660, Fall 2017, Homework IV, (4 problems)

Based on problems 2.3, 2.13, 2.18, 2.15, 2.23 of Sakurai's book

Problem 1

An electron is subject to a uniform, time-independent magnetic field $\vec{B}=B \hat{z}$ in the z direction. At $t=0$ the electron is in an eigenstate of $\vec{S} . \hat{n}$ with eigenvalue $\frac{\hbar}{2}$. Here \hat{n} is an arbitrary unit vector with polar angles (θ, ϕ). (Similar to previous homework).
a) Find the state of the electron at any subsequent time t.
b) At a given time t, what are the possible results of measuring S_{x}, and their probabilities?. Repeat the same for S_{z} and S_{y}.
c) Compute the mean value of S_{x}, S_{y} and S_{z} as a function of time.

Problem 2

Consider a one-dimensional harmonic oscillator with frequency ω. Using the algebraic method (i.e. operators a, a^{\dagger}) compute
a) $\langle m| x|n\rangle,\langle m| p|n\rangle,\langle m| x p+p x|n\rangle,\langle m| x^{2}|n\rangle,\langle m| x^{2}|n\rangle$, where $|n\rangle,|m\rangle$ are eigenstates of energy.
b) $\langle\alpha| x|\alpha\rangle,\langle\alpha| p|\alpha\rangle,\langle\alpha| x^{2}|\alpha\rangle,\langle\alpha| p^{2}|\alpha\rangle$ where $|\alpha\rangle$ is a coherent state.
c) Use the previous result to show that coherent sates have minimum uncertainty

Problem 3

Continuing from problem 2. Consider $x_{H}(t)$, the position operator in the Heisenberg picture.
a) Evaluate the correlation function

$$
\begin{equation*}
C(t)=\langle 0| x_{H}(t) x_{H}(0)|0\rangle \tag{0.1}
\end{equation*}
$$

where $|0\rangle$ is the ground state.

Problem 4

A particle of mass m in one dimension is bound to a fix center by an attractive δ-function potential:

$$
\begin{equation*}
V(x)=-\lambda \delta(x), \quad(\lambda>0) \tag{0.2}
\end{equation*}
$$

a) At $t=0$ the potential is suddenly switched off, that is $V=0$ for $t>0$. At $t=0$ the wave function is the one of the bound state since it cannot change instantaneously ($\partial_{t} \psi$ is finite for finite Hamiltonian). Compute the wave function for $t>0$.

