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Motivation:

⇒ There was been many studies were the gauge/string theory correspondence framework

was been used to extract transport coefficients of strongly coupled gauge theory plasma.

however...

⇒ real QCD is not in any one of the models studied

(it is possible to reach QCD as a particular limit in some of the models, but the price to pay is too big: the

truncation of the full string theory to a supergravity sector is inconsistent)

thus...

⇒ one attempts to discover common/universal features of hydrodynamics of strongly coupled gauge

theories (by looking at the explicit string theory models as well as phenomenological models) and

hope...

⇒ that QCD is in the universality class of the models studied



Examples:

the shear viscosity ratio
η

s
=

1

4π

the bulk viscosity ratio

ζ

η
≥ 2

(

1

3
− c2

s

)

, c2
s =

∂P
∂E

⇒ It is not clear why and how this universality arises, or how to properly “define” the

corresponding universality classes: while the shear viscosity ratio is universal in 2-derivative

supergravity (or a phenomenological model of thereof), it can be violated in full string theory ;

while the bulk viscosity bound is satisfied in all models of supergravity derived from string

theory, it can be violated in some phenomenological models of gauge/gravity correspondence.



⇒ A more common notion of ’universality’ arises in the theory of continuous critical

phenomena.

⇒ We are going to use gauge theory/string theory correspondence of Maldacena to study

static and dynamic critical phenomena of strongly coupled (non-conformal) gauge theories in

various dimensions



“Holographic-”, ”Maldacena-”, ”gauge theory/string theory-”

correspondence

Consider N = 4 SU(N) SYM:

• g2
Y MN ≪ 1 (weak effective coupling) =⇒ perturbative gauge theory description

• g2
Y MN ≫ 1 (strong effective coupling) =⇒ IIB string theory on AdS5 × S5

⇒ The duality can be extended to non-conformal gauge theories; it is a very effective tool to

compute correlation functions of gauge-invariant operators in QFT at strong coupling, in the

presence of finite temperature and/or chemical potentials for the conserved U(1) charges.



Outline of the talk:

• Static critical phenomena

• Dynamical critical phenomena

• Holographic second order phase transitions in N = 4 SYM (T 6= 0 , µ 6= 0)

• Bulk viscosity at criticality

experiment — or why it is interesting?

Karsch-Kharzeev-Tuchin model ([arXiv:0711.0914])

Quasiparticle models in relaxation time approximation (Sasaki-Redlich

[arXiv:0806.4745])

bulk viscosity in dynamical critical phenomena (Onuki, PRE 55 403 (1997))

relevance to QCD



• Bulk viscosity in mass deformed N = 4 SYM plasma at criticality

• Holographic second order phase transitions at (T 6= 0 , µ = 0)

N = 2∗ plasma

cascading gauge theory plasma

• Holographic bulk viscosity at criticality

N = 2∗ plasma

cascading gauge theory plasma

• Conclusions and future directions



Static critical phenomena

⇒ consider ferromagnetic phase transition

magnetization M ⇔ order parameter

external magnetic field H ⇔ a control parameter

M = −
(

∂W
∂H

)

T

where W = W(T,H) is the Gibbs free energy

M
∣

∣

∣

∣

H=0

=







0 , disordered [unbroken] phase

6= 0 , ordered [broken] phase



⇒ Basic thermodynamic relations

W = ǫ − s T −MH , dW = −s dT −M dH

At a second order phase transition the first derivatives of W are continuous while the higher

derivatives are not. Under the static scaling hypothesis we have:

W(t,H) = λ−p W (λyT t, λyHH) , t ≡ T − Tc

Tc

for the free energy, and

G̃(~q, t,H) = λ2yH−p G̃(λ~q, λyT t, λyHH)

for the Fourier transform of the equilibrium two-point correlation function of the magnetization

G(~r) = 〈M(~r)M(~0)〉 ∝ ∂2W
∂H(~r)∂H(~0)

p is the number of spatial dimensions.



The static critical exponents

{α, β, γ, δ, ν, η}
are defined as

specific heat : cH = −T

(

∂2W
∂T 2

)

H

=
s

c2
s

∝ |t|−α

spontaneous magnetization : M ∝ |t|β

magnetic susceptibility : χT =

(

∂M
∂H

)

T

∝ |t|−γ

critical isotherm : M(t = 0) ∝ |H|1/δ

correlation function : G(~r) ∝







e−|~r|/ξ , t 6= 0

|~r|−p+2−η , t = 0

correlation length : ξ ∝ |t|−ν

Note: η is the anomalous critical exponent



⇒ Given the scaling hypothesis we can compute

α = 2 − p

yT
, β =

p − yH
yT

, γ =
2yH − p

yT

δ =
yH

p − yH
, ν =

1

yT
, η = p − 2yH + 2

which implies 4 scaling relations:

α + 2β + γ = 2 , γ = β(δ − 1) = ν(2 − η) , 2 − α = νp



Some mean-field results (LG model for uniaxial ferromagnet in p = 3)

Free energy:

W =

∫

d~x
[ c

2
(∇M)

2
+

a

2
M2 −MH

]

with

c > 0 , a = a0 (T − Tc)

⇒ minimum is achieved for constant M; solving for M,

∂W
∂M = 0 ⇒ W = W(t,H)

{α, β, γ, δ, ν, η} =

{

0,
1

2
, 1, 3,

1

2
, 0

}



Dynamical universality classes and z-exponent

⇒ depends on additional properties of the system:

same static universality class ⇒ different dynamical universality class

⇒ crucial question is whether or not the order parameter is conserved

⇒ relaxation to equilibrium is described by time-dependent Landau-Ginsburg (TDLG)

equation

In case of Brownian motion ⇒ Langevin equation:

dv(t)

dt
= −Γv(t) + ξ(t) = −Γ

δH

δv
+ ξ(t)

where Γ > 0 is a friction coefficient, ξ(t) is the random force with 〈ξ(t)〉 = 0 and

H =
v2

2

is the Hamiltonian of the system.



TDLG equation is multi-body generalization of the Langevin equation:

∂M(t, ~x)

∂t
= −

∫

d~y Γ(|~x − ~y|) δW(M)

δM(t, ~y)
+ ξ(t, ~x)

Γ|~x − ~y| is a dynamical transport coefficient (friction in Langevin equation)

⇒ Go back to LG model:

W =

∫

d~x
[ c

2
(∇M)

2
+

a

2
M2 −MH

]

Fourier transform of TDLG, plus averaging

−iω〈Mω,~q〉 = −(cq2 + a) · Γq · 〈Mω,~q〉 + Γq · Hω,~q



Consider dynamical susceptibility:

χω,~q =
∂〈Mω,~q〉
∂Hω,~q

=
Γq

iω + (cq2 + a)Γq

⇒ the response function has a pole

ω = −i τ−1
q , τ−1

q = (cq2 + a)Γq

where τq is the dynamical relaxation time. In hydro limit (q → 0) and for Γ0 6= 0

τ−1
q=0 ∝ t ⇒

the relaxation time diverges (critical slow-down)

We can now introduce a new dynamical exponent z as

τq=0 ∝ ξz ∝ |t|−zν



Let’s look @ LG model:

• M is not a conserved quantity

τq=0 ∝ t−1 ⇒ ξz ∝ t−
1

2
z ⇒ z = 2

• M is a conserved quantity

∂Mq=0

∂t
= 0 ⇒

from TDLG:

Γ(q = 0) = 0 ⇒ Γq ∝ q2

Thus, in the hydrodynamic limit q ∝ ξ−1

τq ∝ 1

aq2
∝ ξ4

(ξq)2
⇒ z = 4



More formally, the critical exponent z is introduced by looking at the scaling of the

near-equilibrium correlation function of the magnetization

G̃(ω, ~q, t,H) = λ2yH−p+z G̃(λzω, λ~q, λyT t, λyHH)

Note: the dynamics associated with off-equilibrium relaxation, in principle, has nothing to do

with Minkowski time evolution, thus z should not be identified with 1, even if we are dealing

with relativistic critical phenomena

Likewise: the critical phenomena with z 6= 1 does not necessarily have to have a Lifshitz-like

holographic scaling



Critical phenomena in N = 4 SYM

⇒ Consider strongly coupled N = 4 SYM with a (single, non-diagonal) U(1) ⊂ SU(4)

R-symmetry chemical potential

⇒ The dual holographic model is

S5 =
1

16πG5

∫

M5

d5ξ
√−g

(

R − 1

4
φ4/3F 2 − 1

3
φ−2 (∂φ)

2
+ 4φ2/3 + 8φ−1/3

)

⇒ It is straightforward to construct RN black hole solution, describing the equilibrium state of

finite temperature and density N = 4 SYM plasma



⇒ we find:

s =
4π2(1 + κ)2T 3N2

(κ + 2)3
, ǫ = 3P =

6N2T 4(1 + κ)3π2

(κ + 2)4

ρ =
2π(1 + κ)2κ1/2T 3N2

(κ + 2)3
,

2πT

µ
=

√
κ +

2√
κ

⇒ it is easy to verify that

Ω = ǫ − Ts − µρ = −P , dǫ = Tds + µdρ , dP = sdT + ρdµ



⇒ we see that T
µ achieves a minimum at κ = κc = 2, corresponding to the critical

temperature Tc =
√

2µ/π and the critical chemical potential µc = πT/
√

2. Introducing

t =
T

Tc
− 1 , µ̄ = 1 − µ

µc
=⇒ µ̄ =

t

t + 1

we find

Ω±(µ, t) = −27N2µ4

32π2

(

1 +
8

3
t ∓ 16

√
2

27
t3/2 +

68

27
t2 + O

(

t5/2
)

)

Ω±(T, µ̄) = −27N2T 4π2

128

(

1 − 4

3
µ̄ ∓ 16

√
2

27
µ̄3/2 +

14

27
µ̄2 + O

(

µ̄5/2
)

)

κ = κ±(t) = 2 ± 4
√

2 t1/2 + 8 t ± 5
√

2 t3/2 + 4 t2 + O
(

t5/2
)

⇒ Remember:

κ − κc ∝ t1/2



Thus for a given temperature t there are two thermodynamic phases of the system, with Ω−

being the stable one.

For Ω− phase:

C = T

(

∂s

∂T

) ∣

∣

∣

∣

µ

∝ −∂2Ω−(µ, t)

∂t2
∝ +t−1/2 ⇒ α =

1

2

χT =

(

∂ρ

∂µ

)
∣

∣

∣

∣

T

∝ −∂2Ω−(T, µ̄)

∂µ̄2
∝ +µ̄−1/2 ∝ +t−1/2 ⇒ γ =

1

2

⇒ thus, assuming the scaling relations we find the static universality class of strongly coupled

RN plasma to be

(α, β, γ, δ, ν, η) =

(

1

2
,
1

2
,
1

2
, 2,

1

2
, 1

)

⇒ All I said about N = 4 plasma is old result



I want to claim that these naive identification of the [static] universality class is in fact incorrect

⇒ A hint that something is wrong can be seen from the fact that the anomalous scaling

exponent η = 0, as one would expect in the large-N (equivalently mean-field) limit

⇒ At a technical level, the hyperscaling relation between the critical exponents

2 − α = νp = 3ν

is quite often is violated



⇒ To proceed we need to compute the dynamical susceptibility χ(w, q):

χ(w = 0, q = 0) = χT ⇒ a test on computations

χ(w = 0, q)

∣

∣

∣

∣

t6=0

∝ 1

q2 + (2πTξ)2
⇒ ξ ∝ t−ν

χ(w = 0, q)

∣

∣

∣

∣

t=0

∝ q
−2+η

1

χ(w, q)
= 0 ⇒ iw = (2πTτ)−1 ⇒ τ ∝ ξz

⇒ I will now present the results of the analysis.
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κ

∝ χ−1
w=0,q=0

Figure 1: The scaling (blue dots) of the inverse of the static susceptibility χw=0,q=0 in the

vicinity of the critical point. The solid red line is a quadratic fit to the data. The red line

intersects the κ axis at κc = 1.999999(6) in excellent agreement with the expected value

κc = 2.

χw=0,q=0 = χT ∝ 1

κ − κc
∝ +t−1/2 , |κ − κc| ≪ κc
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-0.04
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κ

q2
∗

Figure 2: Poles of the static susceptibility in the vicinity of the critical point: χ−1
w=0,q=q∗

= 0.

(2πTc ξ)2 ∝ q
−2
∗ ∝ 1

κ − κc
∝ +t−1/2 , 0 < κc − κ ≪ kc



ξ ∝ t−ν ∝ t−1/4 ⇒ ν =
1

4

Given that the static critical exponent α = 1

2
, above implies that the hyperscaling relation is

violated

2 − α 6= p ν

where p = 3 stands for the number of spatial dimensions of the system.
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q2

∝ (χcrit
c,w=0,q)

−1

Figure 3: The scaling (blue dots) of the inverse of the static susceptibility χcrit
w=0,q at the critical

point, κ = 2. The solid red line is a quadratic fit to the data.

The red line intersects the q2 axis at q2
c = −1.57468 · 10−8 in excellent agreement with

the expected value q2
c = 0. The data implies

χcrit
w=0,q ∝ q

−2 ⇐⇒ χcrit
w=0,q ∝ q

−2+η ⇐⇒ η = 0
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κ

i w∗

q2

Figure 4: Poles of the dynamic susceptibility in the vicinity of the critical point, χ−1
w=w∗,q = 0

for a set of momenta values q2 = : 10−6 (blue dots) , 10−5 (green dots), 10−4 (orange dots)

and 10−3 (black dots). The solid red line is a quadratic fit to iw∗

q2 at q2 = 10−6.

lim
q→0

i
w∗

q2
= 2.79163 ·10−6 −0.333392(κ−2)+0.0278087(κ−2)2 +O((κ−2)3)



(2πTc τ)−1 ≡ iw∗ ∝ q
2 · (κ − κc) ∝ (2πTc qξ)2 · (2πTc ξ)−4 ∝ (2πTc ξ)−4

τ ∝ ξz ∝ ξ4 ⇒ z = 4

⇒ Thus:

incorrect universality class of N = 4 plasma:

(α, β, γ, δ, ν, η) =

(

1

2
,
1

2
,
1

2
, 2,

1

2
, 1

)

correct universality class of N = 4 plasma:

(α, β, γ, δ, ν, η ; z) =

(

1

2
,
1

2
,
1

2
, 2,

1

4
, 0 ; 4

)

Note: z 6= 1 even though the holographic dual does not have Lifshitz-like scaling.



Hydrodynamics and models of bulk viscosity at criticality

T µν = T µν
equilibrium + T µν

non−equilibrium

T µν
eq = ǫ uµuν + P∆µν , T µν

non−eq = −η σµν − ζ(∇u)

uµuµ = −1 , ∆µν = ηµν + uµuν

where η, ζ are the shear and the bulk viscosities and σµν is a shear tensor (which is

traceless):

ηµνσµν = 0

In CFT T µ
µ = 0 ⇒

−ǫ + 3P − 3ζ(∇u) = 0 ⇒ ǫ = 3P

∣

∣

∣

∣

CFT

, ζ

∣

∣

∣

∣

CFT

= 0

⇒ so in order to see ζ 6= 0 we need to look @ non-conformal theories



• Naively, second-order phase transitions imply scale invariance ⇒

ζ → 0 or ζ → ∞

Not true: ζ = 0 necessitates the full space-time scale invariance, while at criticality we

have only spatial scale-invariance.

• Even though a CFT has ζ = 0, it might still have a non-trivial z as determined from the

dynamical susceptibility



What is bulk viscosity at criticality?

• Experiments: typically,
ζ

η
. 1

however, for 3He in the vicinity of liquid-vapor critical point

ζ

η
& 106

• Phenomenology: QCD first order confinement/deconfinement curve (in (T, µ) plane)

ends at a critical point of the 3d Ising model universality class. Son-Stephanov

(hep-ph/0401052) argued that the dynamical universality class of QCD is that of the

liquid-vapor point. For the liquid-vapor critical point Onuki computed:

z ≈ 3



Some theoretical models

• KKT model (A):

ζsingular ∝ cv ∝ |t|−α

• Quasi-particle models (B):

ζsingular ∝ |t|α+4β−1

• Onuki’s dynamical model (C):

ζsingular ∝ ξz−α/ν ∝ |t|−zν+α

⇒ above scalings are p-independent

⇒ vastly different results!!

⇒ holography to the rescue



What to compute and how?

One of the on-shell modes of

0 = ∇µT µν

is a sound wave:

ω = ±cs q − i Γ q2 + O(q3)

where

c2
s =

∂P

∂ǫ
, T · Γ =

η

s

(

p − 1

p
+

ζ

2η

)

It appears as a pole in the two-point correlation function of the stress-energy tensor.

⇒ In a dual holographic description the sound wave arises as one of the quasinormal modes

of the black hole describing the thermal equilibrium state of a strongly coupled gauge theory

plasma (Kovtun-Starinets, hep-th/0506184).



Thus the strategy is to:

construct the gravitational description of the gauge theory plasma undergoing second-order

phase transition; compute the static critical exponents;

compute the dispersion relation of the ’sound’ quasinormal mode;

extract the critical exponent of the bulk viscosity;

interpret the result in available framework of the dynamical critical phenomena

Our holographic playground:

mass-deformed N = 4 plasma;

N = 2∗ gauge theory ⇔ mass-deformed N = 4 SU(N) SYM in d = 4;

N = 1 SU(N + M) × SU(N) cascading gauge theory in d = 4;



Mass deformed N = 4∗ plasma

⇒ Gravity:

S5 =
1

16πG5

∫

M5

d5ξ
√−g

(

R − 1

4
φ4/3F 2 − 1

3
φ−2 (∂φ)2 + 4φ2/3 + 8φ−1/3 + δL

)

where δL is a mass deformation

δL = −1

2
(∂χ)2 − m2

2
χ2 + O

(

χ4
)

, ∆(∆ − 4) = m2

⇒ QFT:

LCFT → LCFT − MO3 , M ∝ λ

where λ is a coefficient of the non-normalizable mode of χ near the asymptotic AdS5

boundary

Note: the gauge/gravity relation is expected to hold only to O(M2). We can always achieve

this provided M ≪ Tc.



Repeating the thermodynamic analysis we find:

Ω±(µ, t) = −27N2µ4

32π2

(

1 + s0
t

M2

µ2

)(

1 ± s1
t

M2

µ2
t1/2 +

8

3

(

1 + s2
t

M2

µ2

)

t

∓16
√

2

27

(

1 + s3
t

M2

µ2

)

t3/2 + · · · + O
(

M4

µ4

))

where si
t denote the deformations from the CFT thermodynamics near the criticality; in the

above expression we already took into account the fact that Tc got shifted by order M2/µ2

correction

⇒ Unless

s1
t = 0

the static critical exponents are modified: C ∝ ±s1
t t−3/2, instead of ∝ t−1/2

⇒ it is possible to show that the first law of thermodynamics (which numerically is valid in the

deformed model ∼ 10−10) guarantees s1
t = 0

⇒ with a bit more work it can be shown that the universality classes (static+dynamic) of

N = 4 SYM plasma are robust against mass deformation



Sound waves in mass deformed N = 4 plasma

⇒ Hydrodynamics is more complicated since besides T µν we have conserved U(1)R

current Jµ:

Jµ = ρuµ + νµ

where νµ is the dissipative part satisfying uµνµ = 0:

νµ = σQ∆µν
(

−∂νµ +
µ

T
∂νT

)

σQ is a new transport coefficient, the conductivity

⇒ We can parametrize the dispersion relation for the sound waves as before

ω = ±cs q − iΓ q2 + O(q3)



c2
s =

(

(ǫ + P )
∂(P, ρ)

∂(T, µ)
+ ρ

∂(ǫ, P )

∂(T, µ)

)(

(ǫ + P )
∂(ǫ, ρ)

∂(T, µ)

)−1

Γ =
2η

3(ǫ + P )

(

1 +
3ζ

4η

)

− σQ

2T

(

∂P

∂ρ

)

ǫ

(

(ǫ + P )
∂(P, ρ)

∂(T, µ)
+ ρ

∂(ǫ, P )

∂(T, µ)

)−1

×

×
(

(ǫ + P )

(

(

∂ρ

∂ lnµ

)

T

+

(

∂ρ

∂ lnT

)

µ

)

− ρ

(

(

∂ǫ

∂ lnµ

)

T

+

(

∂ǫ

∂ lnT

)

µ

))

In a CFT , i.e, using the equation of state ǫ = 3P , we recover the usual results

c2
s =

1

3
, Γ =

2η

3sT

sT

sT − µρ
=

1

6πT

sT

sT − µρ

Note

Γ = · · · + σQ ×O
(

M4

T 4

)

thus we do not need to worry about σQ.
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Figure 5: Deviation of the speed of sound (1 − 3c2
s), in mass-deformed RN plasma from

its conformal value as a function of the mass-deformation parameter λ at κ = 2. The blue

dots represents data obtained from the spectrum of quasinormal modes, and the solid red line

represents thermodynamic prediction. Agreement is ∼ 10−6.



⇒ We find that the bulk viscosity is finite at the critical point with

ζ

η
= 3.0488(5)

(

1

3
− c2

s

)

+ O
(

(

1

3
− c2

s

)2
)

it satisfies the bulk viscosity bound in strongly coupled plasma

ζ

η
≥ 2

(

1

3
− c2

s

)

with regard to a critical behavior:
ζ

η
∝ |t|0



Recall:

• KKT model (A):

ζsingular ∝ cv ∝ |t|−α

• Quasi-particle models (B):

ζsingular ∝ |t|α+4β−1

• Onuki’s dynamical model (C):

ζsingular ∝ ξz−α/ν ∝ |t|−zν+α



Thus:

Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity,

ζ ∝ |t|−1/2 ;

Model B does not contradict our holographic analysis as it predicts that

ζsingular ∝ |t|3/2 ;

Model C is inconsistent with holographic analysis as it predicts divergent bulk viscosity,

ζ ∝ |t|−1/2 ;



Actually:

Model B is not applicable as the relaxation time is divergent:

τ ∝ ξ4 → ∞ at the transition



N = 2∗ gauge theory (a QFT story)

=⇒ Start with N = 4 SU(N) SYM. In N = 1 4d susy language, it is a gauge theory of a

vector multiplet V , an adjoint chiral superfield Φ (related by N = 2 susy to V ) and an adjoint

pair {Q, Q̃} of chiral multiplets, forming an N = 2 hypermultiplet. The theory has a

superpotential:

W =
2
√

2

g2
Y M

Tr
([

Q, Q̃
]

Φ
)

We can break susy down to N = 2, by giving a mass for N = 2 hypermultiplet:

W =
2
√

2

g2
Y M

Tr
([

Q, Q̃
]

Φ
)

+
m

g2
Y M

(

TrQ2 + TrQ̃2
)

This theory is known as N = 2∗ gauge theory



When m 6= 0, the mass deformation lifts the {Q, Q̃} hypermultiplet moduli directions; we

are left with the (N − 1) complex dimensional Coulomb branch, parametrized by

Φ = diag (a1, a2, · · · , aN ) ,
∑

i

ai = 0

We will study N = 2∗ gauge theory at a particular point on the Coulomb branch moduli

space:

ai ∈ [−a0, a0] , a2
0 =

m2g2
Y MN

π

with the (continuous in the large N -limit) linear number density

ρ(a) =
2

m2g2
Y M

√

a2
0 − a2 ,

∫ a0

−a0

da ρ(a) = N

Reason: we understand the dual supergravity solution only at this point on the moduli space.



⇒ We are going to study N = 2∗ plasma at finite temperature T , thus breaking SUSY

anyway

⇒ The gravitational description at T 6= 0 allows for an additional parameter in the

deformation: the masses of the bosonic and the fermionic components of a hypermultiplet

{Q, Q̃} can be different

mb 6= mf , N = 2 SUSY : mb = mf = m

Some facts about N = 2∗ thermodynamics in (T, mb, mf ) parameter space:

for the range of parameters studies (up to m
T ∼ 10) the theory is in deconfined phase

whenever m2
f < m2

b the theory undergoes a phase transition with the vanishing speed of

sound;

at the transition,

Tc = Tc

(

m2
f/m2

b

)

mf = 0 : mb/Tc ≈ 2.32591



⇒ We focus on thermodynamics of N = 2∗ plasma with mf = 0 , mb 6= 0.

⇒ We now identify above phase transition as a second-order phase transition with the naive

static critical exponents

(α, β, γ, δ, ν, η) =

(

1

2
,
1

2
,
1

2
, 2,

1

2
, 1

)

Note: the phase transition is appears to be not the mean-field one, as anomalous critical

exponent η is nonzero ⇒ a more careful (direct) analysis show that η = 0 and ν = 1

4

⇒ Some of thermodynamic plots presents data as a function of the gravitational parameter

ρ11. It is possible to establish precisely the relation

ρ11 ⇔ m2
b

T 2

⇒ this relation is complicated at low temperatures, but fairly simple at high-T:

ρ11 =

√
2

24π2

(mb

T

)2

+ O
(

m4
b

T 4

)
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Figure 6: The speed of sound c2
s (left plot) and the reduced temperature mb

T (right plot) of

the strongly coupled N = 2∗ plasma with mf = 0 and mb 6= 0 as a function of the dual

gravitation parameter ρ11.

Introduce

∆ρ11 = ρ11 − ρc
11 ⇒

t ∝ (∆ρ11)
2 , c2

s

∣

∣

∣

∣

blue

∝
(

−c2
s

)

∣

∣

∣

∣

red

∝ |∆ρ11| ∝ t1/2
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Figure 7: Free energy densities Ωo of the “ordered” phase (blue curves) and Ωd of the “disor-

dered” phase (red curves) as a function of ρ11 (left plot) and mb

T (right plot) of the N = 2∗

plasma with mf = 0.

⇒ We identify the free energy W of the effective ferromagnet as

W = Ωo − Ωd = Ωblue − Ωred < 0

⇒
cH = −T

(

∂2W
∂T 2

)

=
s

c2
s

∣

∣

∣

∣

blue

red

∝ c−2
s

∣

∣

∣

∣

blue

red

∝ t−1/2 ⇒ α =
1

2



⇒ To determine the critical exponent β we need to identify the control parameter

corresponding to the external magnetic field H of the effective ferromagnet. We propose to

identify

H = mb

Since Tc ∝ mb ∝ H, and t ∝ (∆ρ11)
2,

∂H ∝ −∂t ∝ − 1

∆ρ11

∂∆ρ11

From the best fit to the free energy difference:

W ∝ −|∆ρ11|3

⇒

M = −
(

∂W
∂H

)

∝ 1

∆ρ11

∂∆ρ11
W ∝ −|∆ρ11| ∝ −t1/2 ⇒ β =

1

2

⇒ the rest of the critical exponents is determined from the scaling relations



Cascading gauge theory (a QFT story)

⇒ Consider N = 1 SU(K + P )× SU(K) gauge theory with 2 chiral superfields A1, A2

in (K + P, K̄) representation and 2 chiral superfields B1, B2 in ( ¯K + P , K)

representation with a quartic superpotential:

W ∼ Tr(AiBjAkBℓ)ǫ
ikǫjl

when P = 0 the theory flows in the IR to a strongly coupled SCFT

when P 6= 0, the scale invariance is broken. Perturbatively, the theory has two gauge

couplings gi(µ) and

d

d lnµ

(

4π

g2
1(µ)

+
4π

g2
2(µ)

)

= 0

4π

g2
2(µ)

− 4π

g2
1(µ)

∼ P ln
µ

Λ

⇒ Λ is the strong coupling scale of the theory



Some facts about cascading plasma thermodynamics in (T, Λ) parameter space:

for

T > Tconfinement = 0.6141111(3)Λ

cascading gauge theory is deconfined; has an unbroken U(1) chiral symmetry

at T = Tconfinement cascading plasma undergoes a first-order phase transition to a

confined phase with spontaneously broken chiral symmetry

Although non-perturbatively unstable due to the nucleation of bubbles of the confined

phase, the deconfined U(1) symmetric phase can be extended to temperatures lower than

Tconfinement — this phase remains (perturbatively ) thermodynamically and dynamically

stable down to Tc:

Tc = 0.8749(0) × Tconfinement < T < Tconfinement

⇒ At T = Tc cascading plasma undergoes a second-order phase transition identical to the

one in N = 2∗ plasma

⇒ To compute the critical exponent β we identify the ’effective external magnetic field’ as

H = Λ
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Figure 8: The reduced temperature T
Λ

(left plot) and the free energy densities Ωo of the “or-

dered” phase (blue curve, right plot) and Ωd of the “disordered” phase (red curve, right plot),

of the strongly coupled cascading plasma as a function of the dual gravitational parameter ks.

⇒ The dual gravitational parameter is uniquely related to T
Λ

; for T ≫ Λ:

ks = 2 ln
T

Λ
+ O

(

ln

[

ln
T

Λ

])



Holographic bulk viscosity

• N = 2∗ plasma at mf = 0 , mb 6= 0:
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Figure 9: Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma near the critical point. Note

that the critical point corresponds to c2
s = 0.

ζ

η
∝
(

c2
s

)0 ∝ |t|0



Recall:

• KKT model (A):

ζsingular ∝ cv ∝ |t|−α

• Quasi-particle models (B):

ζsingular ∝ |t|α+4β−1

• Onuki’s dynamical model (C):

ζsingular ∝ ξz−α/ν ∝ |t|−zν+α



Thus:

Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity,

ζ ∝ |t|−1/2 ;

Model B does not contradict our holographic analysis as it predicts that

ζsingular ∝ |t|3/2 ;

Model C agrees with holographic analysis, provided the dynamical exponent z is

z ≤ 1

Note: A direct computations (to appear) show that z = 0 in N = 2∗ plasma.

⇒ Identical results apply to cascading gauge theory



Conclusions

We argued that gauge/gravity correspondence is useful in understanding the dynamical

critical phenomena of continuous phase transitions. Its utility lies in the motion of ’universality

classes’ ⇒ once we identify a gravitation model in a particular universality class, that model

can essentially solve for the critical behavior of the full class. Might lead to some real

experimental predictions!



Future directions

Further understanding critical phenomena in the presence of chemical potentials. Here, we

need to distinguish 2 cases: spontaneous breaking of discrete or continuous symmetries

Can we understand (derive?) TDLG from holography?

CFT’s might have nontrivial z’s ⇒ would infinitesimal deformation of a CFT by a relevant

operator near the transition produce a bulk viscosity governed by the same dynamical critical

exponent?

related. . . will dynamical susceptibility determine the same z as the bulk viscosity? (Note:

the former is defined even for CFT’s)

⇒ Need to study more models!


