$
	$+[0,1,2]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[0,2,0]_{3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0)}+[0,2,2]_{\left(\frac{1}{2}, \frac{1}{2}\right)}$
	$+[0,3,0]_{2\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,4,0]_{(0,0)}+[1,0,1]_{(0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1)}+[1,0,3]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0$,
	$+[1,1,1]_{4\left(\frac{1}{2}, \frac{1}{2}\right)+2\left(\frac{1}{2}, \frac{3}{2}\right)+2\left(\frac{3}{2}, \frac{1}{2}\right)}+[1,2,1]_{(0,0)+(0,1)+(1,0)}+[2,0,0]_{3\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)}$
	$+[2,0,2]_{(0,0)+(1,1)}+[2,1,0]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[2,2,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[3,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[4,0,0]_{(0,0}$
$\frac{17}{2}$	$[0,0,1]_{\left(0, \frac{1}{2}\right)+\left(0, \frac{3}{2}\right)+\left(1, \frac{1}{2}\right)}+[0,1,1]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)}+[1,0,0]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)+\left(\frac{3}{2}, 0\right)}+[1,0,2]_{\left(0, \frac{1}{2}\right)}$
	$+[1,1,0]_{\left(0, \frac{1}{2}\right)+\left(1, \frac{1}{2}\right)}+[2,0,1]_{\left(\frac{1}{2}, 0\right)}$
9	$[0,0,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,0,2]_{(0,0)}+[0,1,0]_{(0,1)+(1,0)}+[1,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{(0,0)}$
$\frac{19}{2}$	$[0,0,1]_{\left(\frac{1}{2}, 0\right)}+[1,0,0]_{\left(0, \frac{1}{2}\right)}$
10	$[0,0,0]_{(0,0)}$

