660, Fall 2017, Homework V, (4 problems)

Based on problems 3.12, 3.15, 3.18, 3.20 of Sakurai's book

Problem 1

An angular momentum eigenstate $\left|\ell, \ell_{z}=\ell\right\rangle$ is rotated by an infinitesimal angle $\alpha \ll 1$ about the y-axis.
a) If, in the new state, we measure $\hat{\ell}_{z}$, what is the probability of obtaining $\ell_{z}=\ell$? Find the answer up to terms of order α^{2}.

Note: Perform the calculation without using the explicit form of the $d_{\ell_{z}^{\prime}, \ell_{z}}^{(j)}$ matrix.

Problem 2

The wave-function of a particle subjected to a spherically symmetric potential $V(r)$ is given by

$$
\begin{equation*}
\psi(\vec{r})=(x+y+3 z) f(r) \tag{0.1}
\end{equation*}
$$

a) Is ψ an eigenfunction of L^{2} ? If so, what is the value of ℓ ?. If not, what are the possible values of ℓ we may obtain when L^{2} is measured?
b) What are the probabilities for the particle to be found in various $\hat{\ell}_{z}$ eigenstates?
c) Suppose it is known that $\psi(\vec{r})$ is an energy eigenfunction with eigenvalue E. Indicate how to find $V(r)$.

Problem 3

Consider an orbital angular-momentum eigenstate $\left|\ell=2, \ell_{z}=0\right\rangle$. Suppose that this state is rotated by an angle β about the y-axis.
a) If we measure $\hat{\ell}_{z}$, what are the possible values we can obtain and what is the probability of measuring each of them?.

Problem 4

Given two particles in angular momentum eigenstates $\ell_{1}=1$ and $\ell_{2}=1$, the total possible angular momentum is $\ell_{T}=0,1,2$.
a) Without using the table, write all eigenstates of total angular momentum $\left|\ell_{1}, \ell_{2} ; \ell_{T}, \ell_{z}\right\rangle$ as linear combination of the states of the basis $\left|\ell_{1}, \ell_{2} ; \ell_{1 z} \ell_{2 z}\right\rangle$.

