## 660, Fall 2017, Homework I, (5 problems)

Based on problems 1.1, 1.7, 1.10/1.11, 1.14,1.23 of Sakurai's book

## Problem 1

Prove that

$$
\begin{equation*}
[A B, C D]=-A C\{D, B\}+A\{C, B\} D-C\{D, A\} B+\{C, A\} D B \tag{0.1}
\end{equation*}
$$

## Problem 2

Consider a Hermitian operator $A$, (i.e. $A=A^{\dagger}$ ). Let $\left\{\left|a_{i}\right\rangle, i=1 \ldots N\right\}$ be a basis of eigenstates $\left|a_{i}\right\rangle$ of $A$, with eigenvalues $a_{i}$. Assume for simplicity that there is no degeneracy, namely all the $a_{i}$ are different.
a) Prove that

$$
\begin{equation*}
\prod_{i=1}^{N}\left(A-a_{i}\right)=0 \tag{0.2}
\end{equation*}
$$

b) For a given value of $i$ consider the operator

$$
\begin{equation*}
P_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{N}\left(\frac{A-a_{j}}{a_{i}-a_{j}}\right) \tag{0.3}
\end{equation*}
$$

What does $P_{i}$ do when applied to an arbitrary state?
c) Illustrate points $\mathbf{a}$ ) and $\mathbf{b}$ ) by using the operator $S_{z}$ of a spin $1 / 2$ system.
d) Discuss how to modify the formulas if there is a degenracy in the spectrum of $A$.

## Problem 3

Consider the following Hamiltonian of a two-state system

$$
\begin{equation*}
H=E(|1\rangle\langle 1|-|2\rangle\langle 2|)+\Delta(|1\rangle\langle 2|+|2\rangle\langle 1|) \tag{0.4}
\end{equation*}
$$

where $E, \Delta$ have dimension of energy. Find the energy eigenvalues and the corresponding eigenstates as linear combinations of $|1\rangle,|2\rangle$.

## Problem 4

Consider the following Hamiltonian of a three-state system

$$
H=\frac{\epsilon}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0  \tag{0.5}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

where $\epsilon$ has dimension of energy. Find the energy eigenvalues and the corresponding eigenstates.

## Problem 5

Consider the following observables in a three-state system:

$$
A=\left(\begin{array}{ccc}
a & 0 & 0  \tag{0.6}\\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b & 0 & 0 \\
0 & 0 & -i b \\
0 & i b & 0
\end{array}\right)
$$

where $a, b$ are real numbers.
a) The spectrum of $A$ is degenerate. How about the spectrum of $B$ ?.
b) Show that $A$, and $B$ commute.
c) Find a new orthonormal basis where both $A$ and $B$ are diagonal. Do $A$ and $B$ form a complete set of observables for this system?

