Problem 1

Consider the Hamiltonian:

\[H = \frac{p^2}{2m} + \lambda x^4 \]

(0.1)

Show that, by an appropriate rescaling of the \(x \) coordinate, \(x = a \xi \), the corresponding Schrödinger equation can be put in the form

\[-\xi^2 \frac{d^2 \psi}{d \xi^2} + \xi^4 \psi = \epsilon \psi \]

(0.2)

a) Obtain the constant \(a \) and the rescaled energy \(\epsilon \) in terms of \(\hbar, m, \lambda \) and the energy \(E \).

b) Use the WKB method to obtain the approximate eigenvalues \(\epsilon_n \) and evaluate numerically the result for \(n = 0, 2, 4, 40 \) where \(n = 0 \) is the ground state. Compare with the values obtained from a numerical solution of the equation:

\[E_0 = 1.060361945, \ E_2 = 7.4557 \ E_4 = 16.2618267 \ E_{40} = 303.912074247522]; \]

(0.3)

For which states is the approximation better and why?

c) Challenge: Can you evaluate numerically the energy \(E_{20} \) and compare it with the WKB approximation?

Problem 2

Estimate the mean life of the nuclei \(^{238}_{92}\text{U} \) and \(^{212}_{84}\text{Po} \). See problem 8.4 in Griffiths.