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General aims:
• understand quantum gauge theories at any coupling
• understand string theories in non-trivial backgrounds
Maximally symmetric case of gauge-string duality:
N = 4 SYM — AdS5 × S5 superstring
Integrability:
allows “in principle” to solve the problem of spectrum
of anomalous dimensions / string energies



Spectrum of states
I. Spectrum of “long” operators = “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)
• its final (BES) form found after intricate superposition
of information from perturbative gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase,...),
symmetries (S-matrix), assumption of exact integrability
• consequences checked against available gauge and string data
Key example: cusp anomalous dimension Tr(ΦDSΦ)
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exact equation [Basso, Korchemsky, Kotanski]



II. Spectrum of “short” operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)
[Ambjorn, Janik, Kristjansen; Arutyunov, Frolov;
Gromov, Kazakov, Vieira; Banjok, Janik; ...]
• reconstructed from ABA using solely
methods/intuition of 2-d integrable QFT, i.e. string-theory side
• highly non-trivial construction – lack of 2-d Lorentz invariance
in the standard “BMN-vacuum-adapted” l.c. gauge
• in few cases ABA “improved” by Luscher corrections is enough:
4 and 5-loop Konishi dimension, 4-loop minimal twist op. dim
• need more data to check predictions at λ� 1 and λ� 1:
against perturbative gauge-theory and string-theory data



Key example:
dimension ∆ = ∆0 + γ(λ) of Konishi operator Tr(Φ̄iΦi)
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5-loop result from integrability confirmed [Eden et al 2012]
Suppose can sum up λ� 1 expansion and re-expand at λ� 1

String theory suggests structure of strong-coupling expansion:
[Roiban, AT 09]

∆(λ� 1) = 2
4
√
λ+ b0 +

b1
4
√
λ

+
b2

( 4
√
λ)3

+ ...

= 2
4
√
λ
[
1 +

b1

2
√
λ

+
b2

2(
√
λ)2

+ ...
]

+ b0



Recent progress:
values of b1, b2, ... matched between TBA and string theory
Extracting direct TBA predictions at strong coupling is hard
start at weak coupling for sl(2) descendant Tr(ΦD2Φ) (∆0 = 4);
plot numerically ∆(λ);
match to expected strong-coupling expansion – extract bi
[Gromov, Kazakov, Vieira 09, Frolov 10]

b0 = 0 , b1 ≈ 1.988 , b2 ≈ −3.1

string theory computation
[Roiban, AT 09, 11; Gromov,Serban, Shenderovich, Volin 11]

b0 = 0 , b1 = 2

more recent [Gromov, Valatka 11]

b2 =
1

2
− 3ζ(3)

using “2-loop” result of [Basso 11] (see below)



Many open questions:
Analytic form of strong-coupling expansion from TBA/Y-system?
Other quantum states?
How to match to string spectrum in near-flat-space expansion?
general structure of the spectrum?

Dimensions of short operators
= energies of quantum string states:

Aims:
• compute leading α′ ∼ 1√

λ
correction to energy of

“lightest” massive string states on first massive level
dual to operators in Konishi multiplet in SYM theory
– check against predictions of TBA approach
• understand structure of energy of higher spin states
on leading Regge trajectory



Konishi operator multiplet:
long multiplet related to singlet by susy
[J2 − J3, J1 − J2, J2 + J3](sL,sR) = [0, 0, 0](0,0)

sL,R = 1
2 (S1 ± S2)

SO(6) (J1, J2, J3) and SO(4) (S1, S2) labels
of SO(2, 4)× SO(6) global symmetry
[Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]

see table

∆ = ∆0 + γ(λ), ∆0 = 2, 5
2 , 3, ..., 10

– same anomalous dimension γ
singlet eigen-state of anom. dim. matrix with lowest eigenvalue



examples of gauge theory operators in Konishi multiplet:
[0, 0, 0](0,0):
Tr(Φ̄iΦi), i = 1, 2, 3, ∆0 = 2

[2, 0, 2](0,0):
Tr([Φ1,Φ2]2) in su(2) sector, ∆0 = 4

[0, 2, 0](1,1):
Tr(Φ1D

2Φ1) in sl(2) sector, ∆0 = 4



AdS/CFT duality:
Konishi operator dual to
“lightest” among massive AdS5 × S5 string states

large
√
λ = R2

α′ :
– “small” string at “center” of AdS5 – in nearly flat space



Comparison between gauge and string theory states:

GT (λ� 1): operators built out of free fields,
canonical dim. ∆0 determines operators that can mix

ST (λ� 1): near-flat-space string states built out of
free oscillators, level n determines states that can mix

(i) relate states with same global charges
(ii) assume “non-intersection principle”

no level crossing for states with same quantum numbers
as λ changes from strong to weak coupling



Flat space case:
m2 = 4n

α′ , n = 1
2 (N + N̄) = 0, 1, 2, ..., N = N̄

n = 0: massless IIB supergravity (BPS) level
l.c. vacuum |0 >: (8 + 8)2 = 256 states
n = 1: first massive level (many states, highly degenerate)
[(ai−1 + Sa−1)|0 >]2 = [(8 + 8)× (8 + 8)]2

in SO(9) reps:
([2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1])2 = (44 + 84 + 128)2

e.g. 44× 44 = 1 + 36 + 44 + 450 + 495 + 910

84×84 = 1+36+44+84+126+495+594+924+1980+2772

switching on AdS5 × S5 background fields lifts degeneracy
states with “lightest mass” at first excited string level
should correspond to Konishi multiplet



string spectrum in AdS5 × S5 :
long multiplets A∆

[k,p,q](s,s′) of PSU(2, 2|4)

highest weight states: [k, p, q](s,s′)

Remarkably, flat-space string spectrum can be re-organized
in multiplets of SO(2, 4)× SO(6) ⊂ PSU(2, 2|4)

[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4)× SO(5) ⊂ SO(9) rep.
lifted to SO(4)× SO(6) rep. of SO(2, 4)× SO(6)

Konishi long multiplet
T̂1 = (1 +Q+Q ∧Q+ ...)[0, 0, 0](0,0)

determines the KK “floor” of 1-st excited string level
H1 =

∑∞
J=0[0, J, 0](0,0) × T̂1



What one should expect for energy of
scalar massive state in AdS5:

(−∇2 +m2)Φ + ... = 0

∆(∆− 4) = (mR)2 +O(α′) = 4nR2

α′ +O(α′)

∆ = 2 +
√

(mR)2 + 4 +O(α′)

∆(λ� 1) =

√
4n
√
λ+ ... ,

√
λ =

R2

α′

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:
n = 1 : ∆ = 2 4

√
λ+ ...

Subleading corrections?



Approaches to computation of corrections to string energies:

(i) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding
vertex operators [Polyakov 01; AT 03]

(ii) space-time effective action approach:
use near-flat-space expansion and NSR vertex operators
to reconstruct α′ ∼ 1√

λ
corrections to corresponding

massive string state equation of motion
[Burrington, Liu 05]



(iii) “light-cone” quantization approach:
start with light-cone gauge AdS5 × S5 string action
and compute corrections to energy of
corresponding flat-space oscillator string state
[Metsaev, Thorn, AT 00 ]

(iv) semiclassical approach:
identify short string state as small-spin limit of
semiclassical string state
– reproduce the structure of strong-coupling corrections
to short operators
[ Tirziu, AT 08; Roiban, AT 09, 11]



Spectrum of quantum string states
from target space anomalous dimension operator

Flat space: k2 = m2 = 4(n−1)
α′ (bosonic string)

e.g. leading Regge trajectory (∂x∂̄x)S/2eikx, n = S/2

spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. scalar anomalous dimension operator γ̂(G)

on T (x) =
∑
cn...mx

n...xm or on coefficients cn...m
differential operator in target space
found from β-function for the corresponding perturbation

I =
1

4πα′

∫
d2z[Gmn(x)∂xm∂̄xn + T (x)]

βT = −2T − α′

2 γ̂ T +O(T 2)

γ̂ = ΩmnDmDn + ...+ Ωm...kDm...Dk + ...
Ωmn = Gmn +O(α′3), Ω.... ∼ α′nRp....



Solve −γ̂ T +m2T = 0: diagonalize γ̂

similarly for massless (graviton, ...) and massive states
e.g. βGmn = α′Rmn +O(α′3)

gives Lichnerowitz operator as anomalous dimension operator

(γ̂h)mn = −D2hmn + 2Rmknlh
kl − 2Rk(mh

k
n) +O(α′3)

Massive string states in curved background:∫
dDx
√
g
[
Φ...(−D2 +m2 +X)Φ... + ...

]
m2 = 4

α′n , X = R.... +O(α′)

case of AdS5 × S5 background

Rmn − 1
96 (F5F5)mn = 0, R = 0 , F 2

5 = 0

Find leading-order term in X ?



leading α′ correction to scalar string state mass =0 (?!)

[−D2 +m2 +O( 1√
λ

)]Φ = 0

∆ = 2 +
√

4n+ 4 +O( 1√
λ

)

∆(n=1) = 2 + 2
4
√
λ
[
1 + 1

2
√
λ

+O( 1
(
√
λ)2

)
]

prediction for leading term in strong-coupling expansion
of singlet Konishi state dimension?
Too naive:
various subtleties (10d scalar vs singlet state, mixing, etc.)

What about non-singlet (susy descendant) Konishi states?
should have the same dimension
Tr[Φ1,Φ2]2 corresponds to SO(6) state J1 = J2 = 2

tensor wave function Φmn;kl

or vertex operator ∼ Y −∆
+ ∂Xx∂̄Xx∂Xy∂̄Xy



Vertex operator approach
calculate 2d anomalous dimensions from “first principles”–
superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ
[
∂Yp∂̄Y

p + ∂Xk∂̄Xk + fermions
]

Y+Y− − YuY ∗u − YvY ∗v = 1 , XxX
∗
x +XyX

∗
y +XzX

∗
z = 1

Y± = Y0 ± iY5, Yu = Y1 + iY2, ..., Xx = X1 + iX2, ...

construct marginal (1,1) operators in terms of Yp and Xk

e.g. vertex operator for dilaton mode (NSR framework)

VJ = (Y+)−∆ (Xx)J
[
− ∂Yp∂̄Y p + ∂Xk∂̄Xk + fermions

]
Y+ ≡ Y0 + iY5 = 1

z (z2 + xmxm) ∼ eit

Xx ≡ X1 + iX2 ∼ eiϕ

2 = 2 +
1

2
√
λ

[∆(∆− 4)− J(J + 4)] +O( 1
(
√
λ)2

)

i.e. ∆ = 4 + J (BPS)



Vertex operator for bosonic string state
on leading Regge trajectory in flat space: α′E2 = 2(S − 2)

VS = e−iEt
(
∂x∂̄x

)S/2
, x = x1 + ix2

candidate operators for states on leading Regge trajectory:

VJ = (Y+)−∆
(
∂Xx∂̄Xx

)J/2
, Xx ≡ X1 + iX2

VS(ξ) = (Y+)−∆
(
∂Yu∂̄Yu

)S/2
, Yu ≡ Y1 + iY2

+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

mix with operators with same charges and dimension

in general
(
∂Xx∂̄Xx

)J/2
mixes with singlets

(Xx)2p+2q(∂Xx)J/2−2p(∂̄Xx)J/2−2q(∂Xm∂Xm)p(∂̄Xk∂Xk)q



true vertex operators
= eigenstates of 2d anomalous dimension matrix
– particular linear combinations

operators for states on leading Regge trajectory

O`,s = fk1...k`m1...m2s
Xk1 ...Xk`∂Xm1

∂̄Xm2
...∂Xm2s−1

∂̄Xm2s

their renormalization studied before [Wegner 90]
simplest case: fk1...k`Xk1 ...Xk` with traceless fk1...k`
same anom. dim. γ̂ as its highest-weight rep VJ = (Xx)J

γ̂ = 2− 1

2
√
λ
J(J + 4) + ...

scalar spherical harmonic that solves Laplace eq. on S5



Example of higher-level scalar operator:

Y −∆
+ [(∂Xk∂̄Xk)r + ...] , r = 1, 2, ...

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0 = −2(r − 1) +
1

2
√
λ

[
∆(∆− 4) + 2r(r − 1)

]
+

1

(
√
λ)2

[
2
3r(r − 1)(r − 7

2 ) + 4r
]

+ ...

r = 1: ground level
fermionic contributions should make r = 1 exact zero of γ̂
r = 2: excited level – candidate for singlet Konishi state ∆0 = 2

∆(∆− 4) = 4
√
λ− 4 +O( 1√

λ
) ,

∆−∆0 = 2
4
√
λ
[
1 + 0× 1√

λ
+O( 1

(
√
λ)2

)
]

fermionic contribution may change this



Bosonic operators with two spins J1 = J, J2 ≡ K in S5:

VK,J = Y −∆
+

K/2∑
u,v=0

cuvMuv

Muv ≡ XJ−u−v
y Xu+v

x (∂Xy)u(∂Xx)K/2−u(∂̄Xy)v(∂̄Xx)K/2−v

highest and lowest eigen-values of 1-loop anom. dim. matrix

γ̂min = 2−K +
1

2
√
λ

[
∆(∆− 4)− J(J + 4)

−1

2
K(K + 10)− 2JK

]
+O( 1

(
√
λ)2

)

γ̂max = 2−K +
1

2
√
λ

[
∆(∆− 4)− J(J + 4)

−1

2
K(K + 6)

]
+O( 1

(
√
λ)2

)

fermions may alter terms linear in K
How to take fermionic contributions into account?



General structure of dimension ∆ = energy E

vertex operators on R2 ↔ string states on R× S1

aim: understand structure of dependence of string energy on
string tension and quantum numbers (spins)
guided by form of string vertex op. marginality condition
structure of dependence of energy E of quantum string state on
quantum chargesQi in the large string tension expansion

√
λ� 1

from α′ expansion of 2d anomalous dimensions
of AdS5 × S5 vertex ops→ solution of marginality condition
should give E = E(Q,

√
λ) in the form [Roiban, AT 09, 11]

E2 = 2
√
λ
∑
i

aiQi +
∑
i,j

bijQiQj +
∑
i

ciQi

+
1√
λ

(∑
i,j,k

dijQiQjQk +
∑
i,j

eijQiQjQk +
∑
i

fiQi

)
+ ...

Qi – fixed in the limit
√
λ� 1



string state with S5 orbital momentum J and quantum number N
N= effective string level, e.g., spin component S = N

E2 from the 2d marginality condition
(ignore shifts of N and E by integers: depend on choice of vac.)

0 = N +
1

2
√
λ

(
− E2 + J2 + n02N

2 + n11N
)

+
1

2(
√
λ)2

(
n01NJ

2 + n03N
3 + n12N

2 + n21N
)

+O( 1
(
√
λ)3

)

then E2 takes form:

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + n04N
4 + ...

)
+O( 1

(
√
λ)3

)



expanding in large
√
λ for fixed N, J

E =

√
2
√
λN
[
1 +

A1√
λ

+
A2

(
√
λ)2

+O( 1
(
√
λ)3

)
]
,

A1 =
1

4N
J2 +

1

4
(n02N + n11) ,

A2 = −1

2
A2

1 +
1

4
(n01J

2 + n03N
2 + n12N + n21)

Gives for particular quantum string state values of N and J
strong-coupling expansion of energy/dimension
of the corresponding gauge-theory operator

Plan: determine the coefficients nkm
using semiclassical “short string” expansion approach



Approach based on interpolation
of semiclassical expansion

start with a solitonic string carrying same charges
as vertex operator representing particular quantum string state
(i) first perform semiclassical expansion

√
λ� 1

for fixed classical parameters
Qi = 1√

λ
Qi, i.e. (N ,J ) = 1√

λ
(N, J)

(ii) then expand E in small values of Qi
(iii) re-interpret the resulting expression in terms of N, J

limit Qi = Qi√
λ
→ 0 should correspond to 1√

λ
→ 0 for fixed

values of quantum charges Qi
same coefficients nkm should be found
in direct vertex operator approach



E in terms of N ,J :

(
E√
λ

)2 = (2N + J 2 + n01J 2N + n02N 2 + n03N 3 + n04N 4 + ...)

+
1√
λ

(n11N + ñ11J 2N + n12N 2 + ...)

+
1

(
√
λ)2

(n21N + ...) +O( 1
(
√
λ)3

) ,

interpret nkm as semiclassical k-loop contribution to Nm term
• quantum string loop (i.e. α′ ∼ 1√

λ
� 1) expansion

in 2d anom. dim. is different from semiclassical loop expansion:
nkm in general appear at different orders in two expansions
(but n11 and n21 are 1-loop and 2-loop in both expansions)
• each loop term in exact expansion polynomial in charges
but in semiclassical expansion each term may contain
infinite series in small J ,N expansion
• to relate two expansions need to reorganize them



Semiclassical expansion ofE2 organized as expansion in smallN
formally looks like an expansion in powers of N :

E2 = J2 + h1(λ, J)N + h2(λ, J)N2 + h3(λ, J)N3 + ...

where for fixed J and large λ

h1 = 2
√
λ+ n11 +

n21√
λ

+
n31

(
√
λ)2

+ ...+ J2(
n01√
λ

+
ñ11

(
√
λ)2

+ ...) + ...

h2 = n02 +
n12√
λ

+ ...

h3 =
n03√
λ

+ ... , h4 =
n03

(
√
λ)2

+ ...

[exact computation of h1 for folded string state: Basso 11]

Will consider examples of “small” semiclassical string states
corresponding to quantum string states with angular momentum J

and few oscillator modes excited



For N = 2, J = 2 they represent particular states
in the Konishi multiplet on gauge theory side
– should have same 4d anomalous dimension
= same E (modulo constant shifts)

E = 2
4
√
λ
[
1 +

b1

2
√
λ

+
b2

2(
√
λ)2

+O( 1
(
√
λ)3

)
]
,

b1 = 2(A1)
N=J=2

= 1 + n02 +
1

2
n11

b2 = 2(A2)
N=J=2

= −1

4
b21 + 2n01 + 2n03 + n12 +

1

2
n21

find the coefficients nkm using semiclassical approach
check this universality (implied by susy)
identify general patterns in the structure of nkm



Semiclassical expansion:√
λ� 1, J = J√

λ
=fixed (e.g. for J = 0):

E(
N√
λ
,
√
λ) =

√
λE0(N ) + E1(N ) +

1√
λ
E2(N ) + ...

En =
√
N (an0 + an1N + an2N 2 + ...) , N � 1

if know all terms in this expansion – express N in terms of N
fix it to finite value and re-expand in

√
λ

E =

√
2
√
λN
[
1 +

a01N + a10√
λ

+
a02N

2 + a11N + a20

(
√
λ)2

+ ...
]

akm – k-loop string corrections – related to nkm
a01 = 1

4n02, a10 = 1
4n11, ... etc

to trust the coeff of 1
(
√
λ)n

need coeff of up to n-loop terms

e.g. classical a01 and 1-loop a10 sufficient to fix 1√
λ

term

[cf. “fast string” expansion N � 1 for fixed N
– positive powers of

√
λ – need to resum]



“Short” string: probing flat-space limit of AdS5 × S5

(i) start with classical string solutions in flat space
representing states at 1-st excited string level
(ii) embed into AdS5 × S5 and find 1-loop correction to E
(iii) interpolate result to finite values N , i.e. N = N√

λ
→ 0

Two basic classes of examples (N= spin, J= orbital momentum):
• circular string with 2 spins in two orthogonal planes
• folded spinning string

Rigid circular string rotating in two planes of R4

t = κτ , xx ≡ x1 + ix2 = a ei(τ+σ), xy ≡ x3 + ix4 = a ei(τ−σ)

Eflat = κ
α′ =

√
4
α′ J , J1 = J2 = a2

α′ .



Identifying oscillator modes that are excited
associate it with the quantum string state created by

e−iEt
[
(∂xx∂̄xx)

J1
2 (∂xy∂̄xy)

J2
2 + ...

]
α′E2 = 2N = 2(J1 + J2 − 2)

J1 = J2 in bosonic string:

Eflat =
√

4
α′ (J − 1) .

Folded string rotating in a plane

t = κτ , x1 ≡ x1 + ix2 = a sinσ eiτ

Eflat =
√

2
α′S , S = a2

2α′ ,

semiclassical counterpart of quantum string state on
leading Regge trajectory

e−iEt
[
(∂xx∂̄xx)

S
2 + ...

]
, α′E2 = 2N = 2(S − 2)



3 obvious choices how to embed these solutions into AdS5×S5 :
(i) the two 2-planes may belong to S5: J1 = J2 “small string”
(ii) the two 2-planes may belong toAdS5: S1 = S2 “small string”
(iii) one plane in AdS5 and the other in S5: S = J “small string”

similar choices for folded string
1. study each case in AdS5×S5 ; interpolate to fixed values of N
2. match to states in Konishi table
3. verify universality of strong-coupling expansion of
4d anom. dim of dual gauge theory operators
in same supermultiplet



Results:
for several solutions for states on leading Regge trajectory
(maximal spin for given energy in flat limit)

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(n01J
2N + n03N

3 + n12N
2 + n21N)

+
1

(
√
λ)2

(ñ11J
2N + n04N

4 + ...) + ... .

• n01 = 1

follows from near-BMN expansion of classical energy (J �
√
λ)

E2 = J2 + 2N
√
λ+ J2 + ... = J2 +N(2

√
λ+ J2

√
λ

+ ...)

• tree-level n02, n03, ... are rational
• leading 1-loop n11 rational [Roiban, AT 09; Gromov et al 11]
• ñ11 = −n11

h1 = 2
√
λ
√

1 + J 2 + n11

1+J 2 + ... [Basso; BGRT]



• n12 = n′12 − 3ζ(3), n′12 is rational
[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]
ζ(3) term is universal for states on leading Regge trajectory
n1k contain ζ(5), ... etc; likely to be universal too
– universality of “short-distance” (n� 1) behaviour
• leading 2-loop coefficient n21 is rational and universal:
n21 = − 1

4

found for folded string state [Basso 11]
evidence from universality [BGRT]
of the Konishi state energy (J = N = 2)

E
N=J=2

= 2
4
√
λ
[
1 +

b1

2
√
λ

+
b2

2(
√
λ)2

+O( 1
(
√
λ)3

)
]

b1 = 1 + n02 +
1

2
n11 = 2

b2 = −1

4
b21 + 2n01 + 2n03 + n12 +

1

2
n21 =

1

2
− 3ζ(3)



matching TBA predictions interpolated to λ� 1

2n02 + n11 = 2 , 4n03 + 2n′12 + n21 = −1

Need to confirm universality of n21 by direct computation
generalize exact result for h1 [Basso]
for sl(2) sector state to other string states



Summary of results for nkm

I. Folded strings with one spin N and orbital momentum J

• folded string in AdS5 with (S, J), N = S

[Tirziu,AT08; Gromov,Serban, Shenderovich,Volin 11;
Basso 11; Gromov,Valatka 11]

n01 = 1 , n02 =
3

2
, n03 = −3

8
,

n11 = −1 , ñ11 = 1 , n′12 =
3

8
, n21 = −1

4

• folded string in S5 with (J1, J3 = J), N = J1

[Beccaria, Marconi 11; BGRT 12]

n01 = 1 , n02 =
1

2
, n03 =

1

8
,

n11 = 1 , ñ11 = −1 , n′12 = −5

8
, n21 = −1

4
(?)



II. Circular strings with two spins and orbital momentum J

[Roiban, AT 09, 11; BGRT 12]
• “small” circular string with 2 spins in S5:
(J1 = J2, J3 = J), N = J1 + J2 = 2J1

n01 = 1 , n02 = 0 , n03 = 0 ,

n11 = 2 , ñ11 = −2 , n′
12 = −3

8
, n21 = −1

4
(?)

• “small” circular string with 2 spins in AdS5:
(S1 = S2, J), N = S1 + S2 = 2S1

n01 = 1 , n02 = 2 , n03 = −1 ,

n11 = −2 , ñ11 = 2 , n′
12 =

13

8
, n21 = −1

4
(?)

• “small” circular string with S in AdS5 and J1 in S5:
(S = J1, J3 = J), N = S + J1 = 2S

n01 = 1 , n02 = 1 , n03 = −1

2
,

n11 = 0 , ñ11 = 0 , n′
12 =

5

8
(?) , n21 = −1

4
(?)



III. Circular pulsating strings:
[Beccaria,Dunne,Macorini,Tirziu,AT 10]
• pulsating string in AdS3: N= oscillation number

n01 = 1 , n02 =
5

2
, n03 = −13

8
,

n11 = −3 , ñ11 = 3(?) , n′12 =
23

8
(?) , n21 = −1

4
(?)

• pulsating string in R× S2

n01 = 1 , n02 = −1

2
, n03 = −1

8
,

n11 = 3 , ñ11 = −3(?) , n′12 = −1

8
(?) , n21 = −1

4
(?)

for N = J = 2 pulsating strings should also represent states
on the first excited string level, i.e. from Konishi multiplet
predict the same b1, b2 with above nnk



Examples of states on subleading Regge trajectories
•m-folded spinning string
• spinning string with n spikes [Kruczenski 04]
1-loop corrections:
[Gromov, Valatka 11; Beccaria, Ratti, AT 11]

E2
folded = 2m

√
λS
[
1 +

1√
λ
bfolded + ...

]
+ J2 +

3

2
S2 + ...

E2
spiky = 4(1− 1

n
)
√
λS
[
1 +

1√
λ
bspiky + ...

]
+ J2 + 4(1− 5

2n
+

5

2n2
)S2 + ...

bfolded = 2F (m) , bspiky = −1

4
+ F (n− 1)

F (r) ≡ − 3

4r
+ 2Hr −H2r , Hr ≡

r∑
k=1

1

k

coincide in 1-fold string case: Efolded(m = 1) = Espiky(n = 1)

afolded(m = 1) = aspiky(n = 2) = F (1) = −1

4



Some details
Circular rotating string in S5 with J1 = J2 ≡ J ′:
cf. Konishi descendant with J1 = J2 = 2: Tr([Φ1,Φ2]2)

represent it by “short” classical string with same charges
flat space Rt ×R4: circular string solution

x1 + ix2 = a ei(τ+σ) , x3 + ix4 = a ei(τ−σ)

E =
√

4
α′ J
′, J ′ = a2

α′

can be directly embedded into
Rt × S5 in AdS5 × S5 [Frolov, AT 03] :
string on small sphere inside S5: X2

1 + ...+X2
6 = 1

X1 + iX2 = a ei(τ+σ), X3 + iX4 = a ei(τ−σ) ,

X5 + iX6 =
√

1− 2a2, t = κτ
J ′ = J1 = J2 = a2, E2 = κ2 = 4J ′



E0 is just as in flat space

E0 =
√
λE =

√
4
√
λJ ′ , J ′ =

√
λJ ′

1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)
Bosons (2 massless + massive):

AdS5 : 4× ω2
n = n2 + 4J ′

S5 : 2× ω2
n± = n2 + 4(1− J ′)± 2

√
4(1− J ′)n2 + 4J ′2

Fermions:

4× ω2
n
f
± = n2 + 1 + J ′ ±

√
4(1− J ′)n2 + 4J ′

E1 =
1

2κ

∞∑
n=−∞

[
4ωn + 2(ωn+ + ωn−)− 4(ωfn+ + ωfn−)

]



expand in small J ′ and do sums (UV divergences cancel)

E1 =
1√
J

(
J − [3 + ζ(3)]J ′2 − 1

4

[
5 + 6ζ(3) + 30ζ(5)

]
J ′3 + . . .

)
E = E0 + E1 = 2

√√
λJ ′
(

1 +
1

2
√
λ
− 3

4
[1 + 2ζ(3)]

J ′

(
√
λ)2

+ ...
)

include orbital momentum J dependence:
value of b1 is shifted by “classical” contribution ∼ J2 as

b1(J) = b1(0) +
1

4
J2

universal value b1(0) = 1 [Roiban, AT 2009] implies b1(2) = 2

i.e. same as value for the Konishi multiplet state in the sl(2) sector
(having S = J = 2) found from TBA [Gromov et al 2009]
J2 term has simple classical origin

E2
0 = 2

√
λN + aN2 + J2 + ... , N, J �

√
λ

E0 =

√
2
√
λN

[
1 +

1

4
√
λ

(
aN +

J2

N

)
+ ...

]



For each solution (with values of spins representing a state on the
first excited string level) there will be a state in the corresponding
representation in the Konishi multiplet table
– universality of the predicted value b1 = 2

• Small circular string with J1 = J2 and J3 6= 0

X1 = a ei(wτ+σ) , X2 = a ei(wτ−σ) , X3 =
√

1− 2a2 eiντ ,

E2
0 = κ2 = 4a2 + ν2 = ν2 +

4J ′√
1 + ν2

, w2 = 1 + ν2 ,

J ′ ≡ J1 = J2 = a2w , J ≡ J3 =
√

1− 2a2 ν

for J ′ = J′√
λ
� 1, J = J√

λ
� 1

E0 = 2

√√
λJ ′

[
1 +

1√
λ

J2

8J ′
− 1

(
√
λ)2

J4

128J ′2
+ . . .

]
leading term in 1-loop correction expanded in
J = J√

λ
� 1 does not depend on J – has same value as for J = 0



To get a state on the first excited string level
we should choose J ′ = 1, i.e. J1 = J2 = 1

for minimal non-trivial value of J = J3 = 2

there is unique corresponding state in Konishi multiplet table:
[0, 1, 2](0,0) at level ∆0 = 6 and thus

b1 = 2
( J2

8J ′
+

1

2

)
J=2,J′=1

= 2

• Small circular spinning string with S1 = S2 and J 6= 0

rigid circular string with two equal spins in AdS5

and orbital momentum J = J1 in S5

Y0 + iY5 =
√

1 + 2r2 eiκt , Y1 + iY2 = r ei(wτ+σ) , Y3 + iY4 = r ei(wτ−σ) ,
X1 + iX2 = eiντ , w2 = κ2 + 1 , κ2(1 + 2r2) = 2r2(1 + w2) + ν2 ,

E0 = (1 + 2r2)κ = κ+
2κS√
1 + κ2

, S = S1 = S2 = r2w , J = ν .



“short” string expansion of the classical energy (E0 =
√
λE0):

E0 = 2
√
S
(

1 + S +
J 2

8S
+ ...

)
including 1-loop correction:

E0 + E1 = 2

√√
λS
[
1 +

1√
λ

(
S +

J2

8S
− 1

2

)
+O(

1

(
√
λ)2

)
]

the state on the first excited level associated to string
with two equal spins in AdS5

has two excited oscillators, i.e. should have S = S1 = S2 = 1

for J = 2 the dual state should be in representation [0, 2, 0](1,0)

there is just one state in Konishi table with ∆0 = 6

b1 = 2
(
S +

J2

8S
− 1

2

)
S=1,J=2

= 2



• Small circular spinning string with S = J1 and J2 6= 0

rigid circular solution with one spin in AdS5 and one spin in S5

and orbital momentum in S5

Y0 + iY5 =
√

1 + r2 eiκt , Y1 + iY2 = r ei(wτ+σ) , w2 = κ2 + 1 ,

X1 + iX2 = a ei(w
′τ−σ) , X3 + iX4 =

√
1− a2eiντ , w′2 = ν2 + 1 ,

E0 = 2
√
S
(

1 +
1

2
S +

J 2
2

8S
+ ...

)
The leading 1-loop correction to the energy vanishes
(cancellation of AdS and sphere contributions)

E0 + E1 = 2

√√
λS
[
1 +

1√
λ

(1

2
S +

J2
2

8S

)
+O(

1

(
√
λ)2

)
]

state on the first excited level: S = J1 = 1

for J2 = 2 get state [1, 1, 1]( 1
2 ,

1
2 ) at ∆0 = 6 level

b1 = 2
(1

2
S +

J2
2

8S

)
S=1,J2=2

= 2



Conclusions

• beginning of understanding quantum string spectrum
in AdS5 × S5 = spectrum of “short” SYM operators

• agreement with numerical prediction of TBA:
non-trivial check of existing TBA equations at strong coupling

• observation of universality of some coefficients
in strong coupling expansion of dimension
for states on leading Regge trajectory

• need of systematic study of quantum string theory inAdS5×S5

in particular, in near flat space expansion



∆0

2 [0, 0, 0](0,0)
5
2

[0, 0, 1](0, 1
2
) + [1, 0, 0]( 1

2
,0)

3 [0, 0, 0]( 1
2
, 1
2
) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1

2
, 1
2
) + [2, 0, 0](0,0)

7
2

[0, 0, 1]( 1
2
,0)+( 1

2
,1)+( 3

2
,0) + [0, 1, 1](0, 1

2
)+(1, 1

2
) + [1, 0, 0](0, 1

2
)+(0, 3

2
)+(1, 1

2
) + [1, 0, 2]( 1

2
,0)

+[1, 1, 0]( 1
2
,0)+( 1

2
,1) + [2, 0, 1](0, 1

2
)

4 [0, 0, 0](0,0)+(0,2)+(1,1)+(2,0) + [0, 0, 2]( 1
2
, 1
2
)+( 3

2
, 1
2
) + [0, 1, 0]2( 1

2
, 1
2
)+( 1

2
, 3
2
)+( 3

2
, 1
2
) + [2, 0, 2](0,0) + [2, 1, 0](0,1)

+[0, 1, 2](1,0) + [0, 2, 0]2(0,0)+(1,1) + [1, 0, 1](0,0)+2(0,1)+2(1,0)+(1,1) + [1, 1, 1]2( 1
2
, 1
2
) + [2, 0, 0]( 1

2
, 1
2
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2
, 3
2
)

6 [0, 0, 0]3(0,0)+3(1,1)+(2,2) + [0, 0, 2]3( 1
2
, 1
2
)+( 1

2
, 3
2
)+( 3

2
, 1
2
)+( 3

2
, 3
2
) + [0, 1, 0]4( 1

2
, 1
2
)+2( 1

2
, 3
2
)+2( 3

2
, 1
2
)+2( 3

2
, 3
2
)

+[0, 1, 2](0,0)+2(0,1)+2(1,0)+(1,1) + [0, 2, 0]3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0) + [0, 2, 2]( 1
2
, 1
2
)

+[0, 3, 0]2( 1
2
, 1
2
) + [0, 4, 0](0,0) + [1, 0, 1](0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1) + [1, 0, 3]( 1

2
, 1
2
) + [0, 0, 4](0,0)

+[1, 1, 1]4( 1
2
, 1
2
)+2( 1

2
, 3
2
)+2( 3

2
, 1
2
) + [1, 2, 1](0,0)+(0,1)+(1,0) + [2, 0, 0]3( 1

2
, 1
2
)+( 1

2
, 3
2
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2
, 1
2
)+( 3

2
, 3
2
)

+[2, 0, 2](0,0)+(1,1) + [2, 1, 0](0,0)+2(0,1)+2(1,0)+(1,1) + [2, 2, 0]( 1
2
, 1
2
) + [3, 0, 1]( 1

2
, 1
2
) + [4, 0, 0](0,0)
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2

[0, 0, 1](0, 1
2
)+(0, 3

2
)+(1, 1

2
) + [0, 1, 1]( 1

2
,0)+( 1

2
,1) + [1, 0, 0]( 1

2
,0)+( 1

2
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2
,0) + [1, 0, 2](0, 1

2
)

+[1, 1, 0](0, 1
2
)+(1, 1

2
) + [2, 0, 1]( 1

2
,0)

9 [0, 0, 0]( 1
2
, 1
2
) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1

2
, 1
2
) + [2, 0, 0](0,0)

19
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[0, 0, 1]( 1
2
,0) + [1, 0, 0](0, 1

2
)

10 [0, 0, 0](0,0)


