662, Homework II, (2 problems)

Problem 1

The Lagrangian (density) for a Dirac fermion

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi \tag{0.1}$$

is invariant under the transformation

$$\psi(x) \to e^{iq\alpha}\psi(x)$$
 (0.2)

- a) Compute the corresponding conserved current (electromagnetic current).
- b) Write the current in terms of oscillators and check that electron and positron have opposite charges.
- c) Consider the transformation $\psi(x) \to e^{i\alpha\gamma^5}\psi(x)$. Check that this is a symmetry of the Lagrangian when m = 0 but not if $m \neq 0$. Write the corresponding conserved current and compute its divergence in the $m \neq 0$ case using the Dirac equation.

Problem 2

A Dirac field transforms in the $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ representation of the Lorentz group. In the chiral representation¹ the Dirac spinor can be written as

$$\psi = \left(\begin{array}{c} \xi_L\\ \xi_R \end{array}\right) \tag{0.3}$$

where $\xi_{L,R}$ are two component spinors such that ξ_L is in the $(\frac{1}{2}, 0)$ and ξ_R in the $(0, \frac{1}{2})$.

- a) Show that the Dirac equation mixes both components.
- **b)** Show that of m = 0 one can set *e.g.* $\xi_R = 0$ and still satisfy the Dirac equation (Weyl spinor).

¹This is the representation used in class where $\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$.

- c) Show that ξ_L^* (conjugate) transforms (after an appropriate change of basis) in the $(0, \frac{1}{2})$ representation and therefore can be identified with ξ_R .
- d) Using the result of c) write a massive Dirac equation for just ξ_L (Majorana fermion). Show that this equation is not invariant under the charge symmetry $\xi_L \rightarrow e^{iq\alpha}\xi_L$ of problem 1) and therefore this fermion has no charge (q = 0).