Dynamical critical phenomena in strongly coupled gauge theory plasma

Alex Buchel

(Perimeter Institute & University of Western Ontario)

Based on: arXiv:1005.0819, also arXiv:0912.3212 (with Chris Pagnutti), and to appear (with Chris Pagnutti)

Motivation:

 \Rightarrow There was been many studies were the gauge/string theory correspondence framework was been used to extract transport coefficients of strongly coupled gauge theory plasma.

however...

 \Rightarrow real QCD is not in any one of the models studied (it is possible to reach QCD as a particular limit in some of the models, but the price to pay is too big: the truncation of the full string theory to a supergravity sector is inconsistent)

thus...

 \Rightarrow one attempts to discover common/universal features of hydrodynamics of strongly coupled gauge theories (by looking at the explicit string theory models as well as phenomenological models) and

hope...

 \Rightarrow that QCD is in the universality class of the models studied

Examples:

the shear viscosity ratio

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

the bulk viscosity ratio

$$\frac{\zeta}{\eta} \ge 2\left(\frac{1}{3} - c_s^2\right), \qquad c_s^2 = \frac{\partial \mathcal{P}}{\partial \mathcal{E}}$$

 \Rightarrow It is not clear why and how this universality arises, or how to properly "define" the corresponding universality classes: while the shear viscosity ratio is universal in 2-derivative supergravity (or a phenomenological model of thereof), it can be violated in full string theory ; while the bulk viscosity bound is satisfied in all models of supergravity derived from string theory, it can be violated in some phenomenological models of gauge/gravity correspondence.

 \Rightarrow A more common notion of 'universality' arises in the theory of continuous critical phenomena.

 \Rightarrow We are going to use gauge theory/string theory correspondence of Maldacena to study static and dynamic critical phenomena of strongly coupled (non-conformal) gauge theories in various dimensions

"Holographic-", "Maldacena-", "gauge theory/string theory-" correspondence

Consider $\mathcal{N} = 4 \; SU(N)$ SYM:

- $g_{YM}^2 N \ll 1$ (weak effective coupling) \Longrightarrow perturbative gauge theory description
- $g_{YM}^2 N \gg 1$ (strong effective coupling) \Longrightarrow IIB string theory on $AdS_5 \times S^5$

 \Rightarrow The duality can be extended to non-conformal gauge theories; it is a very effective tool to compute correlation functions of gauge-invariant operators in QFT at strong coupling, in the presence of finite temperature and/or chemical potentials for the conserved U(1) charges.

Outline of the talk:

- Static critical phenomena
- Dynamical critical phenomena
- Holographic second order phase transitions in $\mathcal{N}=4$ SYM $(T \neq 0, \mu \neq 0)$
- Bulk viscosity at criticality
 - experiment or why it is interesting?
 - Karsch-Kharzeev-Tuchin model ([arXiv:0711.0914])
 - Quasiparticle models in relaxation time approximation (Sasaki-Redlich [arXiv:0806.4745])
 - bulk viscosity in dynamical critical phenomena (Onuki, PRE 55 403 (1997))
 - relevance to QCD

- $\bullet\,$ Bulk viscosity in mass deformed $\mathcal{N}=4$ SYM plasma at criticality
- Holographic second order phase transitions at $(T \neq 0\,, \mu = 0)$
 - $\mathcal{N}=2^*$ plasma
 - cascading gauge theory plasma
- Holographic bulk viscosity at criticality
 - $\mathcal{N}=2^*$ plasma
 - cascading gauge theory plasma
- Conclusions and future directions

Static critical phenomena

 \Rightarrow consider ferromagnetic phase transition

magnetization $\mathcal{M} \Leftrightarrow$ order parameter

external magnetic field $\mathcal{H} \iff$ a control parameter

$$\mathcal{M} = -\left(\frac{\partial \mathcal{W}}{\partial \mathcal{H}}\right)_T$$

where $\mathcal{W}=\mathcal{W}(T,\mathcal{H})$ is the Gibbs free energy

 $\mathcal{M}\Big|_{\mathcal{H}=0} = \begin{cases} 0, & \text{disordered [unbroken] phase} \\ \neq 0, & \text{ordered [broken] phase} \end{cases}$

 \Rightarrow Basic thermodynamic relations

$$\mathcal{W} = \epsilon - s T - \mathcal{M}\mathcal{H}, \qquad d\mathcal{W} = -s dT - \mathcal{M} d\mathcal{H}$$

At a second order phase transition the first derivatives of \mathcal{W} are continuous while the higher derivatives are not. Under the static scaling hypothesis we have:

$$\mathcal{W}(t,\mathcal{H}) = \lambda^{-p} \mathcal{W}(\lambda^{y_T} t, \lambda^{y_H} \mathcal{H}) , \qquad t \equiv \frac{T - Tc}{T_c}$$

for the free energy, and

$$\tilde{G}(\vec{q}, t, \mathcal{H}) = \lambda^{2y_{\mathcal{H}}-p} \tilde{G}(\lambda \vec{q}, \lambda^{y_T} t, \lambda^{y_{\mathcal{H}}} \mathcal{H})$$

for the Fourier transform of the equilibrium two-point correlation function of the magnetization

$$G(\vec{r}) = \langle \mathcal{M}(\vec{r}) \mathcal{M}(\vec{0}) \rangle \propto \frac{\partial^2 \mathcal{W}}{\partial \mathcal{H}(\vec{r}) \partial \mathcal{H}(\vec{0})}$$

p is the number of spatial dimensions.

The static critical exponents

$$\{\alpha, \beta, \gamma, \delta, \nu, \eta\}$$

are defined as

specific heat :
$$c_{\mathcal{H}} = -T \left(\frac{\partial^2 \mathcal{W}}{\partial T^2} \right)_{\mathcal{H}} = \frac{s}{c_s^2} \propto |t|^{-\alpha}$$

spontaneous magnetization : $\mathcal{M} \propto |t|^{\beta}$
magnetic susceptibility : $\chi_T = \left(\frac{\partial \mathcal{M}}{\partial \mathcal{H}} \right)_T \propto |t|^{-\gamma}$
critical isotherm : $\mathcal{M}(t=0) \propto |\mathcal{H}|^{1/\delta}$
correlation function : $G(\vec{r}) \propto \begin{cases} e^{-|\vec{r}|/\xi}, & t \neq 0 \\ |\vec{r}|^{-p+2-\eta}, & t = 0 \end{cases}$
correlation length : $\xi \propto |t|^{-\nu}$

 $\underline{\text{Note:}}\ \eta$ is the anomalous critical exponent

 \Rightarrow Given the scaling hypothesis we can compute

$$\alpha = 2 - \frac{p}{y_T}, \qquad \beta = \frac{p - y_H}{y_T}, \qquad \gamma = \frac{2y_H - p}{y_T}$$
$$\delta = \frac{y_H}{p - y_H}, \qquad \nu = \frac{1}{y_T}, \qquad \eta = p - 2y_H + 2$$

which implies 4 scaling relations:

$$\alpha + 2\beta + \gamma = 2$$
, $\gamma = \beta(\delta - 1) = \nu(2 - \eta)$, $2 - \alpha = \nu p$

Some mean-field results (LG model for uniaxial ferromagnet in p = 3)

Free energy:

$$\mathcal{W} = \int d\vec{x} \left[\frac{c}{2} \left(\nabla \mathcal{M} \right)^2 + \frac{a}{2} \mathcal{M}^2 - \mathcal{M} \mathcal{H} \right]$$

with

$$c > 0, \qquad a = a_0 \left(T - T_c \right)$$

 \Rightarrow minimum is achieved for constant $\mathcal{M};$ solving for $\mathcal{M},$

$$\frac{\partial \mathcal{W}}{\partial \mathcal{M}} = 0 \quad \Rightarrow \quad \mathcal{W} = \mathcal{W}(t, \mathcal{H})$$
$$\{\alpha, \beta, \gamma, \delta, \nu, \eta\} = \left\{0, \frac{1}{2}, 1, 3, \frac{1}{2}, 0\right\}$$

Dynamical universality classes and z-exponent

 \Rightarrow depends on additional properties of the system:

same static universality class \Rightarrow different dynamical universality class

 \Rightarrow crucial question is whether or not the order parameter is conserved

 \Rightarrow relaxation to equilibrium is described by time-dependent Landau-Ginsburg (TDLG) equation

In case of Brownian motion \Rightarrow Langevin equation:

$$\frac{dv(t)}{dt} = -\Gamma v(t) + \xi(t) = -\Gamma \frac{\delta H}{\delta v} + \xi(t)$$

where $\Gamma > 0$ is a friction coefficient, $\xi(t)$ is the random force with $\langle \xi(t) \rangle = 0$ and

$$H = \frac{v^2}{2}$$

is the Hamiltonian of the system.

TDLG equation is multi-body generalization of the Langevin equation:

$$\frac{\partial \mathcal{M}(t,\vec{x})}{\partial t} = -\int d\vec{y} \ \Gamma(|\vec{x}-\vec{y}|) \ \frac{\delta \mathcal{W}(\mathcal{M})}{\delta \mathcal{M}(t,\vec{y})} \ + \ \xi(t,\vec{x})$$

 $\Gamma |\vec{x} - \vec{y}|$ is a dynamical transport coefficient (friction in Langevin equation)

 \Rightarrow Go back to LG model:

$$\mathcal{W} = \int d\vec{x} \left[\frac{c}{2} \left(\nabla \mathcal{M} \right)^2 + \frac{a}{2} \mathcal{M}^2 - \mathcal{M} \mathcal{H} \right]$$

Fourier transform of TDLG, plus averaging

$$-i\omega\langle \mathcal{M}_{\omega,\vec{q}}\rangle = -(cq^2 + a)\cdot\Gamma_q\cdot\langle \mathcal{M}_{\omega,\vec{q}}\rangle + \Gamma_q\cdot\mathcal{H}_{\omega,\vec{q}}$$

Consider dynamical susceptibility:

$$\chi_{\omega,\vec{q}} = \frac{\partial \langle \mathcal{M}_{\omega,\vec{q}} \rangle}{\partial \mathcal{H}_{\omega,\vec{q}}} = \frac{\Gamma_q}{i\omega + (cq^2 + a)\Gamma_q}$$

 \Rightarrow the response function has a pole

$$\omega = -i \tau_q^{-1}, \qquad \tau_q^{-1} = (cq^2 + a)\Gamma_q$$

where au_q is the dynamical relaxation time. In hydro limit (q
ightarrow 0) and for $\Gamma_0
eq 0$

$$\tau_{q=0}^{-1} \propto t \qquad \Rightarrow \qquad$$

the relaxation time diverges (critical slow-down)

We can now introduce a new dynamical exponent z as

$$au_{q=0} \propto \xi^z \propto |t|^{-z\nu}$$

Let's look @ LG model:

• \mathcal{M} is not a conserved quantity

$$\tau_{q=0} \propto t^{-1} \quad \Rightarrow \quad \xi^z \propto t^{-\frac{1}{2}z} \quad \Rightarrow \quad z=2$$

• \mathcal{M} is a conserved quantity

$$\frac{\partial \mathcal{M}_{q=0}}{\partial t} = 0 \qquad \Rightarrow \qquad$$

from TDLG:

$$\Gamma(q=0) = 0 \qquad \Rightarrow \qquad \Gamma_q \propto q^2$$

Thus, in the hydrodynamic limit $q\propto\xi^{-1}$

$$\tau_q \propto \frac{1}{aq^2} \propto \frac{\xi^4}{(\xi q)^2} \qquad \Rightarrow \qquad z = 4$$

More formally, the critical exponent z is introduced by looking at the scaling of the near-equilibrium correlation function of the magnetization

$$\tilde{G}(\omega, \vec{q}, t, \mathcal{H}) = \lambda^{2y_{\mathcal{H}} - p + z} \tilde{G}(\lambda^z \omega, \lambda \vec{q}, \lambda^{y_T} t, \lambda^{y_{\mathcal{H}}} \mathcal{H})$$

Note: the dynamics associated with off-equilibrium relaxation, in principle, has nothing to do with Minkowski time evolution, thus z should not be identified with 1, even if we are dealing with relativistic critical phenomena

Likewise: the critical phenomena with $z \neq 1$ does not necessarily have to have a Lifshitz-like holographic scaling

Critical phenomena in $\mathcal{N}=4~\mathrm{SYM}$

 \Rightarrow Consider strongly coupled $\mathcal{N}=4$ SYM with a (single, non-diagonal) $U(1)\subset SU(4)$ R-symmetry chemical potential

 \Rightarrow The dual holographic model is

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 \xi \sqrt{-g} \left(R - \frac{1}{4} \phi^{4/3} F^2 - \frac{1}{3} \phi^{-2} \left(\partial \phi \right)^2 + 4 \phi^{2/3} + 8 \phi^{-1/3} \right)$$

 \Rightarrow It is straightforward to construct RN black hole solution, describing the equilibrium state of finite temperature and density $\mathcal{N}=4$ SYM plasma

 \Rightarrow we find:

$$s = \frac{4\pi^2 (1+\kappa)^2 T^3 N^2}{(\kappa+2)^3}, \qquad \epsilon = 3P = \frac{6N^2 T^4 (1+\kappa)^3 \pi^2}{(\kappa+2)^4}$$
$$\rho = \frac{2\pi (1+\kappa)^2 \kappa^{1/2} T^3 N^2}{(\kappa+2)^3}, \qquad \frac{2\pi T}{\mu} = \sqrt{\kappa} + \frac{2}{\sqrt{\kappa}}$$

 \Rightarrow it is easy to verify that

$$\Omega = \epsilon - Ts - \mu\rho = -P, \qquad d\epsilon = Tds + \mu d\rho, \qquad dP = sdT + \rho d\mu$$

 \Rightarrow we see that $\frac{T}{\mu}$ achieves a minimum at $\kappa = \kappa_c = 2$, corresponding to the critical temperature $T_c = \sqrt{2}\mu/\pi$ and the critical chemical potential $\mu_c = \pi T/\sqrt{2}$. Introducing

$$t = \frac{T}{T_c} - 1$$
, $\bar{\mu} = 1 - \frac{\mu}{\mu_c} \implies \bar{\mu} = \frac{t}{t+1}$

we find

$$\begin{split} \Omega_{\pm}(\mu,t) &= -\frac{27N^2\mu^4}{32\pi^2} \left(1 + \frac{8}{3} t \mp \frac{16\sqrt{2}}{27} t^{3/2} + \frac{68}{27} t^2 + \mathcal{O}\left(t^{5/2}\right) \right) \\ \Omega_{\pm}(T,\bar{\mu}) &= -\frac{27N^2T^4\pi^2}{128} \left(1 - \frac{4}{3} \bar{\mu} \mp \frac{16\sqrt{2}}{27} \bar{\mu}^{3/2} + \frac{14}{27} \bar{\mu}^2 + \mathcal{O}\left(\bar{\mu}^{5/2}\right) \right) \\ \kappa &= \kappa_{\pm}(t) = 2 \pm 4\sqrt{2} t^{1/2} + 8 t \pm 5\sqrt{2} t^{3/2} + 4 t^2 + \mathcal{O}\left(t^{5/2}\right) \\ \Rightarrow \text{Remember:} \end{split}$$

$$\kappa - \kappa_c \propto t^{1/2}$$

Thus for a given temperature t there are two thermodynamic phases of the system, with Ω_{-} being the stable one.

For Ω_{-} phase:

$$C = T\left(\frac{\partial s}{\partial T}\right)\Big|_{\mu} \propto -\frac{\partial^2 \Omega_{-}(\mu, t)}{\partial t^2} \propto +t^{-1/2} \quad \Rightarrow \quad \alpha = \frac{1}{2}$$
$$\chi_T = \left(\frac{\partial \rho}{\partial \mu}\right)\Big|_T \propto -\frac{\partial^2 \Omega_{-}(T, \bar{\mu})}{\partial \bar{\mu}^2} \propto +\bar{\mu}^{-1/2} \propto +t^{-1/2} \quad \Rightarrow \quad \gamma = \frac{1}{2}$$

 \Rightarrow thus, assuming the scaling relations we find the static universality class of strongly coupled RN plasma to be

$$(\alpha, \beta, \gamma, \delta, \nu, \eta) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 2, \frac{1}{2}, 1\right)$$

 \Rightarrow All I said about $\mathcal{N}=4$ plasma is old result

I want to claim that these naive identification of the [static] universality class is in fact incorrect

 \Rightarrow A hint that something is wrong can be seen from the fact that the anomalous scaling exponent $\eta = 0$, as one would expect in the large-N (equivalently mean-field) limit

 \Rightarrow At a technical level, the hyperscaling relation between the critical exponents

$$2 - \alpha = \nu p = 3\nu$$

is quite often is violated

 \Rightarrow To proceed we need to compute the dynamical susceptibility $\chi(\mathfrak{w},\mathfrak{q})$:

$$\chi(\mathfrak{w}=0,\mathfrak{q}=0)=\chi_T$$
 \Rightarrow a test on computations

$$\chi(\mathfrak{w}=0,\mathfrak{q})\Big|_{t\neq 0} \propto \frac{1}{\mathfrak{q}^2 + (2\pi T\xi)^2} \quad \Rightarrow \quad \xi \propto t^{-\nu}$$

$$\chi(\mathfrak{w}=0,\mathfrak{q})\bigg|_{t=0} \propto \mathfrak{q}^{-2+\eta}$$

$$\frac{1}{\chi(\mathfrak{w},\mathfrak{q})} = 0 \qquad \Rightarrow \qquad i\mathfrak{w} = (2\pi T\tau)^{-1} \qquad \Rightarrow \qquad \tau \propto \xi^z$$

 \Rightarrow I will now present the results of the analysis.

Figure 1: The scaling (blue dots) of the inverse of the static susceptibility $\chi_{\mathfrak{w}=0,\mathfrak{q}=0}$ in the vicinity of the critical point. The solid red line is a quadratic fit to the data. The red line intersects the κ axis at $\kappa_c = 1.999999(6)$ in excellent agreement with the expected value $\kappa_c = 2$.

$$\chi_{\mathfrak{w}=0,\mathfrak{q}=0} = \chi_T \propto \frac{1}{\kappa - \kappa_c} \propto +t^{-1/2}, \quad |\kappa - \kappa_c| \ll \kappa_c$$

Figure 2: Poles of the static susceptibility in the vicinity of the critical point: $\chi_{\mathfrak{w}=0,\mathfrak{q}=\mathfrak{q}_*}^{-1}=0.$

$$(2\pi T_c \xi)^2 \propto \mathfrak{q}_*^{-2} \propto \frac{1}{\kappa - \kappa_c} \propto +t^{-1/2}, \qquad 0 < \kappa_c - \kappa \ll k_c$$

$$\xi \propto t^{-\nu} \propto t^{-1/4} \quad \Rightarrow \quad \nu = \frac{1}{4}$$

Given that the static critical exponent $\alpha=\frac{1}{2},$ above implies that the hyperscaling relation is violated

$$2 - \alpha \neq p \nu$$

where p=3 stands for the number of spatial dimensions of the system.

Figure 3: The scaling (blue dots) of the inverse of the static susceptibility $\chi_{\mathfrak{w}=0,\mathfrak{q}}^{crit}$ at the critical point, $\kappa = 2$. The solid red line is a quadratic fit to the data.

The red line intersects the q^2 axis at $q_c^2 = -1.57468 \cdot 10^{-8}$ in excellent agreement with the expected value $q_c^2 = 0$. The data implies

$$\chi^{crit}_{\mathfrak{w}=0,\mathfrak{q}} \propto \mathfrak{q}^{-2} \quad \iff \quad \chi^{crit}_{\mathfrak{w}=0,\mathfrak{q}} \propto \mathfrak{q}^{-2+\eta} \quad \iff \quad \eta=0$$

Figure 4: Poles of the dynamic susceptibility in the vicinity of the critical point, $\chi_{\mathfrak{w}=\mathfrak{w}_*,\mathfrak{q}}^{-1}=0$ for a set of momenta values $\mathfrak{q}^2=:10^{-6}$ (blue dots), 10^{-5} (green dots), 10^{-4} (orange dots) and 10^{-3} (black dots). The solid red line is a quadratic fit to $i\frac{\mathfrak{w}_*}{\mathfrak{q}^2}$ at $\mathfrak{q}^2=10^{-6}$.

$$\lim_{q \to 0} i \frac{\mathfrak{w}_*}{\mathfrak{q}^2} = 2.79163 \cdot 10^{-6} - 0.333392(\kappa - 2) + 0.0278087(\kappa - 2)^2 + \mathcal{O}((\kappa - 2)^3)$$

$$(2\pi T_c \tau)^{-1} \equiv i\mathfrak{w}_* \propto \mathfrak{q}^2 \cdot (\kappa - \kappa_c) \propto (2\pi T_c \mathfrak{q}\xi)^2 \cdot (2\pi T_c \xi)^{-4} \propto (2\pi T_c \xi)^{-4}$$
$$\tau \propto \xi^z \propto \xi^4 \quad \Rightarrow \quad z = 4$$

 \Rightarrow Thus:

• incorrect universality class of $\mathcal{N} = 4$ plasma:

$$(\alpha, \beta, \gamma, \delta, \nu, \eta) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 2, \frac{1}{2}, 1\right)$$

• <u>correct</u> universality class of $\mathcal{N} = 4$ plasma:

$$(\alpha, \beta, \gamma, \delta, \nu, \eta; z) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 2, \frac{1}{4}, 0; 4\right)$$

Note: $z \neq 1$ even though the holographic dual does not have Lifshitz-like scaling.

Hydrodynamics and models of bulk viscosity at criticality

$$T^{\mu\nu} = T^{\mu\nu}_{equilibrium} + T^{\mu\nu}_{non-equilibrium}$$
$$T^{\mu\nu}_{eq} = \epsilon \, u^{\mu}u^{\nu} + P\Delta^{\mu\nu} \,, \qquad T^{\mu\nu}_{non-eq} = -\eta \, \sigma^{\mu\nu} - \zeta(\nabla u)$$
$$u^{\mu}u_{\mu} = -1 \,, \qquad \Delta^{\mu\nu} = \eta^{\mu\nu} + u^{\mu}u^{\nu}$$

where η , ζ are the shear and the bulk viscosities and $\sigma^{\mu\nu}$ is a shear tensor (which is traceless):

$$\eta_{\mu\nu}\sigma^{\mu\nu} = 0$$

 $\ln {\rm CFT} \qquad T^{\mu}_{\mu} = 0 \qquad \Rightarrow \qquad$

$$-\epsilon + 3P - 3\zeta(\nabla u) = 0 \qquad \Rightarrow \qquad \epsilon = 3P \bigg|_{CFT}, \qquad \zeta \bigg|_{CFT} = 0$$

 \Rightarrow so in order to see $\zeta \neq 0$ we need to look @ non-conformal theories

• Naively, second-order phase transitions imply scale invariance \Rightarrow

$$\zeta \to 0 \quad \text{or} \quad \zeta \to \infty$$

Not true: $\zeta = 0$ necessitates the full *space-time* scale invariance, while at criticality we have only *spatial* scale-invariance.

• Even though a CFT has $\zeta = 0$, it might still have a non-trivial z as determined from the dynamical susceptibility

What is bulk viscosity at criticality?

• Experiments: typically,

$$rac{\zeta}{\eta} \lesssim 1$$

however, for ${}^{3}\mathrm{He}$ in the vicinity of liquid-vapor critical point

$$\frac{\zeta}{\eta} \gtrsim 10^6$$

• Phenomenology: QCD first order confinement/deconfinement curve (in (T, μ) plane) ends at a critical point of the 3d Ising model universality class. Son-Stephanov (hep-ph/0401052) argued that the dynamical universality class of QCD is that of the liquid-vapor point. For the liquid-vapor critical point Onuki computed:

$$z \approx 3$$

Some theoretical models

• KKT model (A):

 $\zeta_{singular} \propto c_v \propto |t|^{-\alpha}$

• Quasi-particle models (B):

 $\zeta_{singular} \propto |t|^{\alpha + 4\beta - 1}$

• Onuki's dynamical model (C):

$$\zeta_{singular} \propto \xi^{z-\alpha/\nu} \propto |t|^{-z\nu+\alpha}$$

- \Rightarrow above scalings are *p*-independent
- \Rightarrow vastly different results!!
- \Rightarrow holography to the rescue

What to compute and how?

One of the on-shell modes of

$$0 = \nabla_{\mu} T^{\mu\nu}$$

is a sound wave:

$$\omega = \pm c_s \ q - i \ \Gamma \ q^2 + \mathcal{O}(q^3)$$

where

$$c_s^2 = \frac{\partial P}{\partial \epsilon}, \qquad T \cdot \Gamma = \frac{\eta}{s} \left(\frac{p-1}{p} + \frac{\zeta}{2\eta} \right)$$

It appears as a pole in the two-point correlation function of the stress-energy tensor.

 \Rightarrow In a dual holographic description the sound wave arises as one of the quasinormal modes of the black hole describing the thermal equilibrium state of a strongly coupled gauge theory plasma (Kovtun-Starinets, hep-th/0506184). Thus the strategy is to:

- construct the gravitational description of the gauge theory plasma undergoing second-order phase transition; compute the static critical exponents;
- compute the dispersion relation of the 'sound' quasinormal mode;
- extract the critical exponent of the bulk viscosity;
- interpret the result in available framework of the dynamical critical phenomena

Our holographic playground:

- mass-deformed $\mathcal{N}=4$ plasma;
- $\mathcal{N}=2^*$ gauge theory \Leftrightarrow mass-deformed $\mathcal{N}=4$ SU(N) SYM in d=4;
- $\mathcal{N} = 1 SU(N + M) \times SU(N)$ cascading gauge theory in d = 4;

Mass deformed $\mathcal{N}=4^*$ plasma

 \Rightarrow Gravity:

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 \xi \sqrt{-g} \left(R - \frac{1}{4} \phi^{4/3} F^2 - \frac{1}{3} \phi^{-2} \left(\partial \phi \right)^2 + 4 \phi^{2/3} + 8 \phi^{-1/3} + \delta \mathcal{L} \right)$$

where $\delta \mathcal{L}$ is a mass deformation

$$\delta \mathcal{L} = -\frac{1}{2} \left(\partial \chi\right)^2 - \frac{m^2}{2} \chi^2 + \mathcal{O}\left(\chi^4\right) , \qquad \Delta(\Delta - 4) = m^2$$

 \Rightarrow QFT:

$$\mathcal{L}_{CFT} \to \mathcal{L}_{CFT} - M\mathcal{O}_3, \qquad M \propto \lambda$$

where λ is a coefficient of the non-normalizable mode of χ near the asymptotic AdS_5 boundary

Note: the gauge/gravity relation is expected to hold only to $\mathcal{O}(M^2)$. We can always achieve this provided $M \ll T_c$.

Repeating the thermodynamic analysis we find:

$$\Omega_{\pm}(\mu,t) = -\frac{27N^2\mu^4}{32\pi^2} \left(1 + s_t^0 \frac{M^2}{\mu^2}\right) \left(1 \pm s_t^1 \frac{M^2}{\mu^2} t^{1/2} + \frac{8}{3} \left(1 + s_t^2 \frac{M^2}{\mu^2}\right) t + \frac{16\sqrt{2}}{27} \left(1 + s_t^3 \frac{M^2}{\mu^2}\right) t^{3/2} + \dots + \mathcal{O}\left(\frac{M^4}{\mu^4}\right)\right)$$

where s_t^i denote the deformations from the CFT thermodynamics near the criticality; in the above expression we already took into account the fact that T_c got shifted by order M^2/μ^2 correction

 \Rightarrow Unless

$$s_t^1 = 0$$

the static critical exponents are modified: $C \propto \pm s_t^1 t^{-3/2}$, instead of $\propto t^{-1/2}$

 \Rightarrow it is possible to show that the first law of thermodynamics (which numerically is valid in the deformed model $\sim 10^{-10}$) guarantees $s_t^1 = 0$

 \Rightarrow with a bit more work it can be shown that the universality classes (static+dynamic) of ${\cal N}=4$ SYM plasma are robust against mass deformation

Sound waves in mass deformed $\mathcal{N}=4$ plasma

 \Rightarrow Hydrodynamics is more complicated since besides $T^{\mu\nu}$ we have conserved $U(1)_R$ current J^{μ} :

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu}$$

where ν^{μ} is the dissipative part satisfying $u^{\mu}\nu_{\mu}=0$:

$$\nu^{\mu} = \sigma_Q \Delta^{\mu\nu} \left(-\partial_{\nu}\mu + \frac{\mu}{T} \partial_{\nu}T \right)$$

 σ_Q is a new transport coefficient, the conductivity

 \Rightarrow We can parametrize the dispersion relation for the sound waves as before

$$\omega = \pm c_s \ q - i\Gamma \ q^2 + \mathcal{O}(q^3)$$

$$c_s^2 = \left((\epsilon + P) \frac{\partial(P, \rho)}{\partial(T, \mu)} + \rho \frac{\partial(\epsilon, P)}{\partial(T, \mu)} \right) \left((\epsilon + P) \frac{\partial(\epsilon, \rho)}{\partial(T, \mu)} \right)^{-1}$$

$$\Gamma = \frac{2\eta}{3(\epsilon + P)} \left(1 + \frac{3\zeta}{4\eta} \right) - \frac{\sigma_Q}{2T} \left(\frac{\partial P}{\partial \rho} \right)_{\epsilon} \left((\epsilon + P) \frac{\partial(P, \rho)}{\partial(T, \mu)} + \rho \frac{\partial(\epsilon, P)}{\partial(T, \mu)} \right)^{-1} \times \left((\epsilon + P) \left(\left(\frac{\partial \rho}{\partial \ln \mu} \right)_T + \left(\frac{\partial \rho}{\partial \ln T} \right)_\mu \right) - \rho \left(\left(\frac{\partial \epsilon}{\partial \ln \mu} \right)_T + \left(\frac{\partial \epsilon}{\partial \ln T} \right)_\mu \right) \right)$$

- In a CFT , i.e, using the equation of state $\epsilon = 3P$, we recover the usual results

$$c_s^2 = \frac{1}{3}, \qquad \Gamma = \frac{2\eta}{3sT} \frac{sT}{sT - \mu\rho} = \frac{1}{6\pi T} \frac{sT}{sT - \mu\rho}$$

Note

$$\Gamma = \dots + \sigma_Q \times \mathcal{O}\left(\frac{M^4}{T^4}\right)$$

thus we do not need to worry about σ_Q .

Figure 5: Deviation of the speed of sound $(1 - 3c_s^2)$, in mass-deformed RN plasma from its conformal value as a function of the mass-deformation parameter λ at $\kappa = 2$. The blue dots represents data obtained from the spectrum of quasinormal modes, and the solid red line represents thermodynamic prediction. Agreement is $\sim 10^{-6}$.

 \Rightarrow We find that the bulk viscosity is finite at the critical point with

$$\frac{\zeta}{\eta} = 3.0488(5) \left(\frac{1}{3} - c_s^2\right) + \mathcal{O}\left(\left(\frac{1}{3} - c_s^2\right)^2\right)$$

it satisfies the bulk viscosity bound in strongly coupled plasma

$$\frac{\zeta}{\eta} \ge 2\left(\frac{1}{3} - c_s^2\right)$$

• with regard to a critical behavior:

$$rac{\zeta}{\eta} \propto |t|^0$$

Recall:

• KKT model (A):

 $\zeta_{singular} \propto c_v \propto |t|^{-\alpha}$

• Quasi-particle models (B):

 $\zeta_{singular} \propto |t|^{\alpha + 4\beta - 1}$

• Onuki's dynamical model (C):

$$\zeta_{singular} \propto \xi^{z-\alpha/\nu} \propto |t|^{-z\nu+\alpha}$$

Thus:

- Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity, $\zeta \,\propto \, |t|^{-1/2}$;
- Model B does not contradict our holographic analysis as it predicts that $\zeta_{singular} \propto |t|^{3/2}$;
- Model C is inconsistent with holographic analysis as it predicts divergent bulk viscosity, $\zeta \,\propto \, |t|^{-1/2}$;

Actually:

Model B is not applicable as the relaxation time is divergent:

 $au \propto \xi^4 \to \infty$ at the transition

 $\mathcal{N}=2^*$ gauge theory (a QFT story)

 \implies Start with $\mathcal{N} = 4 SU(N)$ SYM. In $\mathcal{N} = 1$ 4d susy language, it is a gauge theory of a vector multiplet V, an adjoint chiral superfield Φ (related by $\mathcal{N} = 2$ susy to V) and an adjoint pair $\{Q, \tilde{Q}\}$ of chiral multiplets, forming an $\mathcal{N} = 2$ hypermultiplet. The theory has a superpotential:

$$W = \frac{2\sqrt{2}}{g_{YM}^2} \operatorname{Tr}\left(\left[Q, \tilde{Q}\right]\Phi\right)$$

We can break susy down to $\mathcal{N}=2,$ by giving a mass for $\mathcal{N}=2$ hypermultiplet:

$$W = \frac{2\sqrt{2}}{g_{YM}^2} \operatorname{Tr}\left(\left[Q,\tilde{Q}\right]\Phi\right) + \frac{m}{g_{YM}^2}\left(\operatorname{Tr}Q^2 + \operatorname{Tr}\tilde{Q}^2\right)$$

This theory is known as $\mathcal{N}=2^*$ gauge theory

When $m \neq 0$, the mass deformation lifts the $\{Q, \tilde{Q}\}$ hypermultiplet moduli directions; we are left with the (N-1) complex dimensional Coulomb branch, parametrized by

$$\Phi = \operatorname{diag}\left(a_1, a_2, \cdots, a_N\right), \qquad \sum_i a_i = 0$$

We will study $\mathcal{N}=2^*$ gauge theory at a particular point on the Coulomb branch moduli space:

$$a_i \in [-a_0, a_0], \qquad a_0^2 = \frac{m^2 g_{YM}^2 N}{\pi}$$

with the (continuous in the large N-limit) linear number density

$$\rho(a) = \frac{2}{m^2 g_{YM}^2} \sqrt{a_0^2 - a^2} \,, \qquad \int_{-a_0}^{a_0} da \, \rho(a) = N$$

Reason: we understand the dual supergravity solution only at this point on the moduli space.

 \Rightarrow We are going to study $\mathcal{N}=2^*$ plasma at finite temperature T , thus breaking SUSY anyway

 \Rightarrow The gravitational description at $T \neq 0$ allows for an additional parameter in the deformation: the masses of the bosonic and the fermionic components of a hypermultiplet $\{Q, \tilde{Q}\}$ can be different

$$m_b \neq m_f$$
, $\mathcal{N} = 2$ SUSY: $m_b = m_f = m_f$

Some facts about $\mathcal{N} = 2^*$ thermodynamics in (T, m_b, m_f) parameter space:

- for the range of parameters studies (up to $\frac{m}{T} \sim 10$) the theory is in deconfined phase
- whenever $m_f^2 < m_b^2$ the theory undergoes a phase transition with the vanishing speed of sound;
- at the transition,

$$T_c = T_c \left(m_f^2 / m_b^2 \right)$$

$$m_f = 0: \qquad m_b/T_c \approx 2.32591$$

 \Rightarrow We focus on thermodynamics of $\mathcal{N}=2^{*}$ plasma with $m_{f}=0\,,m_{b}
eq0.$

 \Rightarrow We now identify above phase transition as a second-order phase transition with the **naive** static critical exponents

$$(\alpha, \beta, \gamma, \delta, \nu, \eta) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 2, \frac{1}{2}, 1\right)$$

Note: the phase transition is appears to be not the mean-field one, as anomalous critical exponent η is nonzero \Rightarrow a more careful (direct) analysis show that $\eta = 0$ and $\nu = \frac{1}{4}$

 \Rightarrow Some of thermodynamic plots presents data as a function of the gravitational parameter ρ_{11} . It is possible to establish precisely the relation

$$\rho_{11} \quad \Leftrightarrow \quad \frac{m_b^2}{T^2}$$

 \Rightarrow this relation is complicated at low temperatures, but fairly simple at high-T:

$$\rho_{11} = \frac{\sqrt{2}}{24\pi^2} \left(\frac{m_b}{T}\right)^2 + \mathcal{O}\left(\frac{m_b^4}{T^4}\right)$$

Figure 6: The speed of sound c_s^2 (left plot) and the reduced temperature $\frac{m_b}{T}$ (right plot) of the strongly coupled $\mathcal{N} = 2^*$ plasma with $m_f = 0$ and $m_b \neq 0$ as a function of the dual gravitation parameter ρ_{11} .

Introduce

$$\Delta \rho_{11} = \rho_{11} - \rho_{11}^c \quad \Rightarrow$$
$$t \propto (\Delta \rho_{11})^2, \quad c_s^2 \Big|_{blue} \propto (-c_s^2) \Big|_{red} \propto |\Delta \rho_{11}| \propto t^{1/2}$$

Figure 7: Free energy densities Ω_o of the "ordered" phase (blue curves) and Ω_d of the "disordered" phase (red curves) as a function of ρ_{11} (left plot) and $\frac{m_b}{T}$ (right plot) of the $\mathcal{N} = 2^*$ plasma with $m_f = 0$.

 \Rightarrow We identify the free energy ${\cal W}$ of the effective ferromagnet as

 \Rightarrow

$$\mathcal{W} = \Omega_o - \Omega_d = \Omega^{blue} - \Omega^{red} < 0$$

$$c_{\mathcal{H}} = -T\left(\frac{\partial^2 \mathcal{W}}{\partial T^2}\right) = \frac{s}{c_s^2} \Big|_{red}^{blue} \propto c_s^{-2} \Big|_{red}^{blue} \propto t^{-1/2} \qquad \Rightarrow \qquad \alpha = \frac{1}{2}$$

 \Rightarrow To determine the critical exponent β we need to identify the control parameter corresponding to the external magnetic field \mathcal{H} of the effective ferromagnet. We propose to identify

$$\mathcal{H}=m_b$$

Since $T_c \propto m_b \propto \mathcal{H}$, and $t \propto (\Delta
ho_{11})^2$,

$$\partial_{\mathcal{H}} \propto -\partial_t \propto -\frac{1}{\Delta \rho_{11}} \partial_{\Delta \rho_{11}}$$

From the best fit to the free energy difference:

$$|\mathcal{W}| \propto -|\Delta
ho_{11}|^3$$

 \Rightarrow

$$\mathcal{M} = -\left(\frac{\partial \mathcal{W}}{\partial \mathcal{H}}\right) \propto \frac{1}{\Delta\rho_{11}} \partial_{\Delta\rho_{11}} \mathcal{W} \propto -|\Delta\rho_{11}| \propto -t^{1/2} \qquad \Rightarrow \qquad \beta = \frac{1}{2}$$

 \Rightarrow the rest of the critical exponents is determined from the scaling relations

Cascading gauge theory (a QFT story)

 $\Rightarrow \text{Consider } \mathcal{N} = 1 \ SU(K+P) \times SU(K) \text{ gauge theory with 2 chiral superfields } A_1, A_2$ in $(K+P, \bar{K})$ representation and 2 chiral superfields B_1, B_2 in $(\bar{K+P}, K)$ representation with a quartic superpotential:

$$W \sim \operatorname{Tr}(A_i B_j A_k B_\ell) \epsilon^{ik} \epsilon^{jl}$$

- when P = 0 the theory flows in the IR to a strongly coupled SCFT
- when $P \neq 0$, the scale invariance is broken. Perturbatively, the theory has two gauge couplings $g_i(\mu)$ and

$$\frac{d}{d\ln\mu} \left(\frac{4\pi}{g_1^2(\mu)} + \frac{4\pi}{g_2^2(\mu)} \right) = 0$$
$$\frac{4\pi}{g_2^2(\mu)} - \frac{4\pi}{g_1^2(\mu)} \sim P \,\ln\frac{\mu}{\Lambda}$$

 $\Rightarrow \Lambda$ is the strong coupling scale of the theory

Some facts about cascading plasma thermodynamics in (T,Λ) parameter space: $\hfill for$

$$T > T_{confinement} = 0.6141111(3)\Lambda$$

cascading gauge theory is deconfined; has an unbroken U(1) chiral symmetry

- at $T = T_{confinement}$ cascading plasma undergoes a first-order phase transition to a confined phase with spontaneously broken chiral symmetry
- Although non-perturbatively unstable due to the nucleation of bubbles of the confined phase, the deconfined U(1) symmetric phase can be extended to temperatures lower than $T_{confinement}$ this phase remains (perturbatively) thermodynamically and dynamically stable down to T_c :

$$T_c = 0.8749(0) \times T_{confinement} < T < T_{confinement}$$

 \Rightarrow At $T=T_c$ cascading plasma undergoes a second-order phase transition identical to the one in $\mathcal{N}=2^*$ plasma

 \Rightarrow To compute the critical exponent β we identify the 'effective external magnetic field' as $\mathcal{H}=\Lambda$

Figure 8: The reduced temperature $\frac{T}{\Lambda}$ (left plot) and the free energy densities Ω_o of the "ordered" phase (blue curve, right plot) and Ω_d of the "disordered" phase (red curve, right plot), of the strongly coupled cascading plasma as a function of the dual gravitational parameter k_s .

 \Rightarrow The dual gravitational parameter is uniquely related to $\frac{T}{\Lambda}$; for $T \gg \Lambda$:

$$k_s = 2\ln\frac{T}{\Lambda} + \mathcal{O}\left(\ln\left[\ln\frac{T}{\Lambda}\right]\right)$$

Figure 9: Ratio of viscosities $\frac{\zeta}{\eta}$ in $\mathcal{N} = 2^*$ gauge theory plasma near the critical point. Note that the critical point corresponds to $c_s^2 = 0$.

$$\frac{\zeta}{\eta} \propto \left(c_s^2\right)^0 \propto |t|^0$$

Recall:

• KKT model (A):

 $\zeta_{singular} \propto c_v \propto |t|^{-\alpha}$

• Quasi-particle models (B):

 $\zeta_{singular} \propto |t|^{\alpha + 4\beta - 1}$

• Onuki's dynamical model (C):

$$\zeta_{singular} \propto \xi^{z-\alpha/\nu} \propto |t|^{-z\nu+\alpha}$$

Thus:

- Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity, $\zeta \propto |t|^{-1/2}$;
- Model B does not contradict our holographic analysis as it predicts that $\zeta_{singular} \propto |t|^{3/2}$;
- Model C agrees with holographic analysis, provided the dynamical exponent z is

$z \leq 1$

Note: A direct computations (to appear) show that z = 0 in $\mathcal{N} = 2^*$ plasma.

 \Rightarrow Identical results apply to cascading gauge theory

Conclusions

We argued that gauge/gravity correspondence is useful in understanding the dynamical critical phenomena of continuous phase transitions. Its utility lies in the motion of 'universality classes' \Rightarrow once we identify a gravitation model in a particular universality class, that model can essentially solve for the critical behavior of the full class. Might lead to some real experimental predictions!

Future directions

- Further understanding critical phenomena in the presence of chemical potentials. Here, we need to distinguish 2 cases: spontaneous breaking of discrete *or* continuous symmetries
- Can we understand (derive?) TDLG from holography?
- CFT's might have nontrivial z's \Rightarrow would infinitesimal deformation of a CFT by a relevant operator near the transition produce a bulk viscosity governed by the same dynamical critical exponent?
- related... will dynamical susceptibility determine the same z as the bulk viscosity? (Note: the former is defined even for CFT's)
- \Rightarrow Need to study more models!