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Motivation:

—> There was been many studies were the gauge/string theory correspondence framework
was been used to extract transport coefficients of strongly coupled gauge theory plasma.

however...

—> real QCD is not in any one of the models studied
(it is possible to reach QCD as a particular limit in some of the models, but the price to pay is too big: the

truncation of the full string theory to a supergravity sector is inconsistent)

thus...

—> one attempts to discover common/universal features of hydrodynamics of strongly coupled gauge

theories (by looking at the explicit string theory models as well as phenomenological models) and

hope...

— that QCD is in the universality class of the models studied



Examples:
m the shear viscosity ratio

m the bulk viscosity ratio
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—> It is not clear why and how this universality arises, or how to properly “define” the
corresponding universality classes: while the shear viscosity ratio is universal in 2-derivative
supergravity (or a phenomenological model of thereof), it can be violated in full string theory ;
while the bulk viscosity bound is satisfied in all models of supergravity derived from string

theory, it can be violated in some phenomenological models of gauge/gravity correspondence.



—> A more common notion of 'universality’ arises in the theory of continuous critical

phenomena.

— We are going to use gauge theory/string theory correspondence of Maldacena to study
static and dynamic critical phenomena of strongly coupled (non-conformal) gauge theories in

various dimensions



“Holographic-", "Maldacena-", "gauge theory/string theory-"

correspondence

Consider ' =4 SU(N) SYM:

° g%, MN < 1 (weak effective coupling) = perturbative gauge theory description

° g%,MN > 1 (strong effective coupling) = IIB string theory on AdS5 X S0

—> The duality can be extended to non-conformal gauge theories; it is a very effective tool to
compute correlation functions of gauge-invariant operators in QFT at strong coupling, in the

presence of finite temperature and/or chemical potentials for the conserved U(l) charges.



Outline of the talk:

Static critical phenomena
Dynamical critical phenomena
Holographic second order phase transitions in A" = 4 SYM (T' # 0, u # 0)

Bulk viscosity at criticality

m experiment — or why it is interesting?

m Karsch-Kharzeev-Tuchin model (JarXiv:0711.0914])

= Quasiparticle models in relaxation time approximation (Sasaki-Redlich
[arXiv:0806.4745])

m bulk viscosity in dynamical critical phenomena (Onuki, PRE 55 403 (1997))

= relevance to QCD



e Bulk viscosity in mass deformed N = 4 SYM plasma at criticality

e Holographic second order phase transitions at (7" £ 0, u = 0)
« N = 2* plasma

m cascading gauge theory plasma

e Holographic bulk viscosity at criticality
« N = 2* plasma

m cascading gauge theory plasma

e Conclusions and future directions



Static critical phenomena

—> consider ferromagnetic phase transition

magnetization M = order parameter
external magnetic field H & a control parameter
4%
OH ] 1

where W = W(T, 'H) is the Gibbs free energy

M ~ )0,  disordered [unbroken| phase
H=0 # 0,  ordered [broken| phase



— Basic thermodynamic relations
W=e—sT - MH, dW = —sdl' — M dH

At a second order phase transition the first derivatives of VV are continuous while the higher

derivatives are not. Under the static scaling hypothesis we have:
W, H) = AP W (AT AN"H) | = —
for the free energy, and
G(q,t,H) = N2Y"7P G(AG, NYTt, \VH)
for the Fourier transform of the equilibrium two-point correlation function of the magnetization

0*W

G(7) = (M(F)M(0)) o THFTHO)

p is the number of spatial dimensions.



The static critical exponents
{a, 8,7, 6, v,m}
are defined as
S

= — o [t|7°
n G

specificheat : ¢y = =T (

spontaneous magnetization :

oM
magnetic susceptibility :  xr = (—) oc [t
T
0

OH
critical isotherm : M (t = 0) o< |H|'/?
o e izo
correlation function :  G(7)
[FmPET, =0
correlation length : & oc [t|77

Note: 77 is the anomalous critical exponent



—> Given the scaling hypothesis we can compute

_ 2 _
w=2_ P g_PTyn _2n—p
yr yr yr
1
5: In ’ V= —, U:p_29H+2
P—YUH yr
which implies 4 scaling relations:
a+20+y=2, ~y=p0-1)=v2-n), 2-a=wvp



Some mean-field results (LG model for uniaxial ferromagnetin p = 3)
Free energy:
W = /d:f [g (VM)? + %MQ - MH}
with

c>0, a=uay(T-T)

= minimum is achieved for constant M solving for M,

oW

1 1
{0476777 57 V:n} — {07 571737 570}



Dynamical universality classes and z-exponent

—> depends on additional properties of the system:

same static universality class = different dynamical universality class

—> crucial question is whether or not the order parameter is conserved

—> relaxation to equilibrium is described by time-dependent Landau-Ginsburg (TDLG)
equation

In case of Brownian motion = Langevin equation:

dv(t) 0H
= —Tv(t t) = —-1— t
) ru) ) = 1% 1 ()
where I' > 0 is a friction coefficient, £(t) is the random force with (£(¢)) = 0 and
g="
2

Is the Hamiltonian of the system.



TDLG equation is multi-body generalization of the Langevin equation:

) == [ g rE - Fs + end)

['|& — 4] is a dynamical transport coefficient (friction in Langevin equation)

— Go back to LG model:
W= | dz [5 (VM) + S M - MH}
Fourier transform of TDLG, plus averaging

—iw(Myq) = —(cq® +a) -Ty- (Myg) +Tq - Hug



Consider dynamical susceptibility:

where 7, is the dynamical relaxation time. In hydro limit (g — 0)andforI'g £ 0

7'q_:10 X t =

the relaxation time diverges (critical slow-down)

We can now introduce a new dynamical exponent z as

4

Tg=0 X ‘fz X |t|



Let’'s look @ LG model:

e M is not a conserved quantity

_1
Tg—0 Xt 1 = £° x t 27 =

e M is a conserved quantity

OMg=0 _
ot
from TDLG:
I'(g=0)=0
Thus, in the hydrodynamic limit ¢ oc £ 1
1 ¢
Tqg X —5 X

aq® — (£q)?

=



More formally, the critical exponent z is introduced by looking at the scaling of the

near-equilibrium correlation function of the magnetization

~

G(w, 7, t, H) = N2Y"7PT2 G(Nw, A, \YTt, \Y"'H)

Note: the dynamics associated with off-equilibrium relaxation, in principle, has nothing to do
with Minkowski time evolution, thus z should not be identified with 1, even if we are dealing

with relativistic critical phenomena

Likewise: the critical phenomena with z # 1 does not necessarily have to have a Lifshitz-like

holographic scaling



Critical phenomenain N/ = 4 SYM

=> Consider strongly coupled N = 4 SYM with a (single, non-diagonal) U (1) C SU (4)
R-symmetry chemical potential

— The dual holographic model is

1
- 167TG5

/ °¢V=g (R 1R 267 (96) + 467 4 8¢‘1/3)
M

S 3

—> It is straightforward to construct RN black hole solution, describing the equilibrium state of

finite temperature and density N/ = 4 SYM plasma



— we find:

A% (1 + K)?T3N? ap _ ON?TU(1 + k)°r?
p— E p— p—
’ (k273 (1 + 2)
27(1 + K)2kY/2T3N? 2T _ e 2
— , - - K -
P (1 + 2)3 i NG

—> it is easy to verify that

N=€e—Ts—up=—~P, de =T'ds + pdp dP = sdT + pdu



— we see that % achieves a minimum at kK = k. = 2, corresponding to the critical

temperature 1, = \@,u/w and the critical chemical potential (. = 7TT/\/§. Introducing

t = i 1 0= 1 H N _ t
T T S
we find
2TN?p* 8 1612
Qi(u,t)z—?)?—ﬂf <1+§tJ—r > t3/2+27 2+O(t5/2>>

2TN2T* 72 4 162

QL (T, 1) = — 1 — = [ 32 2 (5/2)

+(T> 1) 128 ( s T Tar 27 +0
m:mi(t):2i4\f2t1/2+8ti5\f2t3/2+4t2+(9(t5/2)

— Remember:

/{—/{Coctl/z



Thus for a given temperature t there are two thermodynamic phases of the system, with {2_

being the stable one.

For {)_ phase:
0s 0%Q_ (1) . 1
=T == — ! t1/2 —
C (8T> ) X 572 x + = o=
dp 0°Q_ (T, i) __1/2 —1/2 1
— (2= _ [ _ -
XT (8,u> TOC o2 X+ X + = V=5

— thus, assuming the scaling relations we find the static universality class of strongly coupled
RN plasma to be

1 1
5 =(=,=,2,2,5,1
(()K?/B?’Y? 7V777) ( 27 727 )

= All | said about N' = 4 plasma is old result



| want to claim that these naive identification of the [static] universality class is in fact incorrect

— A hint that something is wrong can be seen from the fact that the anomalous scaling

exponent 17 = 0, as one would expect in the large-N (equivalently mean-field) limit

—> At a technical level, the hyperscaling relation between the critical exponents
2—a=vp=3v

IS quite often is violated



—> To proceed we need to compute the dynamical susceptibility X(m, q):

x(=0,q=0) = xr = a test on computations

1

=0 = i = (20T7) "} = T ox &7
x(r, q)

—> | will now present the results of the analysis.



~0.005 |

~0.010 |

Figure 1: The scaling (blue dots) of the inverse of the static susceptibility X—0,q=0 in the
vicinity of the critical point. The solid red line is a quadratic fit to the data. The red line
intersects the x axis at k. = 1.999999(6) in excellent agreement with the expected value

Ke = 2.

1 _1/2
Xw=0,q=0 = XT X —— X +t ; |k — Ke| < Ke
I‘{_ /ﬁ'xc
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Figure 2: Poles of the static susceptibility in the vicinity of the critical point: X;lzo q=q. — 0.

1
(27TTC£)2 X q;z X o<+t_1/2, 0< ke — kK <K k.
/i_/ic




1
foct_”oct_l/4 = V=

Given that the static critical exponent o = % above implies that the hyperscaling relation is

violated
2—a #£pv

where p = 3 stands for the number of spatial dimensions of the system.



crit —1

X (Xc,m:O,q )
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Figure 3: The scaling (blue dots) of the inverse of the static susceptibility an"“ito’ q at the critical

point, kK = 2. The solid red line is a quadratic fit to the data.

The red line intersects the q2 axis at g2 = —1.57468 - 10~% in excellent agreement with

the expected value qg = (. The data implies

crit

-9 't —24+ —
Xto—0,q4 X G = Xtom0,q < q " = n =20
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Figure 4: Poles of the dynamic susceptibility in the vicinity of the critical point, X;Lm*,q =0

for a set of momenta values 42 = : 107° (blue dots) , 10~° (green dots), 10~* (orange dots)
and 103 (black dots). The solid red line is a quadratic fit to i% atq? = 107°.

. 10,

lim i — = 2.79163 - 10~% — 0.333392(x — 2) 4+ 0.0278087(x — 2)% + O((k — 2)?)

q—0 q2



2rT, ) ' =i, x g% (k—re) x (20T, q€)* - (27T, €)™ * «x (27T, &)
T oox €% x &2 = z =4

—> Thus:

= incorrect universality class of N = 4 plasma:

—_
—_
—_
IS
DN | =
T—&
N———

(057577757”777> — (57575

= correct universality class of N/ = 4 plasma:

1 1
S,vm; 2)=(=,2,2,2,-,0; 4
(()57/67’)/7 7V7777 Z) (272727 747 Y )

Note: z = 1 even though the holographic dual does not have Lifshitz-like scaling.



Hydrodynamics and models of bulk viscosity at criticality

Uv __ v 137
T — Tequilibrium + non—equilibrium
uv W, U 73% pv . 172
Y =eulu” + PAM ,  T) . ., =-1n0 ¢((Vu)
utu, = —1, APY =t + uHu”

where 7, ( are the shear and the bulk viscosities and o*" is a shear tensor (which is

traceless):
1%
Ny o'’ =0

In CFT TZZ’ =0 =

—e+ 3P —-3((Vu)=0 = €=3P ,  C

CFT

= so in order to see ( # 0 we need to look @ non-conformal theories



e Naively, second-order phase transitions imply scale invariance =
(—0 or (— o0

Not true: ( = 0 necessitates the full space-time scale invariance, while at criticality we

have only spatial scale-invariance.

e Even though a CFT has ¢ = 0, it might still have a non-trivial z as determined from the

dynamical susceptibility



What is bulk viscosity at criticality?

e Experiments: typically,

<1

3 [y

however, for 3He in the vicinity of liquid-vapor critical point

¢ > 10°
Ui
e Phenomenology: QCD first order confinement/deconfinement curve (in (T, ,u) plane)
ends at a critical point of the 3d Ising model universality class. Son-Stephanov
(hep-ph/0401052) argued that the dynamical universality class of QCD is that of the

liquid-vapor point. For the liquid-vapor critical point Onuki computed:

z~3



Some theoretical models

e KKT model (A):

Csingular X Cy X ‘t‘_a
® Quasi-particle models (B):
x |t|oz—|—46—1

Csingular

e Onuki’'s dynamical model (C):
Csingular o Sz—a/y x |t|—ZI/—|-04

—> above scalings are p-independent
—> vastly different results!!

—> holography to the rescue



What to compute and how?

One of the on-shell modes of
0=V,T"

IS a sound wave:
w=2csq—iI ¢+ O(¢g°)

ngﬁ_P’ T-F:Q p—1+C
Oe S 7 2n

It appears as a pole in the two-point correlation function of the stress-energy tensor.

where

—> In a dual holographic description the sound wave arises as one of the quasinormal modes
of the black hole describing the thermal equilibrium state of a strongly coupled gauge theory
plasma (Kovtun-Starinets, hep-th/0506184).



Thus the strategy is to:

m construct the gravitational description of the gauge theory plasma undergoing second-order
phase transition; compute the static critical exponents;

= compute the dispersion relation of the 'sound’ quasinormal mode;

m extract the critical exponent of the bulk viscosity;

= interpret the result in available framework of the dynamical critical phenomena

Our holographic playground:

= mass-deformed N = 4 plasma;

= N = 2* gauge theory < mass-deformed N = 4 SU(N) SYMind = 4;
» N=1SU(N 4+ M) x SU(N) cascading gauge theory in d = 4;



Mass deformed N = 4* plasma

— Gravity:
1 1 1
S = / PP/ —g (R — —¢"3F? — 672 (00)° + 4¢*/3 +- 8¢~ /3 1 6L
167TG5 Ms 4 3
where 0 L is a mass deformation
1 m? 2 4 2
5£:—§(0x) —7)( —|—O(X), AA—4)=m

= QFT:
Lorr — Lorpr — MQOs, M o< A

where )\ is a coefficient of the non-normalizable mode of x near the asymptotic Ad.S

boundary

Note: the gauge/gravity relation is expected to hold only to (’)(Mz). We can always achieve
this provided M < T..



Repeating the thermodynamic analysis we find:

27T N2t M? M? 8 M?
() t)=———( 1 pp— 1+st — 1242 (1 2 )¢
:I:(/’L7 ) 3972 ( + St Iug ) ( St ,LL2 + 3 + St Iug

S (et ge) erevo(5))
F—" (148 =) 3+ + 0O —
27 t 12 i

where s;i denote the deformations from the CFT thermodynamics near the criticality; in the
above expression we already took into account the fact that 1. got shifted by order M 2 / ,u2
correction

= Unless
s =0
the static critical exponents are modified: C' is% t=3/2 instead of oc ¢~ /2

—> it is possible to show that the first law of thermodynamics (which numerically is valid in the
deformed model ~ 10~ 1Y) guarantees S% =0

— with a bit more work it can be shown that the universality classes (static+dynamic) of
N = 4 SYM plasma are robust against mass deformation



Sound waves in mass deformed /' = 4 plasma

= Hydrodynamics is more complicated since besides T*" we have conserved U(l)R

current J#:

JH = put + v
where 1* is the dissipative part satisfying u*v,, = 0:
v = o AR (—8,,,u + %8,/T>
0@ Is a new transport coefficient, the conductivity

—> We can parametrize the dispersion relation for the sound waves as before

w=%+csq—iL ¢+ O(¢*)



, d(P, p) d(e, P) Oe,p) \™
2= (P grm e o) (P )

- () -5 () (o m 30 +ogia)

" (Mp) ((a?ﬁu)T+ (aifT)u) F ((afgu)ﬁ (aifT)))

= Ina CFT, i.e, using the equation of state ¢ = 3P, we recover the usual results

P 2m stV 1 sT
38T sT —pup 67T sT — up

X

= Note

thus we do not need to worry about 0.



(1 —3c?)
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Figure 5: Deviation of the speed of sound (1 — 3c?), in mass-deformed RN plasma from
its conformal value as a function of the mass-deformation parameter A at = 2. The blue
dots represents data obtained from the spectrum of quasinormal modes, and the solid red line

represents thermodynamic prediction. Agreement is ~ 10—,



— We find that the bulk viscosity is finite at the critical point with

% — 3.0488(5) (% - ci) + 0 <(; —c

m it satisfies the bulk viscosity bound in strongly coupled plasma
1
N 3

S

> o [t
7

= with regard to a critical behavior:



Recall:

e KKT model (A):

Csz'ngular X Cy X ‘t‘_a

e Quasi-particle models (B):
x |t|oz—|—46—1

Csingular

e Onuki’'s dynamical model (C):

Csingular o gz—a/y x |t|—ZI/—|-04



Thus:

m Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity,
—1/2 .

¢ oc [t]7H2;

= Model B does not contradict our holographic analysis as it predicts that

Csz'ngular X ‘t‘S/Q;

m Model C is inconsistent with holographic analysis as it predicts divergent bulk viscosity,
¢ oc [t]712;



Actually:

Model B is not applicable as the relaxation time is divergent:

Tox &' — 0o at the transition



N = 2* gauge theory (a QFT story)

— Start with N/ = 4 SU(N) SYM. In N/ = 1 4d susy language, it is a gauge theory of a
vector multiplet V', an adjoint chiral superfield @ (related by N/ = 2 susy to V') and an adjoint

pair {Q), Q~} of chiral multiplets, forming an N/ = 2 hypermultiplet. The theory has a
superpotential:

W =

2v/2 .
=2, (eqfo)
9y M
We can break susy down to N/ = 2, by giving a mass for ' = 2 hypermultiplet:
2v/2
2

9y M

W —

Tr ([Q, Q} <I>> + ;n (TrQ2 + Tr@2>

9y M

This theory is known as A/ = 2* gauge theory



When m = 0, the mass deformation lifts the {Q, Q} hypermultiplet moduli directions; we

are left with the (N — 1) complex dimensional Coulomb branch, parametrized by

¢ = diag (a1,as2,- - ,an) , Zaiz()

1

We will study N/ = 2* gauge theory at a particular point on the Coulomb branch moduli
space:
2 2
o M gy N
a; € |—aop, aol , g = -

with the (continuous in the large [V -limit) linear number density

pla) = ——5—1/ag / da p(a) = N
Mgy —ao

Reason: we understand the dual supergravity solution only at this point on the moduli space.




= We are going to study N/ = 2* plasma at finite temperature T, thus breaking SUSY
anyway
= The gravitational description at 7" # 0 allows for an additional parameter in the

deformation: the masses of the bosonic and the fermionic components of a hypermultiplet
{Q, Q} can be different

my #mys, N =2 SUSY: mp, =mys =m

Some facts about N = 2* thermodynamics in (T, mp, mf) parameter space:

m for the range of parameters studies (up to % ~ 10) the theory is in deconfined phase

= whenever m? < m% the theory undergoes a phase transition with the vanishing speed of
sound;

= at the transition,
T. =T, (m7/mj)

mys=0: my /T, =~ 2.32591



= We focus on thermodynamics of N' = 2* plasma with m s = 0, my, # 0.
f )

— We now identify above phase transition as a second-order phase transition with the naive

1
(a,ﬁ,w,um):( t1i,1 1)

static critical exponents

57 57 57 ) 27
Note: the phase transition is appears to be not the mean-field one, as anomalous critical
1

exponent 77 is nonzero = a more careful (direct) analysis show that) = 0 and v = 1

— Some of thermodynamic plots presents data as a function of the gravitational parameter
pP11. Itis possible to establish precisely the relation
2
y
T2
—> this relation is complicated at low temperatures, but fairly simple at high-T:

2 /mp\?2 4
o= (Y 1o (2
2472 \ T T4

P11 <~
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Figure 6: The speed of sound cg (left plot) and the reduced temperature % (right plot) of

the strongly coupled N = 2* plasma with mys = 0 and m; # 0 as a function of the dual
gravitation parameter pq1.

Introduce

Ap11 = p11 — P11 =

t o (Ap11)2, 2 x |Ap11| #1/2

red
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Figure 7: Free energy densities {2, of the “ordered” phase (blue curves) and {2, of the “disor-
dered” phase (red curves) as a function of p11 (left plot) and % (right plot) of the N/ = 2*

plasma with m ¢ = 0.

= We identify the free energy VV of the effective ferromagnet as

W:QO_Qd:leue_Qred<O

O*W S
CH:_T<0T2):C_2

S

blue
X C

blue 1
—2 x t_1/2

S

red red



= To determine the critical exponent 3 we need to identify the control parameter
corresponding to the external magnetic field 7 of the effective ferromagnet. We propose to
identify

H = my
Since T, oc my, o< H, and t o< (Ap11)?,
On X —0; X — ! OAp1,
Ap11
From the best fit to the free energy difference:
W o —|Apii|?

=

ow 1
M (87’() X Ao Onp, W o —|Ap11| = 16

—> the rest of the critical exponents is determined from the scaling relations

N | —



Cascading gauge theory (a QFT story)

= Consider N' = 1 SU(K + P) x SU(K) gauge theory with 2 chiral superfields A1, Az
in (K + P, K) representation and 2 chiral superfields By, By in (K + P, K)
representation with a quartic superpotential:

W ~ Tr(AiBjAkBg)eikejl

= when P = 0 the theory flows in the IR to a strongly coupled SCFT

= when P # 0, the scale invariance is broken. Perturbatively, the theory has two gauge

couplings g; (1) and
d ( 47t N A7 ) 0
dlnp \gi(p) ~ g3(n)

4 4
n n NPlnﬁ

a3(n) g3 (p) A

= A is the strong coupling scale of the theory




Some facts about cascading plasma thermodynamics in (T, A) parameter space:

m for

T > Toon finement = 0.6141111(3)A

cascading gauge theory is deconfined; has an unbroken U(l) chiral symmetry

matl = Tconfz'nement cascading plasma undergoes a first-order phase transition to a
confined phase with spontaneously broken chiral symmetry

= Although non-perturbatively unstable due to the nucleation of bubbles of the confined
phase, the deconfined U(l) symmetric phase can be extended to temperatures lower than
T.on finement — this phase remains (perturbatively ) thermodynamically and dynamically
stable down to 7.

Tc — 08749(0) X Tconfinement <T < Tconfinement

= At T' = I, cascading plasma undergoes a second-order phase transition identical to the
onein N/ = 2* plasma

= To compute the critical exponent (3 we identify the ’effective external magnetic field’ as

H=A
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Figure 8: The reduced temperature % (left plot) and the free energy densities €2, of the “or-
dered” phase (blue curve, right plot) and €2, of the “disordered” phase (red curve, right plot),

of the strongly coupled cascading plasma as a function of the dual gravitational parameter k.

—> The dual gravitational parameter is uniquely related to %; for T' > A:

T T
ks :2an+C’)(ln [an])



Holographic bulk viscosity

o N =2%plasmaatms = 0,my # O:

"

" 6.66

6.64 -

6.62 -

S T B S N R S I
—-0.0005 L 0.0005 0.0010 0.0015 .0.0020 Cg

Figure 9: Ratio of viscosities % in A/ = 2* gauge theory plasma near the critical point. Note

that the critical point corresponds to cz = 0.

S
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Recall:

e KKT model (A):

Csz'ngular X Cy X ‘t‘_a

e Quasi-particle models (B):
x |t|oz—|—46—1

Csingular

e Onuki’'s dynamical model (C):

Csingular o gz—a/y x |t|—ZI/—|-04



Thus:

m Model A is inconsistent with holographic analysis as it predicts divergent bulk viscosity,
—1/2 .

G oc [t]7H/%:

= Model B does not contradict our holographic analysis as it predicts that

Csingular X ‘t‘S/Q;

m Model C agrees with holographic analysis, provided the dynamical exponent z is

z <1

Note: A direct computations (to appear) show that z = 0 in N/ = 2* plasma.

—> Identical results apply to cascading gauge theory



Conclusions

We argued that gauge/gravity correspondence is useful in understanding the dynamical
critical phenomena of continuous phase transitions. Its utility lies in the motion of 'universality
classes’ = once we identify a gravitation model in a particular universality class, that model
can essentially solve for the critical behavior of the full class. Might lead to some real
experimental predictions!



Future directions

» Further understanding critical phenomena in the presence of chemical potentials. Here, we
need to distinguish 2 cases: spontaneous breaking of discrete or continuous symmetries

m Can we understand (derive?) TDLG from holography?

m CFT’'s might have nontrivial 2's = would infinitesimal deformation of a CFT by a relevant
operator near the transition produce a bulk viscosity governed by the same dynamical critical
exponent?

m related. . . will dynamical susceptibility determine the same z as the bulk viscosity? (Note:

the former is defined even for CFT’s)

—> Need to study more models!



