662, Homework I, (3 problems)

Problem 1

Consider two scalar fields of the same mass $\phi_{1,2}$. They can be combined in a complex field

$$
\begin{equation*}
\phi(\vec{x}, t)=\frac{1}{\sqrt{2}}\left(\phi_{1}(\vec{x}, t)+i \phi_{2}(\vec{x}, t)\right) \tag{0.1}
\end{equation*}
$$

The Lagrangian (density) is

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi \tag{0.2}
\end{equation*}
$$

The Lagrangian has a symmetry $\phi \rightarrow e^{i \alpha} \phi$ for any constant real α.
a) Write the equations of motion, Hamiltonian and spatial momentum \vec{P}.
b) Use the symmetry described above $\phi \rightarrow e^{i \alpha} \phi$ to find a conserved Noether current and conserved charge Q. Use the equations of motion to check that it is indeed conserved.
c) Quantize the complex field, that is, write appropriate expressions for $\phi(\vec{x})$ and $\Pi(\vec{x})$ in terms of momentum creation and annihilation operators and check the canonical commutation relations. Notice that you now need two sets of annihilation (and creation) operators, either for the real fields $\phi_{1,2}$, namely $a_{\vec{k}, \ell}$, with $\ell=1,2$ or for the complex field:

$$
\begin{equation*}
\phi(\vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\vec{k}}}}\left(e^{i \vec{k} \vec{x}} a_{\vec{k}}+e^{-i \vec{k} \vec{x}} b_{\vec{k}}^{\dagger}\right) \tag{0.3}
\end{equation*}
$$

where $b_{\vec{k}}^{\dagger}$ is not the hermitian conjugate of $a_{\vec{k}}$ since $\phi(x)$ is not hermitian.
d) Write the Hamiltonian H, momentum \vec{P} and conserved charge Q in terms of annihilation and creation operators and show that Q is conserved (namely commutes with H).

Problem 2

Consider the Feynman propagator for a massive scalar field in momentum space:

$$
\begin{equation*}
\Delta_{F}(p)=-\frac{i}{p^{2}-m^{2}+i \epsilon} \tag{0.4}
\end{equation*}
$$

a) Perform a Fourier transform and write it explicitly in space-time coordinates in terms of Bessel functions discussing separately its form outside and inside the light cone.
b) Discuss its behavior in the limit of large space-like separation, time-like separation and near the light-cone.

Problem 3

(see https://arxiv.org/pdf/hep-th/0306133.pdf)
Consider the $O(N)$ scalar theory in 3 dimensions (you can also consider arbitrary dimension d) with a magnetic field H coupled to σ.

$$
\begin{equation*}
S=\int d^{3} x\left[\frac{1}{2}\left(\nabla \phi_{a}\right)^{2}+\frac{1}{2} r \phi_{a}^{2}+\frac{u}{4!}\left(\phi_{a}^{2}\right)^{2}+H \sigma\right] \tag{0.5}
\end{equation*}
$$

in the large N limit. As done in class write $\phi=\left(\sigma, \pi_{\tilde{a}}\right)$, and set $\rho=\frac{1}{N} \phi_{a}^{2}$ using a delta function

$$
\begin{equation*}
1=N \int d \rho \delta\left(\phi_{a}^{2}-\rho N\right)=\frac{N}{4 \pi i} \int d \rho d \lambda e^{\frac{1}{2} \lambda\left(\phi_{a}^{2}-N \rho\right)} \tag{0.6}
\end{equation*}
$$

and use the saddle point approximation for the resulting action.
a) Write the equations of motion for the action for the case of constant fields. Define $\lambda=m^{2}$ and proceed as we did in class for the case $H=0$.
b) From the equations of motion compute the susceptibility χ for $r>r_{c}$ and determine the critical exponent γ in $\chi \sim t^{-\gamma}$. Here $t \sim\left(r-r_{c}\right)$
c) Consider the case $t=0$, namely $r=r_{c}$ and compute m^{2} as a function of H. From there determine the critical exponent δ in $\sigma \sim H^{\frac{1}{\delta}}$.

