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1. Lecture 1

1.1 Approximate methods

In quantum mechanics, once the Hamiltonian that describes a physical system is known,

there are two important class of problems that need to be solved. One is to find the

energy eigenstates, another is to determine the time evolution of an initial state. In

general those problems cannot be solved exactly and approximate methods are required.

An approximation can be made once an (adimensional) small parameter λ, (0 <

λ� 1) is identified.
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From a mathematical point of view, relevant quantities are expanded in a Taylor

series:

f(λ) = f(0) + λf ′(0) + . . .+
1

n!
λnf (n)(0) + . . . (1.1)

In practical calculations we have to be able to compute f(0) plus at least the first cor-

rection exactly. A simple check that always needs to be done is that the corrections are

indeed small compared to the term being corrected. Another thing to take into account

is that, since the perturbation expansion is truncated, it is not possible to balance the

corrections and the main term, for example to find minima, etc. Summarizing, one has

to be careful not taking the results away from their region of validity.

It is interesting to note that even if we compute all orders in perturbation theory

and resume the series, that does not imply that we know the exact function f(λ) since

non-perturbative corrections are possible. Indeed, consider the function

f(λ) = e−
1
λ (1.2)

It turns out that
dnf(λ)

dλn

∣∣∣∣
λ=0

= 0, n = 0, 1, 2, . . . (1.3)

That means that the perturbation expansion of such function (around λ = 0) van-

ishes. This seems as an exceptional case but it turns out to appear a lot in practice.

Corrections of this type are often called “non-perturbative effects”.

From a physical point of view, the idea of an approximation method is to isolate

the main physics and leave smaller effects as corrections. In many cases we only need

to compute f(0) and check that the first correction is within experimental uncertainty.

Often, it is only necessary to determine the parameter λ and find that it is indeed

small. Only afterwards, when the experiment becomes more precise, further corrections

might be needed. In other cases, however, the term f(0) vanishes and the existence of

corrections, even if very small, indicate the existence of new physical phenomena. For

example, radioactive decay is a very tiny effect but can be noticed since it is the only

physical process that can change one chemical element into another.

For that reason, it is important to be able to isolate and estimate the perturba-

tive corrections before doing a concrete calculation. Consider the familiar case of the

hydrogen atom. The Hamiltonian and bound state energy levels of a particle of mass

m and charge q = −e in the Coulomb potential of a much heavier particle of charge

q = +e are

H =
p2

2m
− e2

r
(1.4)
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En = − e2

2a0n2
, a0 =

~2

me2
(1.5)

In particular the ground state energy is

Egs =
me4

2~2
= −13.6 eV ' −10 eV (1.6)

What are, and how do we estimate the corrections?. Before going into that, let us re-

mind ourselves the value of some constants and set the units we use to measure them.

Generically, we give two values, one that is good enough for our calculations and then

one used for a rough order of magnitude estimate. For precision calculations the cur-

rently recommended values can be found from NIST (http://physics.nist.gov/cuu/Constants)

The energy will be measured in eV which is the energy gained by an electron when

moving across a potential difference of 1V.

1 eV = e× 1V = 1.6× 10−19C.V = 1.6× 10−19J, (J=Joules, C=Coulomb, V=Volt)

(1.7)

The charge of the electron is q = −e where e = 1.6× 10−19C. However, since energy is

U ∼ e2/r it is more convenient to use the following units

e2 = 1.44 MeV fm (1.8)

where 1 fm = 10−15m. For Planck’s constant we use the same units to get

~c ' 197 MeV fm ≈ 200 MeV fm (1.9)

The value ~c ' 197MeV fm is good enough for our calculations, a rough order of

magnitude estimate can be done using ~c ≈ 200 MeV fm. For precise values see

http://physics.nist.gov/cuu/Constants. From here, the fine structure constant αe is:

αe =
e2

~c
' 1

137
(1.10)

The mass me of the electron has an energy equivalent of

mec
2 ' 0.511 MeV ≈ 0.5 MeV (1.11)

Electric fields are measured (from E ∼ e/r2) in units

| ~E| ∼
√

MeV fm

fm
=

√
MeV

fm3 (1.12)
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and therefore | ~E|2 is an energy density. Magnetic fields can be measured in the same

units as electric field

B ∼
√

MeV

fm3 (1.13)

in which case the Lorentz force has the form

~F = q ~E +
q

c
~v × ~B (1.14)

However in experimental physics it is more common to use Tesla (1T = V.s
m2 =

Kg
C.s) as

the unit of magnetic field, in which case the Lorentz force reads

~F = q ~E + q~v × ~B (1.15)

The energy of a magnetic dipole ~µ in a magnetic field ~B is given by

U = −~µ. ~B (1.16)

The magnetic moment of an electron is

~µ = −gsµB
~S

~
(1.17)

where ~S is the spin of the electron, gs ' 2 and µB is Bohr’s magneton. The expression

for Bohr’s magneton depends on the units we use to measure magnetic field. If we

measure the magnetic field in Tesla then

µB =
e~

2me

(1.18)

If we measure the magnetic field in the same units as electric field (q/r2) then

µB =
e~

2mec
(1.19)

1.2 Making estimates

In many cases it is enough to make a rough estimate of the size of the corrections to

know if they will invalidate the results we already have and thus decide if we need to

compute them in full or not. As an example consider the energy levels of the hydrogen

atom and identify the different physical effects that correct their energies and estimate

the values of such corrections. Let us list some of them in no particular order:
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• Relativistic corrections. We can estimate them from the ratio between the energy

involved and the mass of the electron:

E0

mc2
∼ 10 eV

0.5 MeV
= 2× 10−5 (1.20)

This is the same, in order of magnitude as (v/c)2. Notice that relativistic cor-

rections to the energy are quadratic in v/c. The correction to the energy can be

estimated to be

δE ∼ 2× 10−5E0 ∼ 2× 10−4 eV (1.21)

Notice the small parameter can be written as

E0

mc2
∼ me4

~2

1

mc2
=

(
e2

~c

)2

= α2
e (1.22)

• Spin orbit. An electron is not only a charge but also a tiny magnet. A magnet

moving inside an electric field feels an interaction as if in a magnetic field B ∼ v
c
E

(relativistic effect). Therefore

δE ∼ µB
v

c
E ∼ µB

v

c

e

a2
0

(1.23)

Since, from the previous case we found v/c ∼ αe we find

δE

Egs
∼ e2m2e4

~4

~c
mc2

αe ∼ α2
e (1.24)

namely of the same order than the relativistic correction.

• Spin-spin. The proton is also a magnetic dipole and therefore there is a dipole-

dipole interaction between electron and proton. The magnetic field of the proton

behaves as

| ~B| ∼ | ~µP |
r3

(1.25)

with

| ~µP | = gP
me

mP

µB, gP = 5.586, mP c
2 = 938 MeV (1.26)

so we estimate

δE ∼ µPµe
a3

0

∼ gP
me

mP

(
e~
mec

)2(
mee

2

~

)3

∼ me

mP

mee
8

~4c2
(1.27)

Thus,
δE

Egs
∼ gP

me

mP

α2
e (1.28)

suppressed by the factor gP
me
mP
∼ 5.6

2000
∼ 0.003 respect to the spin-orbit and

relativistic corrections.
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• Finite size of the proton. The proton can be approximated by a charged sphere

of radius rP ∼ 1 fm. The small parameter should be the ratio

rP
a0

∼ 10−5 (1.29)

In fact we can do better by computing the average energy of the electron when

it is inside the proton

δE ∼
∫ rP

0

|ψ(0)|2 e
2

r
r2dr ∼ e2 r

2
P

a3
0

=
e2

a0

r2
P

a2
0

(1.30)

We find
δE

Egs
∼ r2

P

a2
0

∼ 10−10 (1.31)

Notice that the idea is that the first correction is quadratic in the small parameter

and therefore smaller than expected.

You can consider other corrections and see how they behave. In general it is im-

portant to do this analysis to discard those corrections that are not relevant for the

experimental precision we want to achieve. Also, it does not make sense to start com-

puting a certain correction to higher orders in perturbation theory if those higher orders

are of the same order of another phenomenon that we are ignoring. This estimates are

useful as a starting point after which you can start doing actual computations. It

is important also to make a hierarchy of perturbations, namely which are the most

important etc.
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2. Lecture 2

2.1 A calculable example

In a two state system, it is possible to compute the eigenvalues exactly. In fact with

the help of a computer and a good numerical subroutine (e.g. from the linear algebra

package Lapack) one can compute eigenvalues in systems of several thousand states.

If only the ground state is required, one can look at systems of several million states.

In any case, the simple two by two system can be solved both analytically and in

perturbation theory to understand the problem one is facing. In fact this is a general

procedure, when studying a new method or technique it is always good to reproduce

some results one already knows to bridge the gap.

Consider the Hamiltonian

H =

(
a b

c d

)
(2.1)

with eigenvalues

ε± =
1

2

(
(a+ d)±

√
(a− d)2 + 4bc

)
(2.2)

In perturbation theory we have a Hamiltonian that can be diagonalized exactly plus a

correction. We simulate that by taking

H =

(
ε1 0

0 ε2

)
+ λ

(
v11 v12

v21 v22

)
(2.3)

where all quantities are real except v12 and v21 which satisfy v12 = v∗21. We also assume

that we order the eigenvalues so that ε1 > ε2. We now find, for example

ε+ =
ε1 + ε2 + λ(v11 + v22)

2
+

√(
ε1 − ε2 + λ(v11 − v22)

2

)2

+ λ2 v12v21 (2.4)

Expanding in a Taylor series we find

ε+ = ε1 + λv11 + λ2 |v12|2

ε1 − ε2
+ . . . (2.5)

The result is simple but illustrates perfectly the general result we are going to find later.

The first correction to the energy is simply the corresponding diagonal element of the

perturbation. Quite often this is the only correction needed. The second order shows

a problem. For the perturbative expansion to make sense we need λ |v12|
ε1−ε2 � 1, namely

that the correction in energy is much smaller that the energy difference |ε1 − ε2|. This

will be more evident when we compute the correction to the eigenstate. The extreme
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case is that of degenerate states ε1 = ε2, but notice that it is not necessary that they

are exactly equal to ruin the expansion, only within the “error” |v12|. In that case we

need to diagonalize the perturbation exactly but the good news is that this has to be

done only within the (approximately) degenerate subspace.

We can also compute the corresponding eigenvector.(
a− ε b

c d− ε

)(
α

β

)
=

(
0

0

)
(2.6)

or equivalently

|ψ〉 = α|1〉+ β|2〉 (2.7)

If we do not normalize the state a simple solution is

|ψ〉 = |1〉 − (a− ε)
b
|2〉 (2.8)

which has the clear meaning of the initial eigenstate plus a small correction. Replacing

the previous values we find

|ψ〉 = |1〉+ λ
v21

(ε1 − ε2)
|2〉+O(λ2) (2.9)

Now it is evident that the correction to the state will be small, namely its norm will

be small compared to one, if

λ

∣∣∣∣ v21

(ε1 − ε2)

∣∣∣∣� 1 (2.10)

and not simply λ� 1. In that sense λ is useful to organize the perturbative expansion

but more care is needed to check its validity.

2.2 Perturbation theory to a non-degenerate level

Consider a Hamiltonian H0 of which we can compute its exact eigenvalues E
(0)
n and

eigenvectors |E(0)
n 〉, that is

H0|E(0)
n 〉 = E(0)

n |E
(0)
n 〉, n = 0, 1, . . . (2.11)

We assume a discrete spectrum but similar formulas are valid if there is a continuum.

Now consider what happens if we add a small perturbation

H = H0 + λV (2.12)

Take a non-degenerate eigenstate of H0, |E(0)
n 〉 and expand the new eigenstate and

eigenvalue around it:

E = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (2.13)

|E〉 = |ψ0〉+ λ|ψ1〉+ λ2|ψ2〉+ . . . (2.14)
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We assume that the corrections to the state are orthogonal to the initial state since any

parallel correction can be absorbed by redefining the first coefficient. The eigenstate

equation now reads:

(H0+λV )(|ψ0〉+λ|ψ1〉+λ2|ψ2〉+. . .) = (E(0)
n +λE(1)

n +λ2E(2)
n +. . .)(|ψ0〉+λ|ψ1〉+λ2|ψ2〉+. . .)

(2.15)

Equating terms of the same order we find

H0|ψ0〉 = E(0)
n |ψ0〉 (2.16)

H0|ψ1〉+ V |ψ0〉 = E(0)
n |ψ1〉+ E(1)

n |ψ0〉 (2.17)

H0|ψ2〉+ V |ψ1〉 = E(0)
n |ψ2〉+ E(1)

n |ψ1〉+ E(2)
n |ψ0〉 (2.18)

The first equation simply establishes that

|ψ0〉 = |E(0)
n 〉 (2.19)

The second one can be projected over |E(0)
n 〉 giving

E(1)
n = 〈E(0)|V |E(0)

n 〉 (2.20)

Projecting over all the other states we find that the correction to the eigenstate is

|ψ1〉 = −
∑
m 6=n

|E(0)
m 〉〈E(0)

m |V |E(0)
n 〉

E
(0)
m − E(0)

n

(2.21)

As a bonus we can project the third equation onto the vector |E(0)
n 〉 obtaining

E(2)
n = 〈ψ0|V |ψ1〉 (2.22)

therefore the second order correction to the energy is given by

E(2)
n = −

∑
m6=n

|〈E(0)
m |V |E(0)

n 〉|2

E
(0)
m − E(0)

n

(2.23)

Notice that if we are correcting the ground state then E
(0)
m > E

(0)
n and therefore the

second order correction is always negative. In this case it is easy to put bounds to the

correction:

−
∑
m>0

|〈E(0)
m |V |E(0)

gs 〉|2

E
(0)
1 − E

(0)
gs

≤ E(2)
gs ≤ −

p∑
m=1

|〈E(0)
m |V |E(0)

gs 〉|2

E
(0)
m − E(0)

gs

(2.24)
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where in the second inequality the sum is only over a few states instead of all of them

(perhaps even one state can give a good bound). In the first inequality we can use the

completeness of the eigenstate basis to write∑
m>0

|〈E(0)
m |V |E(0)

gs 〉|2

E
(0)
1 − E

(0)
gs

=
1

E
(0)
1 − E

(0)
gs

(
〈E(0)

gs |V 2|E(0)
gs 〉 − 〈E(0)

gs |V |E(0)
gs 〉

2
)

(2.25)

Thus, the bounds read

−〈E
(0)
gs |(∆V )2|E(0)

gs 〉
E

(0)
1 − E

(0)
gs

≤ E(2)
gs ≤ −

p∑
m=1

|〈E(0)
m |V |E(0)

gs 〉|2

E
(0)
m − E(0)

gs

(2.26)

which can be a useful formula if we are not able to compute E
(2)
gs exactly. In the last

formula we introduced ∆V = V − 〈V 〉 = V − 〈E(0)
gs |V |E(0)

gs 〉.

2.2.1 Sum rules

The expression for the second order correction to the energy is hard to evaluate since

it involves a sum over all states

E(2)
n = −

∑
m6=n

|〈E(0)
m |V |E(0)

n 〉|2

E
(0)
m − E(0)

n

(2.27)

We just saw how we can put bounds on this contribution. There is a technique that,

when applicable, allows such sums to be evaluated exactly. It consists in finding an

operator F such that

[F,H]|E(0)
n 〉 = V |E(0)

n 〉 (2.28)

where |E(0)
n 〉 is the state that we want to correct (for example the ground state). Notice

that it is not necessary that [F,H] = V in general, they only have to give the same

result when applied to the state |E(0)
n 〉. If such operator F exists then we have

〈E(0)
m |V |E(0)

n 〉 = 〈E(0)
m |[F,H]|E(0)

n 〉 = (E(0)
n − E(0)

m )〈E(0)
m |V |E(0)

n 〉 (2.29)

and then

E(2)
n =

∑
m 6=n

〈E(0)
n |V |E(0)

m 〉〈E(0)
m |F |E(0)

n 〉 (2.30)

= 〈E(0)
n |V F |E(0)

n 〉 − 〈E(0)
n |V |E(0)

n 〉〈E(0)
n |F |E(0)

n 〉 (2.31)

which is much easier to evaluate since it does not require any sums over states. Such

results that allow the computation of sum over all states have the generic name of sum

rules and, whenever applicable, greatly simplify calculations.
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3. Lecture 3

3.1 An example: 2s-1s transition frequency

We mention that the atomic levels of the hydrogen atom are corrected. An interesting

case is the level 2s. It cannot decay to 1s by emitting one photon since that would

violate angular momentum conservation. Recall that there are no spherically symmetric

waves in electromagnetism. Therefore the decays happens by two photon emission

which is less likely. Thus, the 2s state is long lived and the 2s− 1s line is very sharp.

The frequency of such transition is measured to be

ν2s−1s =
E2s − E1s

h
= 2466061413187074(46)Hz (3.1)

Let us compute the first corrections that give rise to such a result. Before starting let

us recall the values of some constants

αe =
1

137.035999074
(3.2)

mec
2 = 0.510998910 MeV (3.3)

h = 4.135667516× 10−15 eV s (3.4)

c = 299792458
m

s
(3.5)

mP c
2 = 938.272046 MeV (3.6)

(3.7)

Consider now the successive contributions to the result:

• Coulomb potential We start with the value from the non-relativistic Schroedinger

equation:

E
(0)
2s − E

(0)
1s =

3

4
Egs =

3

4

α2

2
mec

2 (3.8)

This gives

ν
(0)
2s−1s = 2.4673813840× 1015 Hz (3.9)

already a good approximation with a discrepancy ∼ 1012 Hz with respect to the

experimental value.

• Proton recoil Since the proton has a finite mass it is also moving. From Newtonian

mechanics we know we can replace the electron mass by the reduced mass

mr =
memP

me +mP

=
me

1 + me
mP

(3.10)

– 12 –



This can be considered in perturbation theory but it can be done exactly by

replacing me → mr in the formula for the energy difference:

E
(0)
2s − E

(0)
1s =

3

4

α2

2
mrc

2 (3.11)

This gives, as the zeroth order approximation

ν
(0)
2s−1s = 2.4660383380× 1015 Hz (3.12)

with a discrepancy ∼ 2× 1010 Hz.

• Relativistic correction

The energy of a relativistic particle is given by

E =
√
m2c4 + p2c2 = mc2 +

p2

2m2
− p4

8m3c2
+ . . . (3.13)

The appropriate way to compute the relativistic corrections is to use the Dirac

equation. In that case one obtains an extra term called the Darwin term and

the spin orbit interaction. The last one can be ignored since we are dealing with

states of zero angular momentum. The perturbation reads:

V = − p4

8m3c2
+
e2π~2

2m2c2
δ(3)(~r) (3.14)

The second term is the Darwin term. We cannot derive it here but can argue

heuristically for its existence as follows. In the relativistic theory one cannot

localize the electron at distances smaller that the Compton wave-length λC ∼
h
mc

10−12m. Therefore the electron feels an effective potential

〈V (~r + δ~r)〉 = V (r) +
1

2

∂2V (~r)

∂ri∂rj
〈δriδrj〉+ . . . (3.15)

where the angled brackets represent average over rapid fluctuation of the electron

inside the Compton wave-length. Since such fluctuations should be isotropic we

find

〈δriδrj〉 ∼ λ2
Cδ

ij (3.16)

Thus the effective potential is

Veff (r) ' V (r) +
1

2
c1λ

2
C∇2V (r) (3.17)
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up to an unknown constant c1. For the Coulomb potential we have (from Maxwell’s

equations)

∇2V = −4πρ = −4πeδ(3)(~r) (3.18)

where ρ is the charge density of the proton (here considered point-like). The

constant c1 should be determined from Dirac’s equation and turns out to be as

discussed before (notice also that this potential should be multiplied by −e the

electron charge). The relativistic correction can now be easily computed as the

mean value of the perturbation in the unperturbed state:

δE = − 1

8m3c2
〈E(0)|p4|E0〉+

e2π~2

2m2c2
|ψ(0)|2 (3.19)

The relevant wave-functions are

ψ1s =
1
√
πa

3
2
0

e
− r
a0 (3.20)

ψ2s =
1√
4π

1

(2a0)
3
2

(
2− r

a0

)
e
− r

2a0 (3.21)

To compute the mean value of p4 we can notice that

〈E(0)|p4|E0〉 =‖ p2|E0〉 ‖2 (3.22)

Acting on a wave function that depends only on r (and not on φ, θ), the operator

p2 acts as

p2ψ(r) = −~2∇2ψ(r) = −~2

(
∂2
rψ +

2

r
∂rψ

)
(3.23)

For the ground state we find

−~2

(
∂2
rψ +

2

r
∂rψ

)
= −~2 1

√
πa

7
2
0

(
1− 2

a0

r

)
e
− r
a0 (3.24)

and therefore

〈E(0)
1s |p4|E0

1s〉 = ~4

∫
d3r

1

πa7
0

(
1− 2

a0

r

)2

e
− 2r
a0 (3.25)

= ~4 4

a7
0

∫ ∞
0

drr2
(

1− 2
a0

r

)2

e
− 2r
a0 = 5

~4

a4
0

(3.26)

Similarly

〈E(0)
2s |p4|E(0)

2s 〉 =
13

16

~4

a4
0

(3.27)
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Together with the Darwin term we find

〈E(0)
1s |V |E

(0)
1s 〉 = − 5

8m3c2

~4

a4
0

+
e2π~2

2m2c2

1

πa3
0

= −mc
2α2

2

α2

4
(3.28)

〈E(0)
2s |V |E

(0)
2s 〉 = − 13

128m3c2

~4

a4
0

+
e2π~2

2m2c2

1

4π

4

(2a0)3
= −mc

2α2

2

5α2

64
(3.29)

The difference contributes

δE2s − δE1s =
mc2α2

2
α2

(
− 5

64
+

1

4

)
=
mc2α2

2

11

64
α2 (3.30)

Therefore, up to now we have

ν2s−1s =
1

h

(
3

4

α2

2
mrc

2 +
mc2α2

2

11

64
α2

)
= 2.4660684490× 1015 Hz (3.31)

with a discrepancy ∼ 7× 109 Hz.

• Lamb shift There is a correction that comes from quantizing the electromagnetic

field, known as the Lamb shift. We are not going to compute it here but, for s

states, it turns out to be:

δEns =
4

3

α5

πn3
mc2

(
ln
n2

α2
+

19

30

)
(3.32)

This contributes

δE2s − δE1s

h
= −9.7569180990× 109 Hz (3.33)

Adding it to the previous result the discrepancy is reduced to ∼ 3× 109 Hz. It is

clear that the improvements are more and more difficult to compute so we finish

here. On the other hand there is an interesting contribution to compute coming

from the finite size of the proton. We compute that now.

3.2 Proton finite size contribution to the hydrogen energy levels

We compute this contribution separately since it should only be considered after more

important contribution are included. Nevertheless it contributes to the experimental

value and has been a recent source of interest since some discrepancies were found in a

similar calculation for muonic hydrogen.

Imagine the proton is a sphere of radius R with uniform charge density

ρ =
e

V
, V =

4

3
πR3 (3.34)
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It is usual to define the so called charge proton radius through the equation

r2
P = 〈r2〉 =

∫
r2ρ(r) d3r∫
ρ(r) d3r

=
3

5
R2 (3.35)

Using Gauss law we find the electric field to be

~E =


e
r2 r̂ r > R

e r
R3 r̂ r < R

(3.36)

and from here the potential is

φ =

{
e
r

r > R
e

2R

(
3− r2

R2

)
r < R

(3.37)

where we chose the constants so that φ→ 0 for r →∞ and so that φ(r) is continuous

at r = R. The potential energy is V (r) = −eφ(r) and therefore

V (r) =

{
− e2

r
r > R

− e2

2R

(
3− r2

R2

)
r < R

(3.38)

For r > R the potential is evidently the same as for a point-like proton. We can identify

the perturbation

H = H0 + V =
p2

2m
− e2

r
+ V(r) (3.39)

with

V(r) =

{
0 r > R
e2

r
− e2

2R

(
3− r2

R2

)
r < R

(3.40)

The correction to the energy of the ground state is simply the mean value of the

perturbation

〈1s|V|1s〉 =
4π

πa3
0

∫ R

0

r2 dr

(
e2

r
− e2

2R

(
3− r2

R2

))
e
− 2r
a0 (3.41)

' 4π

πa3
0

∫ R

0

r2 dr

(
e2

r
− e2

2R

(
3− r2

R2

))
(3.42)

=
4e2

10a3
0

R2 (3.43)

It is legitimate to ignore the exponential factor since it introduces powers of R
a0

which

is the small parameter. The correction to the ground state energy is therefore

〈1s|V|1s〉 =
2e2

5a3
0

R2 =
4

5
|Egs|

(
R

a0

)2

=
4

3
|Egs|

(
rP
a0

)2

(3.44)
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Since rP ∼ 1fm = 10−15m and a0 ∼ 10−10m the correction is 〈1s|V|1s〉 ∼ 10−10|Egs|
and too small to enter in our calculation of the 2s−1s transition. However, a more pre-

cise computation of the electromagnetic and relativistic effects is enough to determine

the charge proton radius from the 2s− 1s frequency and compare it with results from

scattering for example. Nevertheless, since the proton radius is not known as precisely,

this effect puts a limit on the theoretical computations. As mentioned at the beginning

the same calculation can be done for muonic hydrogen and compared to experiment..

3.3 Variational method

Perturbation theory is not always an option since it requires the system to be well

approximated by a system that can be solved exactly. If you only want to compute the

ground state another method you can use is the so called variational approach. It is

based on the simple premise that the ground state is the state with minimal energy,

namely

Egs = min|ψ〉
〈ψ|H|ψ〉
〈ψ|ψ〉

(3.45)

where the minimum is attained when |ψ〉 = |ψgs〉. What one does is to propose a

ground state depending on certain parameters and then minimizing the expectation

value of the Hamiltonian with respect to those parameters. It is an approximation

because we are minimizing in a subset of all states so we don’t expect to find the real

minimum. How close we get depends on how well we can guess the wave-function of

the ground state.

3.4 Example: Yukawa potential

Consider a particle in a Yukawa potential with Hamiltonian given by:

H =
p2

2m
− Ze2

r
e−

r
R (3.46)

Such potential arise in nuclear physics from the interchange of pions. In the present case

it is thought as a model for a screened Coulomb interaction in an atom with multiple

electrons. In that case Z is the number of protons and R is the atomic radius. The

effective charge that the particle sees is Ze for r � R and 0 for r � R. Our analysis

is independent of this physical interpretation and just aims at finding the ground state

of such potential.

We expect the ground state to be spherically symmetric ψ = ψ(r). The corre-

sponding Schroedinger equation reads

− ~2

2m

(
∂2
rψ +

2

r
∂rψ

)
− Ze2

r
e−

r
Rψ = Eψ(r) (3.47)
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As always it is convenient to define adimensional quantities so we introduce the vari-

ables:

u =
r

R
, ε = E

mR2

~2
, β0 =

Zme2R

~2
(3.48)

The equation reduces to

−1

2

(
∂2
uψ +

2

u
∂uψ

)
− β0

e−u

u
ψ = εψ (3.49)

This equation cannot be solved exactly. For each β0 we can find a spectrum of values εn
such that the wave function goes to zero at infinity and is well behaved at u = 0. Later

we are going to show how to find a numerical solution to such problem by integrating

the differential equation. Presently, we are going to look for an approximate ground

state using the variational method. Although approximate, the result is analytic and

can be used to understand the behavior of the solutions as the parameter β0 changes.

The same analysis done numerically would be more involved since we need to solve for

several values of β0 and interpolate.

As a guess, for the ground state we consider the usual 1s wave function of the

hydrogen atom:

ψ(r) =
1√
π

1

ρ
3
2

e−
r
ρ (3.50)

where ρ is a variational parameter. Here we should note that the more variables we

incorporate into the wave-function the more likely we are to approximate the ground

state. On the other hand, if the wave-function is so complicated that we cannot do the

computation of 〈ψ|H|ψ〉 analytically, we would need to resort to a numerical analysis

defeating the simplicity of the method. For that reason we chose a simple function with

only one variational parameter.

It is straight-forward to compute

〈ψ| p
2

2m
|ψ〉 = − 2~2

mρ3

∫ ∞
0

r2 dre−
r
ρ

(
∂2
r +

2

r
∂r

)
e−

r
ρ =

~2

2mρ2
(3.51)

and

〈ψ| − Ze2

r
e−

r
R |ψ〉 = −4Ze2

ρ3

∫ ∞
0

rdre−( 2
ρ

+ 1
R)r = −Ze

2

ρ

4(
2 + ρ

R

)2 (3.52)

All together

〈ψ|H|ψ〉 =
~2

2mρ2
− 4Ze2

ρ

1(
2 + ρ

R

)2 (3.53)

Notice that we took the state |ψ〉 to be normalized, 〈ψ|ψ〉 = 1 and therefore we do not

need to divide by the norm. Again, we introduce adimensional quantities:

β =
ρ

R
(3.54)
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and find

〈ψ|H|ψ〉 =
~2

mR2

(
1

2β2
− 4β0

β

1

(β + 2)2

)
(3.55)

Taking derivatives and doing some simple algebra we find that

∂

∂β
〈ψ|H|ψ〉 = 0 ⇐⇒ (β + 2)3 = 8ββ0

(
1 +

3

2
β

)
(3.56)

The last equation is a cubic equation that can be solved in terms of cubic and square

roots. Replacing in the expression for the energy we find the ground state energy. More

illuminating is to take some limits. Here we consider the case

β0 →∞ (3.57)

In that case there is a solution such that β → 0. There are two other possible solutions

of the cubic equation (β ' −2
3
, β ' 12β0) but they do not lead to bound states since

the corresponding energy is positive. In that limit, that in fact correponds to the

Coulomb potential, we find simply from the equation for β andusing the value of β0

from eq.(3.48)

β ' 1

β0

(3.58)

and
Egs

~2/(mR2)
= εgs ' −

β2
0

2
⇒ Egs = −Z

2me4

2~2
(3.59)

namely the exact result for the Coulomb potential but only because we used the Hydro-

gen atom ground state wave function as a variational guess. It is interesting to solve the

Schroedinger equation exactly for some values of β0 and compare with the variational

approach. For example for β0 = 10 we find that the variational result, after solving the

cubic equation is εgs = −40.705144 whereas the numerical value is εgs = −40.705803.

This exact value we can found using numerical integration of the differential equation.

In the next subsection we present a simple Maple program that gives the result. The

same solutions can be found with Mathematica, Matlab, etc.

3.5 Yukawa potential: Numerical integration

We transcribe now a maple program that solves the problem numerically. Notice:

If you input this program take into account that latex broke some input lines into

multiple lines. They should be entered as a single line. Otherwise download the

program from the course website.

> ## Consider the Yukawa potential and try to find the ground state.
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> ## As we saw, the minimal energy is

> Emin:=(beta0,beta)->(1/2/beta^2-4*beta0/beta/(beta+2)^2);

Emin := (β0, β)→ 1

2

1

β2
− 4 β0

β (β + 2)2

> # where beta is determined from minimizing Emin which gives

> betaeq:=beta->(beta+2)^3-8*beta*beta0*(1+3/2*beta);

betaeq := β → (β + 2)3 − 8 β β0 (1 +
3

2
β)

> # for example consider beta0=10

S1 := 8 + β3 + (6− 12 β0) β2 + (−8 β0 + 12) β

> res:=[evalf(solve(subs(beta0=10,betaeq(beta)),beta))];

res := [114.5927963− 0.2 10−9 I, −0.6934677818− 0.3464101616 10−7 I, 0.1006714618 + 0.3464101616 10−7 I]
> [Emin(10,res[1]),Emin(10,res[2]),Emin(10,res[3])];

[0.00001239847096 + 0.1 10−24 I, 34.83013199 + 0.66 10−14 I, −40.70514436− 0.56 10−12 I]
> # the third one is negative indicating a bound state with
> E=-40.70514436 (at least from variational method)
> # Let’s compare with numerical solution of the Schroedinger
> equation

> Eq1:=(beta0,E)->-1/2*(diff(psi(u),u$2)+2/u*diff(psi(u),u))
> -beta0*exp(-u)/u*psi(u)-E*psi(u);

Eq1 := (β0, E)→ −1

2
( d2

du2 ψ(u))−
d
du
ψ(u)

u
− β0 e(−u) ψ(u)

u
− E ψ(u)

> dsolve({Eq1(10,-0.1),psi(0)=1,D(psi)(0)=0},numeric,output=listprocedure);

Error, (in dsolve/numeric/checking) ode system has a removable
singularity at u=0. Initial data is restricted to {psi(u) =

-.10000000000000*diff(psi(u),u)}

> # OK, we need to redefine the differential equation

> exp(beta0*u)*subs(psi(u)=exp(-beta0*u)*chi(u),Eq1(beta0,E));

e(β0u)

(
−1

2
( ∂2

∂u2 (e(−β0u) χ(u)))−
∂
∂u

(e(−β0u) χ(u))

u
− β0 e(−u) e(−β0u) χ(u)

u
− E e(−β0u) χ(u)

)
> expand(%);

−1

2
β02 χ(u) + β0 ( d

du
χ(u))− 1

2
( d2

du2 χ(u)) +
β0χ(u)

u
−

d
du
χ(u)

u
− β0χ(u)

eu u
− E χ(u)

> Eq2:=(beta0,E)->-1/2*beta0^2*chi(u)+beta0*diff(chi(u),u)
> -1/2*diff(chi(u),‘$‘(u,2))+1/u*beta0*chi(u)-1/u*diff(chi(u),u)
> -beta0/exp(u)/u*chi(u)-E*chi(u);
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Eq2 := (β0, E)→

−1

2
β02 χ(u) + β0 ( d

du
χ(u))− 1

2
( d2

du2 χ(u)) +
β0χ(u)

u
−

d
du
χ(u)

u
− β0χ(u)

eu u
− E χ(u)

> # OK now it’s working

> sol1:=dsolve({Eq2(10,-40.705803),chi(0)=1,D(chi)(0)=0},numeric,
> output=listprocedure):

> chi1s:=subs(sol1,chi(u));

chi1s := proc(u) . . . end proc
> # Here we need to explore the values of E and see where the sign of
> the aymptotic function changes.

> # We look for a function with no zeros (nodes) since we want the
> ground state.

> plot([exp(-10*u)*chi1s(u)],u=0..3);

–3

–2

–1

0

1

0.5 1 1.5 2 2.5 3
u

> #If the value of E is changed in the last decimal place the function
goes to plus infinity.

> #We find E=-40.705803 showing that the variational procedure
> gave a quite accurate result.

> #To see why let’s plot the wave functions

> plot([exp(-u/.1006714618),exp(-10*u)*chi1s(u)],u=0..1
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
u

> # They cannot be distinguished within the precision of the plot.
> It was a good guess.

3.6 WKB approximation

The variational method is adequate to find the ground state. For highly excited states

there is another method known as WKB. It applies to the case where the eigenstates

are determined from a one dimensional Schroedinger equation:

− ~2

2m
∂2
xψ(x) + V (x)ψ(x) = Eψ(x) (3.60)

The idea is to approximate the wave function ψ(x) in the region where |E − V (x)| is

very large. Naturally we need to say very large compared to what. The main point is

that when (E − V (x)) is large and positive the wave-function oscillates rapidly with

a wave-length λ of order λ2 ∼ ~2

2m
1

|E−V (x)| . The WKB approximation is valid if, in a

region of size λ the potential can be considered approximately constant. To be more

precise consider rewriting the wave-function in terms of a function S(x) as

ψ(x) = eS(x) (3.61)
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The Schroedinger equation becomes

− ~2

2m

[
∂2
xS + (∂xS)2

]
= E − V (x) (3.62)

The approximation is

(∂xS)2 � ∂2
xS (3.63)

which reduces the equation to

(∂xS)2 ' −2m

~2
(E − V (x)) = −k(x)2 ⇒ S(x) ' i

∫ x

k(x′)dx′ (3.64)

where we defined

k(x) =

√
2m

~2
(E − V (x)) (3.65)

Equivalently the approximation is valid when

k(x)2 � |∂xk(x)|, ⇒ |∂xλ(x)| � 1 with λ(x) =
2π

k(x)
(3.66)

Physically this means that the wave-function can be thought of as a sinusoidal wave

with slowly changing wave-length λ(x). To perform a systematic expansion we write

S(x) = S0(x) + S1(x) + . . . (3.67)

with

S0(x) =

∫ x

k(x′)dx′ (3.68)

The next order is determined by replacing eq.(3.67) in (3.62):

(∂xS0 + ∂xS1)2 + ∂2
xS0 + ∂2

xS1 = −k(x)2 (3.69)

(∂xS0)2 + 2∂xS0∂xS1 + (∂xS1)2 + ∂2
xS0 + ∂2

xS1 = −k(x)2 (3.70)

Since (∂xS0)2 = −k(x)2 and we assume S1 to be small we obtain

2∂xS0∂xS1 = −∂2
xS0 ⇒ S1 = −1

2
ln ∂xS0 = −1

2
ln k(x) (3.71)

Putting everything together we find that the wave-function, at this order can be written

as

ψ =
A√
k(x)

ei
∫ x k(x′) dx′ +

B√
k(x)

e−i
∫ x k(x′) dx′ (3.72)
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In the regions where V (x) � E is is convenient to write this functions as a sum of

increasing and decreasing exponentials

ψ =
A√
κ(x)

e+
∫ x κ(x′) dx′ +

B√
κ(x)

e−
∫ x κ(x′) dx′ (3.73)

where

κ(x) =

√
2m

~2
(V (x)− E) (3.74)

Now we go back to the initial assumption

(∂xS)2 � ∂2
xS (3.75)

Suing S ' S0 we get

|∂xk(x)| � k(x)2, or |∂xλ(x)| � 1 (3.76)

where we defined the position dependent wave-length as λ(x) = 2π
k(x)

. Physically this

means that the wave-length changes slowly with the position and the wave function

can be described as a sinusoidal wave whose wave-length and amplitude change little

across a distance of a wave-length. A strong point of this approximation is that it can

be systematically pursued to higher orders. This is particularly useful when using the

WKB method to study properties of differential equations near singular points. In the

context of quantum mechanics this is not used very often so we stop here and look for

some applications. The main two are the computation of approximate bound states

and the computation of tunneling probability through a barrier.

3.7 WKB approximation for a bound state

Consider a situation a such as in figure 1 where we expect a bound state for some energy

E. Such energy is determined by requiring the wave-function to decay exponentially

at x → ±∞. This can only happen for very precise values of E, namely the energy

eigenvalues. In general one can choose a wave function that decays, say at x → −∞
but then it will diverge at x→ +∞. The WKB cannot be used directly since it is not

applicable around the points x1,2 where V (x1,2) = E. For that reason we divide the

x-axis in three regions and write the wave-function as

ψI =
A√
κ(x)

e+
∫ x κ(x′) dx′ (3.77)

ψII =
B√
k(x)

ei
∫ x k(x′) dx′ +

C√
k(x)

e−i
∫ x k(x′) dx′ (3.78)

ψIII =
D√
κ(x)

e−
∫ x κ(x′) dx′ +

F√
κ(x)

e+
∫ x κ(x′) dx′ (3.79)
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We would like to find the value of the energy E such that the coefficient F vanishes,

F = 0. Although the WKB method gives us approximate expressions for the wave-

function in the different regions, it is not enough since we need to match the functions

to obtain the coefficients. Namely, given the coefficient A we should be able to find

B, C, D and F . Or, if we require F = 0 then we should be able to find the energy E

for which that happens. For that purpose we introduce two more regions, around the

points x1,2, namely the regions excluded from the WKB approximation and expand the

potential as

V (x) ' V (x1) +V ′(x1)(x− x1) + . . . = E + V ′(x1)(x− x1) + ldots (3.80)

V (x) ' V (x2) +V ′(x2)(x− x2) + . . . = E + V ′(x2)(x− x2) + . . . (3.81)

where we used V (x1) = V (x2) = E. Also, V ′(x1) < 0 and V ′(x2) > 0. In the region

near x1 the Schroedinger equation reads

− ~2

2m
∂2
xψ + (E + V ′(x1)(x− x1))ψ = Eψ (3.82)

Introducing the new variable

u =
x− x1

a
, a3 =

~2

2m|V ′(x1)|
(3.83)

the equation reads

∂2
uψ + uψ = 0 (3.84)

This is known as the Airy equation. The solution that vanishes at u→ −∞ is

ψ(u) = −Ai(−u) (3.85)

where Ai is the Airy function, a special function with the property

Ai(−u) =


1

2
√
π|u|

1
4
e−

2
3
|u|3 u→ −∞

1
√
π|u|

1
4

cos
(

2
3
|u| 32 − π

4

)
u→ +∞

(3.86)

On the other hand, the WKB approximation, near x1 has a phase given by∫ x

x1

√
2m

~2
(E − V (x))dx '

√
2m|V ′(x1)|

~2

∫ x

x1

√
x− x1 dx (3.87)

=
2

3

√
2m|V ′(x1)|

~2
(x− x1)

3
2 =

2

3
|u|

3
2 (3.88)
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Therefore, the right linear combination of WKB waves that match a decreasing function

on the region I is

ψII = cos

(
1

~

∫ x

x1

p(x)dx− π

4

)
(3.89)

with

p(x) =
√

2m(E − V (x)) (3.90)

If we consider this function near x = x2 we find

ψII = cos

(
1

~

∫ x2

x1

p(x)dx+
1

~

∫ x

x2

p(x)dx− π

4

)
(3.91)

On the other hand, repeating the same argument as before, one can see that the function

that matches a decreasing function on the region III is given by

ψII = cos(
1

~

∫ x

x2

p(x)dx+
π

4
) (3.92)

The only way that both expressions are compatible is if∫ x2

x1

p(x)dx =

(
n+

1

2

)
~π (3.93)

which is the Bohr-Sommerfeld quantization condition and should be thought as an

equation for E appearing inside p(x). Different values of the integer n correspond to

different energy eigenstates.

3.8 WKB approximation: tunneling through a barrier.

Another case where the WKB approximation is very useful is in the computation of

the tunneling probability through a barrier. An important example that we are going

to use to illustrate this idea is Gamow’s theory of α decay. When proposed it played

an important role in establishing the validity of quantum mechanics in the realm of

nuclear physics. An α particle is a very stable configuration of two protons and two

neutrons (nucleus of 4
2He). Certain heavy nuclei can be described as a bound state of

a lighter nucleus and an α particle in a quasi-bound state, namely in an unstable but

long-lived state. A simple potential that describes this system is a sum of an attractive

potential due to the strong interactions and the Coulomb repulsion:

V (r) =

{
−V0 if 0 < r < r1
2(Z−2)e2

r
if r > r1

(3.94)

where r1 is the range of the attractive potential. This is illustrated in figure 2 where we

plotted the radial potential assuming the angular momentum is ` = 0 (no centrifugal
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Figure 1: Bound state computation using WKB approximation

barrier). If this potential has a bound state (E¡0) then the nucleus is stable, however,

we assume here that no such stable state exists. Instead, there is a metastable state

for an energy E > 0. In the figure we plot (in blue) an eigenstate localized inside the

nucleus. Inside the barrier the wave-functions is a sum of an increasing and decreasing

exponentials whose coefficients follow form matching with the wave-function inside. If

the energy is such that we only have a decreasing exponential, as in the figure, outside

the barrier, the eigenstate will be a wave with exponentially small amplitude. By doing

a linear combination of states with similar energy, we can localize the particle inside

the nucleus and eliminate the waves outside. Such state will not be an eigenstate of the
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Hamiltonian, it will be time dependent and, after some time, the alpha particle will be

emitted with energy E. We can estimate the time it takes for the particle to leave by

computing the probability current

j =
~k

2Mα

|B|2 (3.95)

where, far from the nucleus we considered the particle to be free with momentum ~k
and |B| is the coefficient of the wave function that we estimate as

|B|2 ∼ 1

r1

e−2γ| (3.96)

where ∼ 1
r1

is the coefficient inside the nucleus (by normalization) and e−2γ is the

exponential suppression inside the barrier. The total probability of being inside the

nucleus will decrease as
∂P

∂t
=

∂

∂t

∫ r1

0

|χ(r)|2 = −j (3.97)

for the probability to go from P = 1 to P ' 0 it will take a time

τ ∼ 1

j
=

2Mα

~k
e2γ (3.98)

which is then our estimate for the mean-life of the nucleus. The main factor is e−2γ,

i.e. the tunneling probability that can be estimated using WKB. The potential barrier

extends to a distance r2 such that

E =
2(Z − 2)e2

r2

(3.99)

In the region r1 < r < r2 the WKB approximation gives the wave-function as the

sum of an increasing and decreasing exponential. The ratio of the wave-function am-

plitudes outside and inside the barrier is smallest when only the decaying exponential

contributes, we expect that the state will then be the most stable. Assuming that this

is the case, the quantity γ can be computed as

γ =

∫ r2

r1

√
2Mα

~2

(
2(Z − 2)e2

r
− E

)
=

∫ r2

r1

√
4Mα(Z − 2)e2

~2

(
1

r
− 1

r2

)
(3.100)

= 2(Z − 2)αe

√
2Mαc2

E
(φ1 − sinφ1 cosφ1) ' π(Z − 2)αe

√
2Mαc2

E
(3.101)

where

φ1 = arccos

√
r1

r2

(3.102)
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Figure 2: Simple model of alpha decay.

The inverse of the decay probability per unit time is the mean life τ 1
2

= 1
w

. This model

is too crude to give a reliable estimate of the mean life, however it predicts correctly

the dependence of the mean life with the energy of the alpha particle emitted:

ln
τ 1

2

1 yr
' 2π(Z − 2)αe

√
2Mαc2

E
(3.103)

Using as example Uranium or Thorium, it is simple to check this dependence and obtain

a good estimate of the slope of the line τ 1
2

vs. 1/
√
E. In fact such law was discovered

experimentally before it was explained by Gamow as a nice application of quantum

mechanics to nuclear physics.
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4. Symmetries

A symmetry is a transformation of a system that does not change the results of an

experiment. For example the same experiment gives the same result independently of

the position, this is translational symmetry. The same with the orientation, namely

rotational symmetry. Such symmetries are basic laws of Nature. They can be broken

only by external fields, e.g. gravity, electric and magnetic fields, etc. Of course, if an

atom is in an electric field and we rotate the atom and the electric field then the results

are invariant, the rotational symmetry that is broken is the one that rotates only the

atom.

In quantum mechanics, the precise statement is that symmetries are generated by

operators O that commute with the Hamiltonian:

[H,O] = 0 (4.1)

where O generates the infinitesimal transformation

|ψ〉 → |ψ〉 − iεO|ψ〉 ' e−iεO|ψ〉 (4.2)

This immediately implies that, for any state |ψ〉

d

dt
〈ψ|O|ψ〉 = 0 (4.3)

Moreover, the probabilities of measuring the different eigenvalues of O are independent

of time, that is O is conserved. As in classical mechanics, symmetries are associated

with conserved quantities. The most obvious is time translations generated by the

Hamiltonian itself which is obviously conserved since [H,H] = 0.

It can also imply the existence of degeneracies in the spectrum. Suppose we have

an energy eigenstate

H|En〉 = En|En〉 (4.4)

If we apply O and use that HO = OH we get

HO|En〉 = OH|En〉 = EnO|En〉 (4.5)

namely the state O|En〉 , if it does not vanish, is an eigenstate of H with the same

eigenvalue En. Therefore, if O|En〉 6= 0 and it is not equal (or proportional) to |En〉
then there are at least two states with the same energy and the spectrum is degenerate

for that energy. If it is not degenerate we gain the valuable information that |En〉
is invariant under transformations generated by O. Although it can happen that O
commutes with the Hamiltonian but only generates trivial transformations, in general,

such an operator O provides a way to classify the spectrum and find degeneracies.
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4.1 Rotations

Rotations are generated by the angular momentum operator and is the most common

symmetry used in quantum mechanics. The generators are

Jx, Jy, Jz (4.6)

with commutation relations

[Jx, Jy] = i~Jz (4.7)

[Jz, Jy] = −i~Jx (4.8)

[Jz, Jx] = i~Jy (4.9)

or, equivalently,

J± = Jx ± iJy, Jz (4.10)

with commutation rules

[Jz, J±] = ± ~ J± (4.11)

[J+, J−] = 2~Jz (4.12)

In a basis of eigenstates of Jz they act as

Jz|jm〉 = ~m|j m〉 (4.13)

J+|jm〉 = ~
√
j(j + 1)−m(m+ 1)|j m+ 1〉 (4.14)

J−|jm〉 = ~
√
j(j + 1)−m(m− 1)|j m− 1〉 (4.15)

If J+ commutes with H then, the second equation shows that all the states |jm〉 in the

same multiplet have the same energy. Of course there can be several multiplets with

the same j but each with different energy.

4.2 Parity

Parity is the symmetry ~r → −~r. This symmetry can be thought of as if you were

looking at an experiment through a mirror. A mirror actually reflects only one axis.

However, reflecting two axis is equivalent to a rotation of angle π. Therefore inverting

one axis or three is equivalent up to a rotation.

Denoting the parity operator as Π we define

Π|~r〉 = | − ~r〉 (4.16)

– 31 –



Having determined the action of parity on a basis we can determine its action on any

state. For example

Π|~p〉 = Π

∫
d3~r|~r〉〈~r|~p〉 =

∫
d3~r| − ~r〉〈~r|~p〉 =

∫
d3~r′|~r′〉〈−~r′|~p〉 (4.17)

=

∫
d3~r′|~r′〉〈~r′| − ~p〉 = | − ~p〉 (4.18)

where we used

〈−~r|~p〉 = e−
i
~ ~p~r = 〈~r| − ~p〉 (4.19)

We can then compute, for example, for the x component

Πx̂|x〉 = Πx|x〉 = xΠ|x〉 = x| − x〉 (4.20)

x̂Π|x〉 = x̂| − x〉 = −x| − x〉 (4.21)

Since this is true for all vectors in the basis {|x〉} we find

Πx̂ = −x̂Π (4.22)

We say that the operator x̂ has negative parity. The same happens with p̂. For the

angular momentum we find instead

ΠL̂z = Π(x̂p̂y − ŷp̂x) = −x̂Πp̂y + ŷΠp̂x (4.23)

= (x̂p̂y − ŷp̂p) Π = ΠL̂z (4.24)

Simply put, interchanging Π with x or p gives a minus sign. Since L = ~r × ~p there is

no minus sign in interchanging Π with L. We say that L has positive parity and is a

pseudo-vector. It rotates as a vector but is parity even.

Since L commutes with Π all states in the same L multiplet have the same parity.

To find the parity we need to resort to the properties of spherical harmonics

〈x|Π|lm〉 = 〈−x|lm〉 = Ylm(π − θ, φ+ π) (4.25)

For the case m = 0 we have

Yl0(π − θ) = Pl(− cos θ) = (−)lPl(cos θ) (4.26)

Since all states in the multiplet have the same parity we conclude

Π|lm〉 = (−)l|lm〉 (4.27)
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4.3 Selection rules

Selection rules are rules that allows to determine that certain matrix elements are zero

without having to do any actual computations. It is an extremely important tool, not

only computationally, but also as a way to understand the physical properties of the

system,

In the case of parity, consider states with definite parity and an operator V also

with definite parity.

Π|α〉 = εα|α〉 (4.28)

Π|β〉 = εβ|β〉 (4.29)

ΠV = εV VΠ (4.30)

where all ε factors are either 1 or −1. The matrix element 〈α|V |β〉 satisfies

〈α|V |β〉 = 〈α|ΠΠVΠΠ|β〉 = εαεβ〈α|ΠVΠ|β〉 = εαεβεV 〈α|VΠΠ|β〉 = εαεβεV 〈α|V |β〉
(4.31)

If εαεβεV = 1 we don’t learn anything new. If εαεβεV = −1 the matrix element is equal

to minus itself, that is, it vanishes.

εαεβεV = −1 ⇒ 〈α|V |β〉 = 0 (4.32)

Part of the power of the selection rule is its extreme simplicity. If the total parity is

negative then the matrix element vanishes.

For example, consider the problem of computing the electric dipole moment of the

neutron. The neutron is in a non degenerate ground state |α〉 (except that the spin

can be up or down) and we have

~dn = 〈α, ↑ |~d |α, ↑〉 (4.33)

where we assumed that the spin was up, for example. Under parity, the orientation

of the spin does not change and the energy is invariant. That means that the state is

invariant under parity

Π|α, ↑〉 = εα|α, ↑〉 ⇒ 〈α, ↑ |Π = ε∗α〈α, ↑ | (4.34)

for some phase εα, |εα| = 1. Thus, using parity we find

〈α|~d|α〉 = 〈α|Π Π ~dΠ Π|α〉 = −ε∗αεα 〈α|~d|α〉 ⇒ 〈α|~d|α〉 = 0 (4.35)

where we used Π~dΠ = −~d. Any observation of a neutron dipole moment would imply

a violation of parity. On the other hand the magnetic moment ~µ obeys Π~µΠ = ~µ and

therefore a neutron magnetic moment is possible and in fact it is not zero.
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Figure 3: Main decay of Cobalt 60 which can be used to test violation of parity by the weak

interactions.

4.4 Non-conservation of parity for weak interactions

Neutrons are unstable particles and decay into proton electron an anti-neutrino:

n0 → p+ + e− + ν̄e (4.36)

This decay is produced by the weak interaction and violates parity. The first test was

done in the decay of Cobalt 60
28Co into Nickel: It turns out that when the nuclei are

polarized, the electrons come out in direction opposite to the spin. If you consider a

mirror on the xy plane, the reflected image shows the spin still in the same direction

but the electron coming out parallel to the spin. An observer looking at the mirror

experiment will realize that it is not possible, that is, one can distinguish between an

experiment and its mirror image. One way to understand it is that the anti-neutrinos

have only one possible helicity. In that case their mirror image does not exist breaking

parity. However, if a particle is massive it has to have both helicities. Indeed, if its spin

is aligned in the direction of the momentum, by moving faster than the particle, we

will see the particle moving backwards but the spin still aligned in the same direction

that is now opposite to the velocity. the only exception is if the particle is massless,

then it moves at the speed of light and it may have only one helicity. Initially this was

supposed to be the cse for the neutrino. Recent experiments indicate that neutrinos

are massive and therefore there has to be another neutrino with the opposite helicity.

One possibility is that it has not been detected and does not appear in the weak decays

we described. This difference in coupling will break parity again. Another interesting

possibility is that the anti-neutrino is the neutrino with opposite helicity, namely the

neutrino is its own antiparticle. This is described as saying that the neutirno is a
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Figure 4: Schematics of Cobalt 60 experiment. The electrons are emitted mainly in a

direction opposite to the nuclear spin. If seen though a mirror in the indicated plane, the

spin would be the same but the electrons would be coming up. Such physical situation does

not exist in violation of the parity symmetry.

Majorana particle. At the moment there is no experimental evidence of any of these

two hypothesis. What is clear is that the radioactive decay we described emits electrons

preferably in one direction and therefore breaks parity.

4.5 Selection rules for angular momentum

To apply the selection rules for rotations we need to assign angular momentum to

operators. What one does is to group operators in multiplets of given total angular

momentum. Consider for example a multiplet of angular momentum l = 2, that is a

set of 5 states {|2m〉,m = −2,−1, 0, 1, 2}. If we apply the momentum operators px, py,

pz we get 15 states:

pa|2m〉, a = x, y, z m = −2, . . . , 2 (4.37)

The question we ask is what angular momentum those 15 states have. The answer is

based on the commutators

[Ja, pb] = i~εabcpc (4.38)

which can be easily derived from the definition

Ja = εabcxbpc (4.39)

We assume that all the angular momentum is orbital since the spin commutes with pa
anyway.
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Now we consider the Jz component of the states in eq.(4.37). For example

Jz(pz|2m〉) = [Jz, pz]|2m〉+ pzJz|2m〉 = ~mpz|2m〉 (4.40)

Jz(px|2m〉) = [Jz, px]|2m〉+ pxJz|2m〉 = i~py|2m〉+ ~mpx|2m〉 (4.41)

Jz(py|2m〉) = [Jz, py]|2m〉+ pyJz|2m〉 = −i~px|2m〉+ ~mpy|2m〉 (4.42)

Clearly, the state pz|2m〉 has Jz = ~m but the other two are not eigenstates of Jz. We

can fix that by taking linear combinations:

Jz(px + ipy)|2m〉 = ~(m+ 1)(px + ipy)|2m〉 (4.43)

Jz(px − ipy)|2m〉 = ~(m− 1)(px + ipy)|2m〉 (4.44)

We then conclude that (px±ipy)|2m〉 is an eigenstate of Jz with eigenvalue Jz = ~(m±1)

Therefore, the eigenvalues of Jz for the 15 states are

Jz = 3, 2, 1, 2, 1, 0, 1, 0,−1, 0,−1,−2,−1,−2,−3 (4.45)

We identify a multiplet with J = 3 (Jz = −3,−2,−1, 0, 1, 2, 3) one with J = 2 (Jz =

−2,−1, 0, 1, 2) and one with J = 1 (Jz = −1, 0, 1). That this is indeed that case can

be verified by applying J± and checking that they act as expected on these multiplets.

In summary, we find that the 15 states have the same properties as the composition of

angular momentum J = 1 with J = 2. For that reason we say that the operators pa
carry angular momentum J = 1. The key for these result is the commutation relations

of the operators pa with Ja.

This can be easily generalized. A set of 2k + 1 operators labeled as T kq with

q = −k . . . k is in such a multiplet if it satisfies the commutation relations:

[Jz, T
k
q ] = ~qT kq (4.46)

[J+, T
k
q ] = ~

√
k(k + 1)− q(q + 1) T kq+1 (4.47)

[J−, T
k
q ] = ~

√
k(k + 1)− q(q − 1) T kq−1 (4.48)

If a multiplet |lm〉 is given we can construct the (2k + 1)× (2l + 1) states

T kq |lm〉 (4.49)

They are eigenstates of Jz as can be seen from

JzT
k
q |lm〉 = [Jz, T

k
q ]|lm〉+ T kq Jz|lm〉 = ~(q +m)T kq |lm〉 (4.50)

We also have

J+T
k
q |lm〉 = [J+, T

k
q ]|lm〉+ T kq J+|lm〉 (4.51)

= ~
√
k(k + 1)− q(q + 1)T kq+1 |lm〉+

√
l(l + 1)−m(m+ 1)T kq |lm+ 1〉
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which is exactly the same result that we would obtain if we consider two particles, one

with angular momentum k, the other l and try to apply the total angular momentum

operator:

J+|kq〉 ⊗ |lm〉 = J (1)|kq〉 ⊗ |lm〉+ |kq〉 ⊗ J (2)
+ |lm〉 (4.52)

= ~
√
k(k + 1)− q(q + 1) |k q + 1〉 ⊗ |lm〉+

√
l(l + 1)−m(m+ 1) |lm〉 ⊗ |lm+ 1〉

Therefore all the rules of composition of angular momenta apply. We obtain that the

total angular momentum J can have the values

J = |k − l| . . . (k + l) (4.53)

and the states are given by the Clebsch-Gordan coefficients:

|JM〉 =
k∑

q=−k

l∑
m=−l

Ckq,lm
JM T kq |lm〉 (4.54)

The Clebsch-Gordan coefficients can be obtained from a table, a computer program or

by computing them using the commutation rules of the angular momentum.

Now it is easy to establish the selection rule for angular momentum. The matrix

element 〈l1m1|T kq |l2m2〉 vanishes if any of these conditions is not satisfied

m1 = q +m2 (4.55)

|l2 − k| ≤ l1 ≤ l2 + k (4.56)

To understand better the meaning of tensor operator let us consider two simle

examples. First scalar operators: they have k = q = 0 and coomute with all components

of angular momentum:

[Jz, T
0
0 ] = 0, [J+, T

0
0 ] = 0, [J−, T

0
0 ] = 0, (4.57)

Examples of such operators are ~p2, ~r2, ~L2, ~p~L,
~L~r
r3 , namely any operator that is rota-

tionally invariant. The second example is vector operators. We already discussed ~p

at the beginning of this subsection, let us just finish the discussion. This operator is

actually a set of three operators px, py, pz and therefore should correspond to k = 1,

q = −1, 0, 1. Writing the commutation rules for T 1
0 we find

[Jz, T
1
0 ] = 0 (4.58)

[J+, T
1
0 ] = ~

√
2T 1

+1 (4.59)

[J−, T
1
0 ] = ~

√
2T 1
−1 (4.60)
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Noticing that

[Jz, pz] = 0 (4.61)

[J+, pz] = −~ (px + ipy) (4.62)

[J−, pz] = ~ (px − ipy) (4.63)

Thus, we identify (up to an overall constant)

T 1
0 =
√

2pz, T 1
+1 = −(px + ipy), T 1

−1 = px − ipy (4.64)

Since the commutation rules are the same for any vector, this identification works

equally well for ~r, ~L, ~p× ~L or any other vector operator.

4.6 Wigner–Eckart Theorem

In the previous section we found out that the (2k + 1) × (2j + 1) states given by

T kq |νjm〉 rotate as two particle states |kj, qm〉. Using the Clebsch-Gordan coefficients

〈kjqm|kj; j′m′〉 we can construct states that have definite angular momentum, namely

that rotate as |j′m′〉:∑
qm

T kq |νjm〉〈kjqm|kj; j′m′〉 =
∑
ν′

Ajj
′k

νν′ |ν ′j′m′〉 (4.65)

where, on the right hand side, we wrote the most general state of the system with total

angular momentum j′ and projection m′ in terms of unknown coefficients Ajj
′k

νν′ . Here ν

denotes any other quantum numbers, for example in the Hydrogen atom it represents

the radial quantum number. Multiplying by the inverse Clebsch-Gordan and summing

in the subspace we obtain

T kq |νjm〉 =
∑

ν′,j′,m′

Ajj
′k

νν′ |ν ′j′m′〉〈kj; j′m′|kj, qm〉 (4.66)

From here it follows that

〈ν ′j′m′|T kq |νjm〉 = 〈kj; j′m′|kj, qm〉〈ν
′j′||T k||νj〉√

2j + 1
(4.67)

where we defined the so called reduced matrix elements

〈ν ′j′||T k||νj〉√
2j + 1

= Ajj
′k

νν′ (4.68)

The practical interest of this theorem is that the reduced matrix element can be com-

puted by evaluating just one matrix element of T kq . After that, all other matrix elements

of T kq (for fixed j, j′, ν, ν ′) follow from the Clebsch-Gordan coefficients. From a physi-

cal point of view, the different values of the quantum numbers q,m,m′ are related by

rotations and therefore we only need to know one value.
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4.7 Time reversal

In the absence of time-dependent forces, time translation is a symmetry that results

in conservation of Energy. Given that, there is a more subtle symmetry called time

reversal and denoted as T . In classical mechanics such operation of time reversal (T)

consists in flipping the velocities of all particles ~v → −~v. If the forces depend only on

the position, the system will retrace its steps and come back to the time reversal of the

initial state. That is, if the evolution is such that (t > 0):

(~x1, ~v1, t = 0) −→ (~x2, ~v2, t) (4.69)

then the same forces produce the evolution

(~x2,−~v2, t = 0) −→ (~x1,−~v1, t) (4.70)

This follows from Newton’s equation

m
d2~x

dt2
= −~∇V (~x) (4.71)

which is invariant under t→ −t. In macroscopic systems, an arrow of time is introduced

by thermodynamics. Namely the entropy of an isolated system always increases when

we go forward in time. Such law is not invariant under t→ −t. In the Newton equation

it appears as dissipation. Friction forces are not time reversal since they depend on

the velocity. In particular the direction of the friction force is always opposite to

the velocity. Its magnitude can be constant or depend on the velocity depending for

example if it is friction between two solid bodies or friction in air, a liquid etc. Therefore

we have

m
d2~x

dt2
= −~∇V (~x)− f(|~v|)~v, ~v =

d~x

dt
(4.72)

where f(|~v|) > 0. This equation is clearly not invariant under t → −t. In the case of

electromagnetic forces we have

m
d2~x

dt2
= q( ~E + ~v × ~B) (4.73)

Although this is not invariant under t→ −t, it can be made invariant if we do ~B → − ~B
at the same time. This makes sense since magnetic field are produced by currents which

should flip under time reversal. It is interesting to consider two other symmetries of

these simple equation. One is parity (P) given by ~x → −~x, ~E → − ~E, ~B → ~B. The

other is charge conjugation (C) given by q → −q, ~E → − ~E, ~B → − ~B. Therefore we

have separate invariance under C, P and T. This is not true for all other interactions,

however it is expected that nature is invariant under a combined CPT transformation.
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Going back to time reversal, in classical mechanics we map a state (~x,~v) to (~x,−~v).

In quantum mechanics, the position and momentum are not defined simultaneously. If

we define a time reversal operator Θ that satisfies Θ|x〉 = |x〉 then Θ is just the identity,

we cannot ask that, at the same time Θ|p〉 = | − p〉.
To see what happens let’s start by the very property that defines the time-reversal

operator Θ:

e−
i
~HtΘ|ψ(t)〉 = Θ|ψ(t = 0)〉 (4.74)

where

|ψ(t)〉 = e−
i
~Ht|ψ(t = 0)〉 (4.75)

In words, the time evolution of the time reversal state, birngs back the time reverse

of the initial state. If we write |ψ〉 in terms of eigenstates of energy |En〉 the equation

reads

e−
i
~HtΘ

∑
n

cne
− i

~Ent|En〉 = Θ
∑
n

cn|En〉 (4.76)

where we used:

|ψ〉 =
∑
n

cn|En〉, ⇒ |ψ(t)〉 =
∑
n

cne
− i

~Ent|En〉 (4.77)

If Θ is a linear operator, since equation (4.76) has to be valid for any cn the only

possibility is that

Θ|En〉 = ηn| − En〉 (4.78)

so that the phases cancel. However this is impossible since generically there is not a

state with energy −E for each state with energy E. In fact, the energy is bounded from

below (otherwise you could gain an infinite energy by interacting with such a system)

and in general not from above.

The answer is to define Θ as an anti-linear operator which satisfies

Θ(α|1〉+ β|2〉) = α∗Θ|1〉+ β∗Θ|2〉 (4.79)

That is, Θ is distributive with respect to the sum, but scalars are conjugated. This

solves the problem if we also assume

Θ|En〉 = ηn|En〉 (4.80)

Indeed,

e−
i
~HtΘ

∑
n

cne
− i

~Ent|En〉 = e−
i
~Ht
∑
n

c∗ne
i
~Entηn|En〉 (4.81)
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=
∑
n

c∗ne
i
~Entηne

− i
~Ent|En〉 (4.82)

=
∑
n

c∗nηn|En〉 (4.83)

= Θ|ψ〉 (4.84)

Therefore it is just necessary to find an operator Θ that is anti-linear and that commutes

with H, namely [Θ, H] = 0. It also solves the problem that we mentioned before in

relation to position and momentum. For a particle we define

Θ|~x〉 = |~x〉 (4.85)

It now implies

Θ|p〉 =

∫
d3~xΘ(|~x〉〈~x|~p〉) =

∫
d3~x〈~x|~p〉∗Θ|~x〉 =

∫
d3~x〈~x|~p〉∗|~x〉 (4.86)

=

∫
d3~xe−

i
~ ~p~x|~x〉 = | − ~p〉 (4.87)

So, for and anti-linear operator we can have

Θ|~x〉 = |~x〉 (4.88)

Θ|~p〉 = | − ~p〉 (4.89)

Equivalently

Θx̂ = x̂Θ (4.90)

Θp̂ = −p̂Θ (4.91)

From where we find

[Θ, H] = [Θ,
~p2

2m
+ V (~x)] = 0 (4.92)

that is, for a particle in a potential, such operator Θ acts as time reversal operator in

a similar way as in classical mechanics.

A couple of interesting properties. On the wave function Θ acts as

(Θψ)(x) = 〈x|Θ|ψ〉 =

∫
dx′〈x|Θ(|x〉〈x|ψ〉) (4.93)

=

∫
dx′〈x|ψ〉∗〈x|x′〉 =

∫
dx′δ(x− x′)ψ(x′)∗ = ψ∗(x) (4.94)

That is, it conjugates the wave-function. The probability of finding the particle at a

given position is still the same since it is given by |ψ∗(x)|2 = |ψ(x)|2. For the momentum
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wave function, it turns out that the probability of measuring p in a state is the same

as the probability of measuring −p in the time reversed state

|〈p|Θψ〉|2 = |〈−p|ψ〉|2 (4.95)

Finally it is interesting to consider the operator Θ2 which is a linear operator since

Θ2(α|1〉+ β|2〉) = Θ(α∗Θ|1〉+ β∗Θ|2〉) (4.96)

= αΘ2|1〉+ βΘ2|2〉 (4.97)

Since in the |~x〉 basis

Θ2|~x〉 = |~x〉 (4.98)

then, Θ2 is the identity operator. There is subtlety however when we take into account

the spin. We’ll find that Θ2 can be minus the identity.

4.8 Time reversal of angular momentum eigenstates and Kramers degener-

acy

It is clear that under time reversal a state |lm〉 gets converted into |l −m〉, that is the

particle rotates the other way. More formally

ΘL̂z = Θ(xpy − ypx) = −(xpy − ypx)Θ = −LzΘ (4.99)

The same with the other components:

Θ~L = −~LΘ (4.100)

This implies

Θ`+ = −`−Θ, Θ`− = −`+Θ (4.101)

Therefore we find

Θ|lm〉 = ηm|l −m〉 (4.102)

where ηm is a phase we need to determine. The easiest way to determine it is to consider

the wave-function which is nothing else than the corresponding spherical harmonic

which satisfies

Y ∗(θ, φ) = (−)m Y (θ, φ) (4.103)

Thus

Θ|lm〉 = (−)m|l −m〉 (4.104)

Another way to obtain this is to use that

Θ`−|`,m〉 =
√
`(`+ 1)−m(m− 1)Θ|`,m− 1〉 =

√
`(`+ 1)−m(m− 1)ηm−1|`,−m+ 1〉

−`+Θ|`,m〉 = −ηm`+|`,−m〉 = −ηm
√
`(`+ 1)− (−m)(−m+ 1)|`,−m+ 1〉 (4.105)
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Both results should agree implying that ηm−1 = −ηm, namely signs alternate. Using

that the wave-function for m = 0 is real we get ηm = (−)m as before. In any case we

again find

Θ2|lm〉 = |lm〉 (4.106)

It is interesting to consider what happens in the case of half-integer spin. The main

result that we obtain is that Θ2 = −1 when acting on states of half-integer spin. In

order to derive that result, let us consider

ΘJ− = Θ(Jx − iJy) = (−Jx − iJy)Θ = −J+Θ (4.107)

Notice that we get J+ because we have to conjugate the imaginary coefficient i. Another

result we need is

J2m
− |jm〉 = Am|j −m〉 (4.108)

where Am is a real and positive numerical constant that can be easily found from

eq.(4.14). In fact, from there we also find

J2m
+ |j −m〉 = Am|jm〉 (4.109)

with the same constant Am. Finally we have

Θ|jm〉 = ηm|j −m〉 (4.110)

for some unknown phase ηm (which is equal to (−)m for integer spin). Now we can

compute

Θ2|jm〉 = Θηm|j −m〉 = η∗mΘ
1

Am
J2m
− |jm〉 =

η∗m
Am

(−)2mJ2m
+ Θ|jm〉 (4.111)

=
η∗mηm
Am

(−)2mJ2m
+ |j −m〉 = (−)2m|jm〉 (4.112)

where we used ηmη
∗
m = 1. The result agrees with the expected result for integer j.

However, for half-integer j, it is also true that m is half-integer and (−)2m = −1.

Summarizing

Θ2|jm〉 = (−)2j|jm〉 (4.113)

This result is obviously reminiscent of the fact that a 2π rotation acting on a half-

integer spin gives a minus sign (instead of being just the identity) To relate both facts

it is useful to note that if we rotate the state |jm〉 by π around the y-axis (or x-axis)

we get the state |j −m〉 since such rotation inverts the z-axis. There can be a phase

therefore

eiπJy |jm〉 = η̃m|j −m〉 (4.114)
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We can now compute

Θ2|jm〉 = Θηm|j −m〉 = η∗mΘ
1

η̃m
eiπJy |jm〉 =

η∗m
η̃∗m

ΘeiπJy |jm〉 (4.115)

=
η∗m
η̃∗m

ΘeiπJyΘ−1Θ|jm〉 =
η∗m
η̃∗m
eΘiπJyΘ−1

Θ|jm〉 (4.116)

=
η∗m
η̃∗m
eiπJyηm|j, −m〉 =

η∗mηm
η̃∗mη̃m

eiπJyeiπJy |jm〉 (4.117)

= e2πiJy |jm〉 (4.118)

where we used

Bf(A)B−1 = f(BAB−1) (4.119)

for any two operators A,B and function f as can be obtained by expanding in Taylor

series both sides. Also

ΘiJy = iJyΘ (4.120)

since we get a minus sign from conjugating i and another from commuting Jy with Θ.

Summarizing, the result is straight-forward and very illuminating:

Θ2|jm〉 = e2πiJy |jm〉 (4.121)

so indeed Θ2 is equivalent to a 2π rotation!. A very important consequence is that, in

a system of total half-integer spin and symmetric under time reversal states of energy

|E〉 have to come in pairs, this is called Kramers degeneracy. Indeed, we have

|E〉′ = Θ|E〉 (4.122)

Since Θ commutes with the Hamiltonian both states have the same energy. However

they have to be different. If this were not the case, namely

|E〉′ = η|E〉 (4.123)

for some phase η we would have

ΘΘ|E〉 = Θη|E〉 = η∗Θ|E〉 = η∗η|E〉 = |E〉 (4.124)

contradicting what we just learned, namely Θ2|E〉 = −|E〉 for states of half-integer

spin. One important example is an external electric field. It can never lift completely

the degeneracy for the case of total half-integer spin since an electric field does not

break time-reversal. On hte contrary, a magnetic field breaks time-reversal and lifts

the degeneracy between all values of Sz.
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4.9 Selection rule for time reversal

To derive such a selection rule first observe that if

Θ|1〉 = |1̃〉 (4.125)

Θ|2〉 = |2̃〉 (4.126)

then

〈1|ΘAΘ|2〉 = 〈2̃|A†|1̃〉 (4.127)

Indeed:

〈1|ΘAΘ|2〉 =

∫
dxdx′〈1|Θ|x′〉〈x′|AΘ|x〉〈x|2〉 =

∫
dxdx′〈x|2〉〈x′|A|x〉∗〈1|x′〉(4.128)

=

∫
dxdx′ψ2(x)ψ1(x)∗〈x′|A|x〉∗ (4.129)

where ψ1(x) = 〈x|1〉 is the wave function of state |1〉 and the same for state |2〉. Also,

the scalars should be conjugated every time they go over Θ, as we know. On the other

hand we have

〈2̃|A†|1̃〉 =

∫
dxdx′〈2̃|x〉〈x|A†|x′〉〈x′|1̃〉 =

∫
dxdx′〈2̃|x〉〈x|A†|x′〉〈x′|1̃〉 (4.130)

=

∫
dxdx′ψ̃∗2(x)ψ̃1(x′)〈x′|A|x〉∗ (4.131)

which is the same as eq.(4.129) in view of ψ̃1,2(x) = ψ∗1,2(x).

Consider now a hermitian operator A = A† with a given commutation relation with

time reversal:

ΘA = εAAΘ (4.132)

where εA = ±1. For example for x̂ we have εx = +1 and for φ we have εp = −1. Now,

taking into account that Θ2 = 1 (for states with integer spin) we find

〈1|A|2〉 = 〈1|ΘΘAΘΘ|2〉 = εA〈1|ΘAΘ|2〉 = εA〈2̃|A†|1̃〉 (4.133)

= εA〈2̃|A|1̃〉 (4.134)

To obtain a selection rule we need

|2̃〉 = |1〉, |1̃〉 = |2〉 (4.135)

In that case we conclude

〈1|A|2〉 = εA〈1|A|2〉 (4.136)
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which vanishes if εA = −1. In words, the matrix element between time reversed states

of a time-reversal odd operator vanishes. For example you can compute

〈1s|(zpz + pzz)|1s〉 (4.137)

for the hydrogen atom and see that it vanishes whereas for example 〈1s|z2|1s〉 does

not. This is because z2 is time-reversal even but zpz +pzz is odd (and hermitian). This

is not trivial, it does not follow from the angular integration as is the case for angular

momentum and parity selection rules. Indeed let us compute the matrix element:

〈1s|(zpz + pzz)|1s〉 = −i~
∫
d3r ψ∗1s(z∂zψ1s + ∂z(zψ1s)) (4.138)

= −i~
(
− 2

a0

〈1s|z
2

r
|1s〉+ 1

)
(4.139)

where we used

∂zψ1s = − z

a0r
ψ1s, ψ1s =

1
√
πa

3
2
0

e
− r
a0 (4.140)

A simple computation gives

〈1s|z
2

r
|1s〉 =

a0

2
(4.141)

which indeed implies

〈1s|(zpz + pzz)|1s〉 = 0 (4.142)

At first sight the detail form of the wave-function seems to play a role. However,

the main ingredient is that the wave-function is real and thus time-reversal invariant.

Indeed, for any real wave function we can compute

〈ψ|(zpz + pzz)|ψ〉 = −i~
∫
d3r ψ(z∂zψ + ∂z(zψ)) (4.143)

= −i~
∫
d3r ∂z(zψ

2) (4.144)

= 0 (4.145)

The boundary terms at infinity vanish if the wave-function is normalizable, as assumed.

5. Perturbation theory to a degenerate level

Consider again the computation of eigenvalues and eigenvectors of the Hamiltonian

H = H0 + λV (5.1)
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where λ � 1. In the non-degenerate case we can follow an eigenstate |ε(λ)〉 as λ → 0

when it becomes an eigenstate of H0. In the degenerate case, as λ→ 0 the perturbed

state in principle can become any state in the degenerate subspace. To find which state

it becomes, we can once again write the eigenvector condition and expand in series.

(H0 + λV )(|E(0)〉+ λ|ψ(1)〉+ . . .) = (E(0) + λE(1) + . . .)(|E(0)〉+ λ|ψ(1)〉+ . . .) (5.2)

where we know that E(0) is the unperturbed energy. On the other hand |E(0)〉 is an

eigenstate of H0 with eigenvalue E(0) but there is a whole subspace of such states, let us

call such subspace D. To be more concrete assume that the degenerate subspace D has

dimension n and is spanned by an orthonormal basis labeled by an index ν = 1 . . . n.

Define a projector P0 onto such subspace:

P0 =
n∑
ν=1

|E(0), ν〉〈E(0), ν| (5.3)

Expanding eq.(5.2) we find at zero, first, and second orders:

H0|E(0)〉 = E(0)|E(0)〉 (5.4)

H0|ψ(1)〉+ V |E(0)〉 = E(0)|ψ(1)〉+ E(1)|E(0)〉 (5.5)

H0|ψ(2)〉+ V |ψ(1)〉 = E(0)|ψ(2)〉+ E(1)|ψ(1)〉+ E(1)|E(0)〉 (5.6)

The first equation simply states that |E(0)〉 is in the degenerate subspace, namely it

is a linear combination of |E(0), ν = 1 . . . n〉. Projecting the second equation onto the

degenerate subspace gives

P0V |E(0)〉 = E(1)|E(0)〉 (5.7)

That means that |E(0)〉 is an eigenstate of the operator P0V P0 that acts only inside

the degenerate subspace. The eigenvalues are given by E(1). That means we should

construct the matrix

Vν1ν2 = 〈E(0), ν1|V |E(0), ν2〉 (5.8)

and find the n eigenvectors and eigenvalues

n∑
ν2=1

Vν1ν2ψ
(α)
ν2

= E(1)
α ψ(α)

ν1
, α = 1, . . . n (5.9)

In general, all eigenvalues E
(1)
α=1...n are different and the degeneracy is lifted completely.

We find n different states

|E(0)
α 〉 =

∑
ν1

ψ(α)
ν1
|E(0), ν1〉 (5.10)
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with their corresponding energies. The states are further corrected as can be found by

projecting equation (5.5) onto the subspace orthogonal to the degenerate subspace:

H0|ψ(1)〉+ P⊥V |E(0)〉 = E(0)|ψ(1)〉 (5.11)

where P⊥ = 1 − P0. As for the non-degenerate case the first order correction to the

states orthogoenal to the degenerate subspace D is given by

|ψ(1)〉⊥ = −(H0 − E(0))−1P⊥V |E(0)〉 = −
∑
m/∈D

|E(0)
m 〉
〈E(0)

m |V |E(0)
α 〉

Em − E(0)
(5.12)

Notice that the operator (H0 − E(0)) can be inverted in the orthogonal subspace since

it has no zeros there. Using the last equation in (5.5) and projecting it onto the zero

order eigenstate |E(0)
α 〉 we obtain

〈E(0)
α |V |ψ(1)〉 = E(2) (5.13)

where we used that the components of |ψ(1)〉 along the degenerate subspace are orthog-

onal to the zero order state |E(0)
α 〉. Namely

|ψ(1)〉‖ =
∑
β 6=α

ψ
(1)
β |E

(0)
β 〉 (5.14)

Since all |E(0)
β 〉 are eigenstates of P0V P0 only the perpendicular component contributes

in (5.13) and we get

E(2) = 〈E(0)
α |V |ψ(1)〉⊥ = −

∑
m/∈D

|〈E(0)
m |V |E(0)

α 〉|2

Em − E(0)
(5.15)

a formula very similar ot the one for a non-degenerate state, the main difference being

that |E(0)
α 〉 has to be calculated first by diagonalizing P0V P0 instead of being given as

when there is only one state in the subspace. Finally, projecting the last equation of

(5.5) onto the other states in the degenerate subspace we get after some algebra

ψ
(1)
β = 〈E(0)

β |ψ
(1)〉 =

∑
m/∈D

〈E(0)
β |V |E

(0)
m 〉〈E(0)

m |V |E(0)
α 〉

(Em − E(0))(E
(1)
β − E

(1)
α )

(5.16)

Because of the two powers of V this looks like a second order formula but in the

denominator (E
(1)
β − E

(1)
α ) is first order so overall it is a first order correction. Finally

we have the full correction to the state

|ψ(1)〉 = −
∑
m/∈D

|E(0)
m 〉
〈E(0)

m |V |E(0)
α 〉

Em − E(0)
+
∑
m/∈D

∑
β 6=α

|E(0)
β 〉
〈E(0)

β |V |E
(0)
m 〉〈E(0)

m |V |E(0)
α 〉

(Em − E(0))(E
(1)
β − E

(1)
α )

(5.17)

In summary, if we have to correct a degenerate subspace we
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• Find a basis {|E(0), ν〉}, ν = 1 . . . n for the degenerate subspace D.

• Write the n × n matrix of the perturbation Vνν′ = 〈E(0), ν|V |E(0), ν ′〉 in that

basis and diagonalize it. Namely find the eigenvalues E
(1)
α and eigenvectors |E(0)

α 〉,
α = 1 . . . n.

• Now we use the eigenvectors |E(0)
α 〉 as a basis for the subspace D. Those are the

zero order eigenstates and E
(1)
α are the first corrections to their energies.

• If needed, starting from each |E(0)
α 〉 compute further corrections using the formulas

above.

5.1 Spin orbit interaction

The spin orbit interaction is given by

U =
e2

m2c2

~L~S

r3
(5.18)

Consider the corrections to the 2p level. The wave functions are

ψ2lm = R21(r)Y1m(θ, φ) =
1

(2a0)
3
2

1√
3

r

a0

e
− r

2a0 Y1m(θ, φ) (5.19)

To proceed we need to diagonalize the matrix of the perturbation in the degenerate

subspace which in principle includes also the state 2s. However it is easy to see that

U applied to |2s〉 vanishes since |2s〉 has zero angular momentum. Therefore we con-

centrate on the 2p states. In that case we compute first the mean value of the radial

part: ∫
R21

1

r3
R21 =

1

(2a0)3

1

3a2
0

∫ ∞
0

r2

r3
e
− r
a0 r2dr =

1

24a3
0

(5.20)

We are left to diagonalize

U =
e2

m2c2

~L~S

24a3
0

(5.21)

in the subspace of l = 1, s = 1
2
. Notice the simple identity

~L~S =
1

2
(J2 − L2 − S2) (5.22)

which means that diagonalizing ~L~S is the same as diagonalizing J2. Actually, we

know how to do that, the possible total angular momenta are j = 1
2

and j = 3
2
. The

eigenvalues of ~L~S are

~L~S =
~2

2
(j(j+1)− l(l+1)−s(s+1)) =

~2

2
(j(j+1)−2− 3

4
) =

~2

2
(j(j+1)− 11

4
) (5.23)

– 49 –



Therefore the zero order states and the first order energy corrections to the 2p level are

|n = 2, l = 1, s = 1
2
, j = 1

2
, jz = ±1

2
〉, E(1) = − e

2~2

m2c2

1

24a3
0

(5.24)

|n = 2, l = 1, s = 1
2
, j = 3

2
, jz = ±1

2
,±3

2
〉, E(1) =

1

2

e2~2

m2c2

1

24a3
0

(5.25)

In general we have:

|n, l, s, j, jz〉, E(1) =
1

2

e2~2

m2c2
〈 1

r3
〉nl [j(j + 1)− l(l + 1)− s(s+ 1)] (5.26)

6. Electron in a magnetic field

The Lagrangian for a charge moving in electric and magnetic fields can be written in

terms of the scalar φ(xi, t) and vector Ai(xj, t) potentials as

L =
1

2
mv2 − qφ(xi, t) + qAj(xi, t)vj (6.1)

Indeed, we can check the Euler equations give the Lorentz force:

d

dt

∂L

∂vi
=
∂L

∂xi
(6.2)

Evaluating the derivatives we find

d

dt
(mvi + qAi(xk, t)) = −q∂iφ(xk, t) + qvj∂iAj(xk, t) (6.3)

or

m
dvi
dt

+ q∂tAi + q
dxj
dt
∂jAi = −q∂iφ+ qvj∂iAj (6.4)

Summarizing, the equations of motion are

m
dvi
dt

= −q(∂iφ+ ∂tAi) + qvj(∂iAj − ∂jAi) (6.5)

Defining the Electric and Magnetic fields

~E = −~∇φ− ∂t ~A, ~B = ~∇× ~A (6.6)

we find

m~a = q( ~E + ~v × ~B) (6.7)
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The last term follows form the identity[
~v × (∇× ~A)

]
i

= vj(∂iAj − ∂jAi) (6.8)

which is a version of the well-known identity

~A× ( ~B × ~C) = ( ~A~C) ~B − ( ~B ~C) ~A (6.9)

Computing the momentum

p =
∂L

∂v
= mv + qA (6.10)

the Hamiltonian follows as

H = pv − L =
1

2
mv2 + qφ =

1

2m
(p− qA)2 + qφ (6.11)

6.1 Electron in constant magnetic field

Suppose we have a constant magnetic field ~B = Bẑ. It can be derived from the vector

potential

Ax = −1

2
By, Ay =

1

2
xB, (6.12)

H =
1

2m

[(
px + e

1

2
yB

)2

+

(
py − e

1

2
xB

)2

+ p2
z

]
(6.13)

=
p2
x + p2

y

2m
+
e2B2

8m
(x2 + y2) +

p2
z

2m
− eB

2m
(xpy − ypx) (6.14)

= Hho +
p2
z

2m
− eB

2m
Lz (6.15)

where

Hho =
p2
x + p2

y

2m
+
e2B2

8m
(x2 + y2) (6.16)

describes a two dimensional harmonic oscillator with frequency

ωx = ωy = ω =
eB

2m
(6.17)

The three terms in the Hamiltonian commute. To compute the eigenstates we need to

classify the Harmonic oscillator eigenstates according to their angular momentum. Let

us define ax,y and a†x,y in the usual manner

x =

√
~

2mω
(ax + a†x), y =

√
~

2mω
(ay + a†y), (6.18)
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px = i

√
m~ω

2
(a†x − ax), py = i

√
m~ω

2
(a†y − ay), (6.19)

Let us further define

a± =
1√
2

(ax ± iay), a†± =
1√
2

(a†x ∓ ia†y) (6.20)

The operators a±, a
†
± define two independent harmonic oscillator as can be checked

from the commutation relation

[a+, a
†
+] = 1, [a−, a

†
−] = 1, [a†+, a−] = 0, [a†−, a+] = 0 (6.21)

The occupation number operators N+ = a†+a+ and N− = a†−a− allow to classify states

by their eigenvalues:

N±|n+, n−〉 = n±|n+, n−〉 (6.22)

The full Hamiltonian can be written as

H =
~eB
2mc

(N+ +N− + 1) +
~eB
2mc

(N+ −N−) +
p2
z

2m
(6.23)

=
~eB
mc

(N+ +
1

2
) +

p2
z

2m
(6.24)

Therefore the eigenstates and eigenvalues of energy are given by

H|n+, n−, pz〉 = E|n+, n−, pz〉 (6.25)

E =
~eB
mc

(n+ +
1

2
) +

p2
z

2m
(6.26)

The spectrum is highly degenerate since the value of n− does not affect the energy.

The degeneracy is then infinite. In practice however it is bounded by the size of the

region where the magnetic field acts. The lowest energy states are those with n+ = 0

and they are said to be in the lowest Landau level. There is a gap

Egap =
~eB
mc

(6.27)

to the next Landau level. The Landau levels continue to higher energy as n+ is increase.

For a field of | ~B| = 10T the gap is around 1.2× 10−3eV . This gap can be observed in a

metal where electrons in the conduction band move (approximately) freely. Remember-

ing that the Boltzmann constant implies that a temperature T = 300 oK corresponds to

0.025eV , it is clear that such phenomena can be observed only at very low temperature

T � 10 oK.
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It is interesting to discuss the wave functions of the lowest Landau level states.

There is a wave-function easy to compute, namely, the ground state of the harmonic

oscillator

〈x, y|n+ = 0, n− = 0〉 =
1√
πx0

e
− 1

2
x2+y2

x2
0 , x0 =

√
~
mω

(6.28)

We can introduce a complex variable

w = x+ iy, w̄ = x− iy (6.29)

in terms of which the wave-function reads

〈w, w̄|n+ = 0, n− = 0〉 =
1√
πx0

e
− 1

2
ww̄

x2
0 , (6.30)

For a generic state in the lowest Landau level we have

〈w, w̄|n+ = 0, n−〉 = F (w, w̄)
1√
πx0

e
− 1

2
ww̄

x2
0 , (6.31)

The condition for being in the lowest Landau level is

a+|n+ = 0, n−〉 = 0, ⇒ ∂w̄F = 0 → F = F (w) (6.32)

as can be seen from the representation

a+ =
1

2x0

w + x0∂w̄ (6.33)

of a+ acting on these states. Eq.(6.32) means that F is a holomorphic (or analytic)

function. This is very important in theoretical physics since the properties of analytic

functions are vastly more interesting that those of real functions.

7. Hydrogen atom in magnetic field

As follows from the previous section, the Hamiltonian of a hydrogen atom in a uniform

magnetic field ~B = Bẑ is

H =
p2

2m
− e2

r
+

eB

2mc
(Lz + 2Sz) +

e2B2

8mc2
(x2 + y2) +

e2

m2c2

LS

r3
(7.1)

where we included the contribution from the magnetic moment of the electron and the

spin-orbit interaction since those corrections can be of the same order or even larger

depending on the strength of the magnetic field.
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7.1 Spin-orbit correction smaller than magnetic correction

Consider first the case of strong magnetic field. In this case we start from the usual

eigenstates

H0|n, l, lz, sz〉 = −E0

n2
|n, l, lz, sz〉 (7.2)

and diagonalize the perturbation

V =
eB

2mc
(Lz + 2Sz) (7.3)

in the degenerate subspace characterized by the radial quantum number n. This step

however is not necessary since the operators Lz and Sz are already diagonal in the

chosen basis. We therefore find the first correction to be

E(1) =
~eB
2mc

(lz + 2sz) (7.4)

Now we have to consider the spin-orbit interaction. The first thing to check is if the

magnetic field lifted the degeneracy completely. It is obviously not the case since the

following states have the same correction to the energy:

|1〉 = |n, l1, lz, sz = −1
2
〉, |2〉 = |n, l2, lz − 2, sz = 1

2
〉 (7.5)

where l1 can be different from l2 but lz jumps by two units. Now we have to diagonalize

the spin-orbit interaction in this degenerate subspace. Once again we are lucky and

find the the interaction is diagonal. In fact, the operator LS can change the component

lz only by 0 or ±1. Moreover it cannot change the total angular momentum. Therefore

it is diagonal and the diagonal element is easy to compute:

〈n, l, lz, sz|
e2

m2c2

LS

r3
|n, l, lz, sz〉 =

e2

m2c2
〈 1

r3
〉n,l〈n, l, lz, sz|LzSz +

1

2
(L+S− + L−S+)|n, l, lz, sz〉

=
e2~2

m2c2
〈 1

r3
〉n,l lzsz (7.6)

where we used that L± and S± have no diagonal elements. The mean value

〈 1

r3
〉n,l =

∫ ∞
0

r2dr
1

r3
R2
nl(r) (7.7)

has to be computed in each case. In total we obtain for a strong magnetic field

E
(1)
n,l,lz ,sz

=
~eB
2mc

(lz + 2sz) +
e2~2

m2c2
〈 1

r3
〉n,l lzsz (7.8)

The term proportional to B2 is too small to contribute at this order
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7.2 Spin-orbit correction larger than the magnetic correction

. In this case we do the spin orbit correction first. As we know we should consider now

eigenstates of J2, Jz where ~J = ~L+ ~S. The zero order states and the first order energy

correction are

|n, l, s = 1
2
, j, jz〉 E(1) =

e2~2

2m2c2
〈 1

r3
〉nl [(j + 1)− l(l + 1)− s(s+ 1)] (7.9)

Now we have to compute the matrix of the perturbation due to the magnetic field in

this subspace. Since Lz and Sz commute with Jz the perturbation is diagonal. We take

advantage of this fact and compute the correction

E
(1)
B =

eB

2mc
〈n, l, s, j, jz|(Lz + 2Sz)|n, l, s, j, jz〉 =

eB

2mc
(~jz + 〈n, l, s, j, jz|Sz|n, l, s, j, jz〉)

(7.10)

where we used jz = lz + sz. Still we need to compute the mean value of sz. We can do

that by the following consideration. When composing l with s = 1
2

the total angular

momentum can be j = l ± 1
2
. For a given jz, there are two states:

|l, j = l + 1
2
, jz〉 = α|l, l, jz − 1

2
, sz = 1

2
〉+ β|l, l, jz + 1

2
, sz = −1

2
〉 (7.11)

|l, j = l − 1
2
, jz〉 = −β|l, l, jz − 1

2
, sz = 1

2
〉+ α|l, l, jz + 1

2
, sz = −1

2
〉 (7.12)

where we used that the two states should be orthogonal. We can now compute

〈l, j = l + 1
2
, jz|Sz|l, j = l + 1

2
, jz〉 =

~
2

(|α|2 − |β|2) (7.13)

〈l, j = l − 1
2
, jz|Sz|l, j = l − 1

2
, jz〉 =

~
2

(−|α|2 + |β|2) = −〈l, j = l + 1
2
, jz|Sz|l, j = l + 1

2
, jz〉

(7.14)

we also have

|α|2 + |β|2 = 1 (7.15)

from the normalization condition. Now, we only have to compute the coefficient α. In

order to do that we have to use the definition of the states. Namely

J2|l, j = l + 1
2
, jz〉 = ~2j(j+1)|l, j = l + 1

2
, jz〉 = ~2(l+

1

2
)(l+

3

2
)|l, j = l + 1

2
, jz〉 (7.16)

Now let us use

LS =
1

2
(J2 − L2 − S2) (7.17)

to find

(LS)|l, j = l + 1
2
, jz〉 = ~2 1

2

[
(l +

1

2
)(l +

3

2
)− l(l + 1)− 3

4

]
|l, j = l + 1

2
, jz〉 = ~

l

2
|l, j = l + 1

2
, jz〉

(7.18)
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a very simple answer. Using LS = LzSz + 1
2
(L+S− + L−S+) we find

1

~2
(LS)|l, j = l + 1

2
, jz〉 =

α

2
(jz −

1

2
)|jz − 1

2
, 1

2
〉+

α

2

√
l(l + 1)− (jz −

1

2
)(jz +

1

2
)|jz + 1

2
,−1

2
〉

−β
2

(jz +
1

2
)|jz + 1

2
,−1

2
〉+

β

2

√
l(l + 1)− (jz +

1

2
)(jz −

1

2
)|jz − 1

2
, 1

2
〉

(7.19)

The eigenvalue condition (7.18) gives two equations

α

2
(jz −

1

2
) +

β

2

√
l(l + 1)− (jz +

1

2
)(jz −

1

2
) =

l

2
α (7.20)

α

2

√
l(l + 1)− (jz −

1

2
)(jz +

1

2
)− β

2
(jz +

1

2
) =

l

2
β (7.21)

plus the normalization condition α2 + β2 = 1. This is now an algebraic problem that

can be solved straight-forwardly giving

α =

√
l + jz + 1

2√
2l + 1

, β =

√
l − jz + 1

2√
2l + 1

(7.22)

Replacing in the previous formula we get the simple result

〈l, j = l ± 1
2
, jz|Sz|l, j = l ± 1

2
, jz〉 = ± ~jz

2l + 1
(7.23)

Altogether the correction is

E
(1)

j=`± 1
2

=
e2~2

2m2c2
〈 1

r3
〉nl [j(j + 1)− l(l + 1)− s(s+ 1)] +

~eB
2mc

jz

[
1± 1

2l + 1

]
(7.24)

8. Identical Particles

Quantum mechanics implies a notion of identical particles that goes much further than

the statement that, for example, all electrons (or protons, etc.) have the same prop-

erties. Clasically, although particles can be similar, we can follow their trajectories

and thus distinguish them. Quantum mechanically there is no notion of trajectory and

therefore if at time t1 one has let’s say two electrons at positions x1, x′1 and at later

time t2 one also has two electrons at positions x2 , x′2, it is impossible, in principle,

to know if the electron at x2 is the electron that was at x1 or the one at x′1. There

is no experiment that can be done to distinguish those two possibilities and therefore
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it is not meaningful to distinguish them. Formally one has to add (or subtract) the

amplitudes of both processes happening, namely (x1, x
′
1) goes to (x2, x

′
2) and the ex-

change process (x1, x
′
1) goes to (x′2, x2). For bosons, amplitudes should be added and

for fermions they should be subtracted. Each type of particle is either a boson or a

fermion. In general particles with integer spin are bosons and with half-integer spin are

fermions. It may happen that one of the two processes has negligible probability (that

depends on the Hamiltonian) in which case one can basically ignore it and consider the

particles distinguishable. For example, if two Helium atoms collide at atomic energies,

the probability of them interchanging protons from inside the nucleus is negligible and

we can ignore processes where a proton of one nucleus is interchanged with a proton

of the other nucleus. At even lower energies not even electrons can be interchanges an

we can consider the atoms as single entities. In the case of He4 the atom is a boson

and for He3 it is a fermion. At very low energies we need to consider processes where

atoms are interchanged but not its individual components.

There are two main formalisms to deal with identical particles. The one that we are

going to use consists simply in considering the particles to be distinguishable, and add

a label j = 1 . . . N where N is the number of particles. The property of being identical

implies that all operators should be completely symmetrical under interchange of the

labels j whereas the wave-functions should be completely symmetrical for bosons and

completely anti-symmetrical for fermions.

The other formalism is called the occupation number formalism. In that case a

basis of states is chosen for single particle states (namely one particle). Then, a basis

for multi-particle states is constructed by giving the occupation number of each state.

In the case of bosons we can put an arbitrary number of particles in the same state

whereas for fermions we can only put either zero or one particle. Operators are then

constructed in terms of basic operators that add or subtract one particle from each

state. In this formalism particles (of the same species) are considered identical form

the very beginning. The fact that we can only put one fermion in each state is called

the Pauli exclusion principle and follows from the fact that the wave-function has to

be anti-symmetric.

8.1 Helium atom

The Hamiltonian for the Helium atom is

H =
p2

1

2m
+

p2
2

2m
− Z e

2

r1

− Z e
2

r2

+
e2

|~r1 − ~r2|
(8.1)

where Z = 2 is the number of protons in the nucleus. The ground state cannot be

found exactly. Experimentally, Helium has an ionization energy of 24.6 eV, the largest
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for any atom. The remaining electron will be in a hydrogen-like 1s state whose energy

can be easily computed as E = −4 × 13.6 eV = 54.4 eV. In total the ground state

energy is EHe = −24.6 eV− 54.4 eV = −79 eV. The simplest approach is to ignore the

Coulomb repulsion and solve the Hamiltonian

H0 =
p2

1

2m
+

p2
2

2m
− Z e

2

r1

− Z e
2

r2

(8.2)

This Hamiltonian corresponds to two non-interacting electrons and can be easily solved

by putting each electron in a one-particle state while taking into account the Pauli

exclusion principle. The ground state is

ψ0(~r1, ~r2) =
1√
2
ψ1s(r1)ψ1s(r2) (| ↑↓〉 − | ↓↑〉) = ψ1s(r1)ψ1s(r2)|S = 0〉 (8.3)

where we included the spin part which has to be antisymmetric since the spatial part

is symmetric. The energy is

E
(0)
He = −2× 4× 13.6 eV = −108.8 eV (8.4)

clearly overestimating the binding energy since the Coulomb repulsion gives a positive

contribution. We can apply perturbation theory and compute the correction

E(1) = 〈ψ0|V |ψ0〉 = e2

∫
d3~r1d

3~r2
|ψ1s(r1)|2|ψ1s(r2)|2

|~r1 − ~r2|
(8.5)

and use that

ψ1s(r1)ψ1s(r2) =
Z3

πa3
0

e
− Z
a0

(r1+r2)
(8.6)

This is the same as the hydrogen atom with the replacement a0 → a0/Z, namely the

Bohr radius is reduced by half. The integral is interesting to compute in itself, so let

us consider ∫
d3~r1d

3~r2
e−ar1−ar2

|~r1 − ~r2|
=

1

a5

∫
d3~r1d

3~r2
e−r1−r2

|~r1 − ~r2|
(8.7)

The trick is now to consider the integral over ~r2 by itself. At this point, the vector ~r1

is a fixed vector. We can then choose our coordinates such that the z axis points along

~r1. The integral can be simplified in polar coordinates giving∫
d3~r2

e−r1−r2

|~r1 − ~r2|
=

∫ ∞
0

r2
2dr2

∫ π

0

sin θdθ

∫ 2π

0

d φ
e−r2√

r2
1 + r2

2 − 2r1r2 cos θ
(8.8)

= 2π

∫ ∞
0

r2
2dr2 e

−r2
∫ 1

−1

dµ√
r2

1 + r2
2 − 2r1r2µ

(8.9)

= −2π

∫ ∞
0

r2
2dr2 e

−r2 1

r1r2

(|r1 − r2| − (r1 + r2)) (8.10)
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where we used the change of variables µ = cos θ. Notice that the result depends now

on the modulus of ~r1, ~r2 and not on their orientation. Therefore we can do the integral

over ~r1 in polar coordinates obtaining∫
d3~r1d

3~r2
e−ar1−ar2

|~r1 − ~r2|
= −8π2

a5

∫ ∞
0

r2
1r

2
2dr1dr2

e−r1−r2

r1r2

(|r1 − r2| − (r1 + r2)) (8.11)

Therefore, the original six dimensional integral has been reduced to a simpler two

dimensional integral. The only complication is the absolute value |r1−r2| that requires

to separate the region of integration in two regions: r1 > r2 and r1 < r2. Since the

integrand is symmetric under interchange of r1 ↔ r2 we can just compute one of them

and multiply by two:∫
d3~r1d

3~r2
e−ar1−ar2

|~r1 − ~r2|
= −16π2

a5

∫ ∞
0

dr2

∫ ∞
r2

dr1r1r2e
−r1−r2(r1 − r2 − r1 − r2)

=
32π2

a5

∫ ∞
0

dr2

∫ ∞
r2

dr1r1r
2
2e
−r1−r2

=
32π2

a5

∫ ∞
0

dr2

∫ ∞
0

dr̃1(r̃1 + r2)r2
2e
−r̃1−2r2

=
20π2

a5
(8.12)

where we used the change of variables r̃1 = r1 − r2 and the well-known integral∫∞
0
dr rne−r = n!. Armed with this result we immediately find the perturbative correc-

tion to the Helium atom ground state to be

〈ψ0|V |ψ0〉 =
5

8

Ze2

a0

(8.13)

In total we evaluate the energy to be

E = −2
Z2e2

2a0

+
5

8

Ze2

a0

= −108.8 eV + 34 eV = −74.8 eV (8.14)

Although this is a much better result it shows that the perturbative correction is

significant and therefore higher order terms should also be important.

An alternative method is to use the variational approach. The simplest trial func-

tion is the same function we used but allowing for the Bohr radius to be different,

namely instead of a0 → a0/Z we take a0 → a0/Zeff where Zeff is a variational param-

eter:

ψ0(~r1, ~r2) =
Z3
eff

πa3
0

e
−
Zeff
a0

(r1+r2)|S = 0〉 (8.15)
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This wave-function takes into account the partial screening of the nuclear charge by

the electrons but still ignores correlations between electrons. That is, the probability

of finding an electron in a given position is independent of where the other electron is.

This ignores the fact that the two electrons tend to be as far from each other as they

can because of the Coulomb repulsion. Nevertheless it is an improved approximation

over the perturbative result which is simply the variational result for Zeff = Z = 2.

To proceed we have to compute the mean value of the Hamiltonian in such state. The

easiest way is to write the Hamiltonian as a hydrogen atom with eZeff nuclear charge

plus extra terms:

H =
p2

1

2m
+

p2
2

2m
− Zeff

e2

r1

− Zeff
e2

r2

+ (Zeff − Z)
e2

r1

+ (Zeff − Z)
e2

r2

+
e2

|~r1 − ~r2|
(8.16)

Furthermore it is easy to find that

〈1s|1
r
|1s〉 =

Z

a0

(8.17)

which, using the previous results for the Coulomb repulsion gives

〈H〉 = (Z2
eff − 2ZZeff +

5

8
Zeff )

e2

a0

(8.18)

The minimum is at

Zeff = Z − 5

16
=

27

16
(8.19)

giving an energy

E = −729

128

e2

2a0

= −77.5 eV (8.20)

The answer is within 2% of the experimental value. It can be improved by adding

additional terms to the variational wave-function

Let us now consider briefly the excited states. In the non-interacting case, the first

excited state is obtained by leaving one electron in the 1s state and putting the other

either in the 2s or 2p states. The total spin can be either S = 0 or S = 1 since now the

spatial wave-function can be symmetric of anti-symmetric. The Coulomb interaction

splits these levels and therefore the S = 0 and S = 1 states differ in energies of the

order of eVs. To see why let us write the wave-functions:

ψA =
1√
2

(ψ1s(~r1)ψnlm(~r2)− ψ1s(~r2)ψnlm(~r1)) |S = 1, Sz = −1, 0, 1〉 (8.21)

ψS =
1√
2

(ψ1s(~r1)ψnlm(~r2) + ψ1s(~r2)ψnlm(~r1)) |S = 0〉 (8.22)
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It is clear that in the ψA (triplet) state, the wave-function vanishes when the two

electrons are on top of each other whereas in the singlet ψS it does not. Therefore the

Coulomb repulsion will be larger for the latter one and the triplet will have significantly

lower energy. More precisely

〈φA,S|
e2

|~r1 − ~r2|
|φA,S〉 = e2

∫
d3~r1d

3~r2

|~r1 − ~r2|
|ψ1s(~r1)|2|ψnlm(~r2)|2 (8.23)

±e2

∫
d3~r1d

3~r2

|~r1 − ~r2|
ψ∗1s(~r1)ψnlm(~r1)ψ1s(~r2)ψ∗nlm(~r2) (8.24)

The second term, called the exchange energy receives its largest contribution from the

region ~r1 ' ~r2 where the integrand is positive. The energy difference is

∆Ee = 2e2

∫
d3~r1d

3~r2

|~r1 − ~r2|
ψ∗1s(~r1)ψnlm(~r1)ψ1s(~r2)ψ∗nlm(~r2) (8.25)

It is purely an effect of the Coulomb repulsion but, because of the relation between

symmetry in the spatial and spin parts it can be simulated by a term in the Hamiltonian

Veff = − 1

~2
∆Ee(~S1 · ~S2) (8.26)

This effective term favors the parallel spin state S = 1 over the S = 0 state by the

same energy difference ∆Ee. Therefore the Coulomb repulsion generates an effective

ferromagnetic coupling between the spins with energy of the order of eV instead of the

direct spin-spin magnetic interaction which is of the order of 10−4 eV. Such interactions

are responsible for ferromagnetism in solids.

8.2 Magnetic susceptibility of Helium

The Hamiltonian of a Helium atom in a uniform magnetic field ~B = Bẑ is

H =
p2

1

2m
+

p2
2

2m
− Z e

2

r1

− Z e
2

r2

+
e2

|~r1 − ~r2|
(8.27)

+
eB

2mc
(L1z + L2z + 2S1z + 2S2z) (8.28)

+
e2B2

8mc2
(x2

1 + y2
1 + x2

2 + y2
2) (8.29)

For the ground state the second line is irrelevant since L1z +L2z = 0 and S1z +S2z = 0.

The third line gives a correction to the energy that is given by first order perturbation

theory as

E(1) =
e2B2

8mc2
〈g.s.|(x2

1 + y2
1 + x2

2 + y2
2)|g.s.〉 (8.30)
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Since the ground state is spherically symmetric 〈x2〉 = 〈y2〉 = 1
3
〈r2〉. Therefore

E(1) =
e2B2

8mc2

4

3
〈g.s.|r2|g.s.〉 (8.31)

The variational wave-function gives

〈g.s.|r2|g.s.〉 = 3
a2

0

Z2
eff.

(8.32)

and then

E(1) =
e2B2a2

0

2mc2Z2
eff.

(8.33)

In general, for a material with no permanent magnetic moment, the energy, in the

presence of a magnetic field is given by

E = −1

2
χB2 (8.34)

where χ is the magnetic susceptibility. The induced magnetic moment is given by
~M = χ~B. If χ < 0 the medium is diamagnetic and if χ > 0 it is paramagnetic. If it has

permanent magnetic moment is ferromagnetic. In this case a mole of Helium atoms

has a magnetic susceptibility equal to

χ = − e2a2
0

mc2Z2
eff.

NA (8.35)

where NA = 6.02× 1023 is the Avogadro number. Doing the calculation we obtain

χ = −1.6 10−6 cm3

mole
(8.36)

The experimental value is χ = −1.88 10−6 cm3

mole
meaning that our results is not bad

considering the simple trial wave-function used.
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9. Time dependent perturbation theory

In quantum mechanics, as in classical mechanics, it becomes important to compute the

evolution of a system given an initial state. In the quantum case this requires solving

the Schroedinger equation

∂|ψ(t)〉
∂t

= − i
~
H(t)|ψ(t)〉, |ψ(t = 0)〉 = |ψ0〉 (9.1)

If the Hamiltonian is time independent H(t) = H and we know its exact eigenstates

|En〉 this is solved by

|ψ(t)〉 =
∑
n

cne
− i

~Ent|En〉, cn = 〈En|ψ0〉 (9.2)

If the Hamiltonian is time dependent, or the eigenstates are not known we need to

resort to some approximation method. In the case where we can write

H = H0 + λV (t) (9.3)

where H0 is time independent and exactly solvable, and λV (t) is a perturbation such

that the transition probabilities to other states are small, the method to use is an

expansion in powers of λ, namely perturbation theory.

9.1 An exact computation

We start by considering a case that can be solved exactly. It is a two state system with

Hamiltonian

H =

(
ε1 0

0 ε2

)
+

(
0 γeiωt

γe−iωt 0

)
(9.4)

where γ ∈ R. Let us consider the initial state to be

|ψ0〉 = |1〉 (9.5)

We have to find

|ψ(t)〉 = c1(t)e−
i
~ ε1t|1〉+ c2(t)e−

i
~ ε2t|2〉 (9.6)

where we extracted the trivial time dependence so that c1,2(t) become time independent

if γ = 0. After some algebra, the Schroedinger equation gives

ċ1 = −iγ
~
ei(ω−ω21)tc2 (9.7)

ċ2 = −iγ
~
e−i(ω−ω21)tc1 (9.8)

– 63 –



where the dots indicate time derivatives and

~ω21 = ε2 − ε1 (9.9)

We can convert this system into an equation for just c2 by using

−iγ
~
∂tc1 = ∂t(e

i(ω−ω21)tċ2) = −iγ
~
ei(ω−ω21)tc2 (9.10)

Expanding

c̈2 + i(ω − ω21)ċ2 +
γ2

~2
c2 = 0 (9.11)

This can be solved by proposing an exponential solution. The result is

c2 = Aeq1t +Beq2t (9.12)

with

q1,2 =
i

2

[
(ω − ω21)±

√
(ω − ω21)2 + 4

γ2

~2

]
(9.13)

Defining

Ω =
1

2

√
(ω − ω21)2 + 4

γ2

~2
(9.14)

and taking into account the initial conditions we determine

|c2|2 =
1

1 + ~2(ω−ω21)2

4γ2

sin2 Ωt (9.15)

The result is physically interesting. The probability of being in state |2〉 oscillates with

frequency Ω but it does not quite reach the value 1 unless we are in resonance, namely

ω = ω21. In that case the system oscillates between state |1〉 and state |2〉.
In perturbation theory we can only access these results as an expansion in powers

of γ. For the probability of being in state two we find

|c2|2 '
4 γ2

~2(ω − ω21)2
sin2 (ω − ω21)t

2
(9.16)

away from resonance and

|c2|2 = sin2 γt

~
' γ2t2

~2
(9.17)

at resonance ω = ω21. In this last case the result is only valid when t � ~/γ since

only then the approximation sin γt ' γt is valid. From a physical point of view, at

resonance, even a tiny perturbation can, over time, take the system to state |2〉. On

the other hand, perturbation theory assumes |c2|2 � 1 from the outset and therefore

is only valid for a short time.
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9.2 Perturbative calculation

Consider the case where we can write the Hamiltonian as

H = H0 + λV (t) (9.18)

such that H0 is a Hamiltonian that we know how to diagonalize exactly and λV (t) is

a small perturbation in that the transition probabilities to states other than the initial

state are small. Denote the eigenvectors of H0 as |En〉 and take one of them |Ei〉 as

the initial state. At any time t we write the state of the system as

|ψ(t)〉 =
∑
n

cn(t)e−
i
~Ent|En〉 (9.19)

The initial condition reads

ci(t = 0) = 1, cn6=i(t = 0) = 0 (9.20)

The Schroedinger equation

∂t|ψ(t)〉 = − i
~
H|ψ(t)〉 (9.21)

reads

∂tcn(t) = − i
~
λ
∑
m

cm(t)e−
i
~ (Em−En)t〈En|V (t)|Em〉 (9.22)

If we propose a series expansion

cn(t) =
∞∑
j=0

λjc(j)
n (t) (9.23)

the equation give a simple recursive relation

∂tc
(j)
n (t) = − i

~
∑
m

c(j−1)
m (t)e−iωmnt〈En|V (t)|Em〉 (9.24)

where ~ωmn = Em−En. These are simple to solve but we need initial conditions. First

we have that

c
(0)
i (t = 0) = 1, c

(j>0)
i (t = 0) = 0, c

(j)
n 6=i(t = 0) = 0 (9.25)

Furthermore, the zeroth order coefficients c
(0)
n are time-independent since for λ = 0 all

the time dependence is taken into account by the phase factors e−
i
~Ent. Therefore

c
(0)
i (t) = 1, c

(0)
n 6=i(t) = 0 (9.26)
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The solution is now obtained recursively as

c(0)
n (t) = δni (9.27)

c(1)
n (t) = − i

~

∫ t

0

eiωnit
′
Vni(t

′) dt′ (9.28)

c(2)
n (t) =

(
− i
~

)2 ∫ t

0

eiωnmt
′
Vnm(t′) dt′

∫ t′

0

eiωmit
′′
Vmi(t

′′) dt′′ (9.29)

c(j+1)
n (t) = − i

~

∫ t

0

e−iωmnt
′
c(j)
m (t′)Vnm(t′) dt′ (9.30)

although, for most of our calculations, we are going to consider only the first order.

These formulas describe the general case. It is useful to consider a particular form

of the perturbation which appears quite often, the so called monochromatic or harmonic

perturbation:

V = Veiωt + V†e−iωt (9.31)

It includes the particular case ω = 0, namely constant perturbation. The integrals are

pretty straight-forward giving

c
(1)
n6=i(t) = −2i

~
ei

(ωni+ω)

2
t sin(ωni+ω

2
t)

ωni + ω
〈En|V|Ei〉 −

2i

~
ei

(ωni−ω)

2
t sin(ωni−ω

2
t)

ωni − ω
〈En|V†|Ei〉

(9.32)

As a function of ω, the coefficient has peaks at ω = ±ωni. This is the resonance

phenomenon that we described in the previous section for the two state system. Away

from resonance the coefficients are small therefore we can make the approximation

|c(1)
n (t)|2 ' |V

†
ni|2

~2

sin2(ωni−ω
2

t)(
ωni−ω

2

)2 for ω ' ωni (9.33)

|c(1)
n (t)|2 ' |Vni|

2

~2

sin2(ωni+ω
2

t)(
ωni+ω

2

)2 for ω ' −ωni (9.34)

As a function of ω, |c(1)
n (t)|2 is a typical diffraction pattern with a peak of width δω = 2π

t
.

For large enough times the peak becomes narrower than the level spacing and therefore

the initial state can transition only to the energy level determined by the resonance. For

those states the probability, as computed in perturbation theory, increases quadratically

in time a result that can only be valid for a short initial time. However, knowing that

for a given frequency ω the system can only transition to those states with energy

En = Ei± ~ω allows us to restrict the problem to just those states. Thus, the problem

reduces to a finite number of states and can be treated exactly. In fact, this is what

we did when we discussed a two state system in the previous section. There are no
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two state systems, but in many physical situation such as this one, only two states are

relevant, namely those connected by the frequency ω.

One interesting point of view is that, for short times t = ∆t, the peak is broad and

the uncertainty in energy is of order

∆E ≥ ~
∆t

(9.35)

This is known as the energy uncertainty principle. There is no presumed uncertainty

in measuring time, it means that if two energy measurements are done with a time

difference ∆t, one is going to find the same energy only up to a dispersion ∆E. In

that sense is different from the position and momentum uncertainty principle but has

a similar spirit.

9.3 Transition into the continuum spectrum

The case in which the final state is in the continuum is of great physical interest since it

describes the decay of a particle into others, scattering processes etc. In such situation,

even in a narrow resonance peak there is a large number of states. The probability is a

continuous function of ωni since ωn = En
~ takes continuous values. In that case what is

important is the area under the main resonance peak. Since its height is proportional

to t2 and its width to 1
t
, the total transition probability grows linearly in t. It makes

sense to define a transition rate, namely probability divided by time. More formally,

we can take the time derivative

∂t|c(1)
n |2 =

2|V†ni|2

~2

sin(ωni − ω)t

ωni − ω
(9.36)

When t becomes sufficiently large, we can use the approximation

sinωt

ω

t→∞−→ πδ(ω) (9.37)

Therefore the time derivative becomes constant and defines a transition rate, namely a

probability per unit time. There is a probability of increasing and other of decreasing

the energy

wi→n =
2π

~
|V†ni|2δ(En − Ei + ~ω) (9.38)

wi→n =
2π

~
|Vni|2δ(En − Ei − ~ω) (9.39)

These formulas are known as the Fermi golden rule. Consider now an application. The

problem we are interested in is the atomic photoelectric effect, namely the ejection of

an electron from an atom due to the action of external electromagnetic radiation. In

any application of the Fermi golden rule we need to perform three important steps:
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• Identify the perturbation V and compute the transition rate w.

• Convert the transition rate into an experimentally useful quantity such as a mean-

life or a cross section.

• Identify the possible final states and sum or integrate over them to compute the

total cross section or mean-life.

In this case the perturbation is due to an electromagnetic standing wave whose vector

potential can be written as
~A = 2A0ε̂ cos(~k~x− ωt) (9.40)

Here, A0 is the amplitude of the wave, ε̂ is the polarization vector. Also, ~k is the wave

number, which determines the direction of propagation, and ω = |~k|c is the frequency.

The polarization is always transverse, namely ~kε̂ = 0. The electric and magnetic fields

follow as

~E = −1

c

∂ ~A

∂t
= −2A0ω

c
ε̂ sin(~k~x− ωt) (9.41)

~B = ∇× ~A = −2A0 (~k × ε̂) sin(~k~x− ωt) (9.42)

As we saw before, the Hamiltonian for an electron in an electromagnetic field is

H =
1

2m

(
~p− e

c
~A
)2

+ eφ (9.43)

where φ is the scalar potential (which in this case is due to the atomic nucleus). Ex-

panding at first order and taking into account that [pi, Ai] = −i~∇ · ~A = 0 we find the

perturbation to be

V = − e

mc
A0(ε̂~p)

(
ei
~k~x−iωt + e−i

~k~x+iωt
)

(9.44)

The first term is the one relevant for absorption and gives a transition rate

wi→n =
2π

~
e2A2

0

m2c2

∣∣∣〈En|ei~k~x(ε̂~p)|Ei〉∣∣∣2 δ(En − Ei − ~ω) (9.45)

Now let’s convert this into a useful quantity that we can measure. Since the energy

absorbed is proportional to the energy flux of the radiation and to the overall time, it

is convenient to define a normalized quantity, the cross section σabs. It is defined as an

area such that the energy flux of the incident beam across such an area is equal to the

energy absorbed by the sample (per electron) in the unit time. Namely:

Energy flux × σabs =
Energy absorbed

time
(9.46)
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Therefore it is measured in m2. In particle and nuclear physics it is more common

to use the unit “barn” given by 1b = 100 fm2. In this case it can be measured from

the attenuation rate of the radiation inside the material. Indeed, imagine radiation

traveling inside this material. In the density of the material is ρ (in number of atoms

per unit volume) we have that the intensity of the radiation I(x) obeys

I(x+ ∆x)− I(x) = −I(x)σabsρ∆x (9.47)

implying

I(x) = I(0)e−ρσabsx (9.48)

The exponential decay with the thickness of the material is much easier to measure than

the absolute value of the intensity. The energy flux of the electromagnetic radiation

follows from

Energy flux = c U =
c

2

(
E2
max

8π
+
B2
max

8π

)
=

1

2π

ω2

c
|A0|2 (9.49)

where U is the energy density of the radiation. The energy absorbed per unit time is

Energy absorbed

time
=
∑
n

wi→n~ω (9.50)

where the sum is over all possible final states of the electron and we took into account

that each process absorbs an energy ~ω. Due to the δ(En − Ei − ~ω) only states with

given energy need to be summed. The last step is to perform such sum. The only

thing we have to do is to integrate over all possible directions in which the electron

can emerge. However we have to have an adequate measure of integration. In order to

do that consider the system confined to a large box of linear size L and use periodic

boundary conditions. The electron wave-functions are

ψf (~x) =
1

L
3
2

ei
~kf~x, ~kf =

2π

L
(nx, ny, nz) (9.51)

where the n’s are integers. In the space of n’s there is one state per unit volume, and

for large L they are closely spaced so we can replace the sum by an integral:∑
nx,ny ,nz

=

∫
d3n = L3

∫
d3kf
(2π)3

=
L3

(2π)3

m

~2
kfdEf dΩ, kf =

√
2mEf
~2

(9.52)

where we used Ef =
~2k2

f

2m
and dΩ = sin θdθdφ denotes the solid angle into which the

electron is ejected. We can then write the differential absorption cross section as

dσabs =
4π2~
m2ω

e2

~c
L3

(2π)3

m

~2

∫
kf |〈kf |ei

~k~x(ε̂ · ~p)|Ei〉|2δ(Ef − Ei − ~ω)dEf dΩ (9.53)

=
4π2~
m2ω

e2

~c
L3

(2π)3

mkf
~2

∫
|〈kf |ei

~k~x(ε̂ · ~p)|Ei〉|2dΩ (9.54)
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The matrix element can be computed as

〈kf |ei
~k~x(ε̂ · ~p)|Ei〉 =

∫
d3x

1

L
3
2

e−i
~kf~x+i~k~x(−i~)ε̂ · ∇ψi(~x) (9.55)

=
i~
L

3
2

(−i~kf · ε̂)
∫
d3xei(

~k−~kf )~xψi(~x) (9.56)

=
~
L

3
2

(~kf · ε̂)ψ̃(~k − ~kf ) (9.57)

where we integrated by parts and defined the Fourier transform

ψ̃(~k − ~kf ) =

∫
d3x ei(

~k−~kf )~xψi(~x) (9.58)

The final expression for the differential cross section is

dσabs
dΩ

=
1

2π

e2

mωc
kf (~kf · ε̂)2|ψ̃(~k − ~kf )|2 (9.59)

Here the modulus of ~kf is determined by energy conservation. The angles in dΩ should

be integrated to obtain the total cross section.

A simple example is hydrogen atom in the ground state. In that case the wave

function is

ψ1s =
1
√
πa

3
2
0

e
− r
a0 (9.60)

The Fourier transform is

ψ̃(~k) =

∫
d3r ei

~k~rψ1s =
8
√
πa

3
2
0

(1 + k2a2
0)2

(9.61)

and then
dσabs
dΩ

=
32e2a3

0

mωc

kf (~kf ε̂)
2

(1 + (~k − ~kf )2a2
0)4

(9.62)

The first result is that electron will be ejected primarily in the direction of ε̂ due to

the factor (~kf ε̂)
2 in the numerator. The reason is that ε̂ is the direction in which the

electric field points. Finally, during the calculation we ignored the spin of the electron.

The reason is that this perturbation, at lowest order, does not couple to the spin and

therefore if the elecron is e.g. with spin up in the atom, it will be ejected with spin up.

9.4 2p→ 1s transition

In an spontaneous atomic transition only a few, usually one, photons are produced and

therefore the electromagnetic field needs to be quantized. Imagine the field inside a
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box with periodic boundary conditions. The solutions to the Maxwell equations is a

superposition of non-interacting plane waves of momenta ~k = 2π
L

(nx, nynz) with nx,y,z
integers. For each mode, the fields oscillate with frequency ω = |~k|c. Clearly, the plane

waves are the normal modes of oscillation of the field and should be quantized as a set

of independent harmonic oscillators. With this in mind we introduced the quantum

vector potential

~A(x) =

√
4π

V

∑
~k, α=1,2

c

√
~

2ωk
ε(α)

[
a~k,αe

i~k~x + a†~k,αe
−i~k~x

]
(9.63)

where a†~k,α, a~k,α are the usual creation and annihilation operators associated with each

mode. Their commutation relation is

[a†~k,α, a~k′,α′ ] = −δ~k,~k′δα,α′ (9.64)

the index α = 1, 2 indicates the polarization and εα are two unit vectors orthogonal to
~k and orthogonal to each other. The Hamiltonian is given by

H =
∑
~k,α

~ωk a†~k,αa~k,α (9.65)

The coefficients on the mode expansion of ~A are chosen such that

H =
1

8π

∫
d3x( ~E2 + ~B2) (9.66)

The eigenstates of the Hamiltonian are given by a set of integers N~k,α that determine

the occupation state of each mode.

|N~k,α〉, E =
∑
~k,α

N~k,α ~ωk (9.67)

After this brief description of the quantization of the electromagnetic field, let us go

back to our problem of computing the atomic transition probabilities. As said before,

first we have to identify the interaction responsible for the transition. This is the

familiar term in the interaction of a charged particle with an electromagnetic field:

V = − e

2mc
( ~A~p+ ~p ~A) (9.68)

Where we now have to take into account that ~A is an operator in the photon space.

Now we use Fermi’s golden rule

wi→f =
2π

~
|〈f |V |i〉|2 δ(Ef − Ei) (9.69)
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Notice that this is a transition in the continuum spectrum because the photon can have

any value of (positive) energy. The initial and final states are

|i〉 = |nlm;N~k,α = 0〉, |f〉 = |n′l′m′;N~k,α = 1〉 (9.70)

for some mode ~k, α.

Finally we have to sum over final states of the photon. That’s done by using∑
nx,ny ,nz

=
L3

(2π)3

∫
d3k (9.71)

and also a discrete sum over the two possible polarizations. In computing the transition

probability, only the creation part of the operator ~A needs to be kept, resulting in

〈f |V |i〉 = 〈n′l′m′;N~k,α = 1|− e

mc

√
4π

V

∑
~kα

c

√
~

2ωk
ε(α)~pa†~k,αe

−i~k~x|nlm;N~k,α = 0〉 (9.72)

The easiest part is the photon part since it gives

〈N~k,α = 1|a†~k,α|N~k,α = 0〉 = 1 (9.73)

Putting everything together including the sum over final states gives

wi→f =
L3

(2π)3

∑
α

∫
d3k

4π2e2

m2ωL3
|ε(α)〈n′l′m′|e−i~k~x~p|nlm〉|2 δ(En′,l′,m′ + ~ωk − Enlm)

(9.74)

Since ωk = kc we can do the radial integral in momentum using the delta function.

Thus

wi→f =
∑
α

∫
dΩ

e2ω

2π~cm2c2
|ε(α)〈n′l′m′|e−i~k~x~p|nlm〉|2 (9.75)

where dΩ = sin θdθdφ is the differential of solid angle for the emitted photon. This is

now a calculable atomic matrix element. However, it is useful to simplify the calculation

a bit by using the dipole approximation. Indeed, for example for the transition 2p→ 1s,

the energy is

~ω =
3

4

e2

2a0

= 10.2 eV, equivalently k ' 1

2× 10−8m
(9.76)

Since the wave function of the states is exponentially small for r � a0 we have ~k~x ∼
10−2 and an appropriate expansion is

e−i
~k~x = 1− i~k~x+ . . . (9.77)
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Keeping the first term corresponds to the so called E1 electric dipole transition, giving

wi→f =
∑
α

∫
dΩ

e2ω

2π~cm2c2
|ε(α)〈n′l′m′|~p|nlm〉|2 (9.78)

The only dependence on the direction of ~k is now in the polarization vectors. The

integral and sum over polarizations can be done using that∑
α

∫
dΩε

(α)
i ε

(α)
j = Bδij (9.79)

which follows from rotational invariance. The constant B can be computed by taking

the trace on both sides using that ε(α) are unit vectors∑
α

∫
dΩε

(α)
i ε

(α)
i = 2

∫
dΩ = 8π = 3B ⇒ B =

8π

3
(9.80)

Finally there is a useful trick to compute the matrix element of the momentum:

〈n′l′m′|~p|nlm〉 = 〈n′l′m′|im
~

[H,~x]|nlm〉 (9.81)

=
im

~
(En′l′m′ − Enlm)〈n′l′m′|~x|nlm〉 (9.82)

= imω〈n′l′m′|~x|nlm〉 (9.83)

Finally

wi→f =
4

3
α
ω3

c2
|〈n′l′m′|~x|n, lm, 〉|2 (9.84)

which agrees with the one obtained from the Einstein relations. For the particular case

2p→ 1s the result is

|〈1s|~x|2pm = 0〉|2 =
215

310
a2

0 (9.85)

where we used

ψ1s =
1√
4π

1

a
3
2
0

2e
− r
a0 (9.86)

ψ2p =

√
3

4π
cos θ

1

(2a0)
3
2

r√
3a0

e
− r

2a0 (9.87)

Using that

~ω =
3

4

e2

2a0

(9.88)

we obtain

w2p→1s =
28

38
α5mc

2

~c
c =

1

1.6 10−9s
(9.89)

Therefore the mean life of the 2p state is

τ2p = 1.6ns (9.90)
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10. Scattering

Scattering is one of the most important processes in physics from an experimantal point

of view. It consists of sending a beam of particles towards a target and detecting the

resulting products of the collision. A detector usually measures the direction in which

the particles come out together with their energy, charge and mass.

A particular case is ellastic scattering where incoming particles are scattered in

different directions but without changing their nature, that is no new particles are

created in the collision. The most standard case is the scattering of particles by a

potential. This case has applications for example in atomic and molecular physics.

Scattering process are characterized by the total σT , partial σλ differential dσ
dΩ

cross

sections.

Incident flux × σT =
Number of particles scattered

time
(10.1)

Incident flux × σl =
Number of particles scattered in given channel l

time
(10.2)

Incident flux × dσ

dΩ
=

Number of particles scattered into a solid angle dΩ

time
(10.3)

A channel means scattering taking place through a particular process, for example

oinvloving waves with angular momentum l. The unit of measure for the cross ection

is area, namely m2. Some times the unit 1barn = 1b = 10−28m2 = 100fm2 is used.

10.1 Scattering as a time dependent problem, Born approximation

Ellastic scattering is a time-dependent process where the initial sate is a particle in

a definite sate of momentum and the final state is the same particle with a different

momentum. If hte process can be treated perturbatively, using the Fermi golden rule,

the probabilty per unit time is

wi→f =
∑

final states

2π

~
|〈f |V |i〉|2δ(Ef − Ei) (10.4)

The cross section is then

σ =
wi→f

incident flux
(10.5)

The cross section is the total cross section if we sum over all final states and the

differential cross section if we sum over states with momentum inside the differential

of solid angle dΩ. Here V is the perturbation responsible for the scattering.

To be more specific consider the scattering of particles by a potential V (~x). Nor-

malizig the wave functions to unit in a large volume L3, the incident and outgoing wave
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functions are

ψi,f =
1

L
3
2

ei
~ki,f~x (10.6)

The momenta are quantized as

~k =
2π

L
(nx, ny, nz), nx,y,z ∈ Z (10.7)

Therefore the sum over final states is done as∑
nx,ny ,nx

'
∫
d3n =

L3

(2π)3

∫
d3k (10.8)

valid in the limit L→∞. Finally, the incident flux is given by

~j = −i ~
2m

(ψ∗∇ψ − ψ∇ψ∗) =
1

L3

~~k
m

(10.9)

since ~~k is the momentum, the current can be interpreted as the density 1
L3 times the

velocity ~~k
m

Putting all the pieces together we can compute the total cross section:

σT =
wi→f

incident flux
(10.10)

=
mL3

~k
L3

(2π)3

∫
d3k

2π

~
|〈f |V |i〉|2δ(Ef − Ei) (10.11)

=
mL3

~k
L3

(2π)3

∫
d3k

2π

~
| 1

L3

∫
d3xei(

~k−~k′)~xV (~x)|2δ(
~2k2

f

2m
− ~2k2

i

2m
) (10.12)

=
m2

4π2~4

∫
dΩ|Ṽ (~k − ~k′)|2 (10.13)

where we defined the Fourier transform

Ṽ (~k − ~k′) =

∫
d3xei(

~k−~k′)~xV (~x) (10.14)

The differential cross section is given by

dσ

dΩ
=

m2

4π2~4
|Ṽ (~k − ~k′)|2 (10.15)

This gives the first order approximation to scattering by a potential also known as the

Born approximation.
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10.1.1 Radial potential

If the potential only depends on the distance to the origin, namely V = V (r), we have

Ṽ (~k − ~k′) =

∫
d3xei(

~k−~k′)~xV (r) (10.16)

=

∫ ∞
0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφei|
~k−~k′|r cos θV (r) (10.17)

=
4π

|~k − ~k′|

∫ ∞
0

rV (r) sin(r|~k − ~k′|)dr (10.18)

which involves only a single integral and is therefore simpler to compute. Consider the

example of a Yukawa potential

V (r) =
V0

µr
e−µr (10.19)

The integral can be done in closed form

Ṽ (q = |~k − ~k′|) =
4π

q

∫ ∞
0

r
V0

µr
e−µr sin qr (10.20)

=
4π

q

V0

2iµ

∫ ∞
0

e−µr(eiqr − e−iqr)dr (10.21)

=
4πV0

µ

1

µ2 + q2
(10.22)

The differential cross section is therefore

dσ

dΩ
=

m2

4π2~4

V 2
0

µ2

16π2

(µ2 + q2)2
=

4m2V 2
0

µ2~4

1

(µ2 + q2)2
(10.23)

Using now that

q2 = (~k − ~k′)2 = k2 + k′2 − 2~k~k′ = k2(2− 2 cos θ) = 4k2 sin2 1

2
θ (10.24)

where we defined θ as the angle between ~k and ~k′ and used that k2 = k′2 from energy

conservation, we can get

dσ

dΩ
=

(
2mV0

µ~2

)2
1

(µ2 + 4k2 sin2 1
2
θ)2

(10.25)

The total cross section is

σ =

∫
dσ =

(
2mV0

µ~2

)2

2π

∫ π

0

sin θdθ

(µ2 + 4k2 sin2 1
2
θ)2

(10.26)

=

(
2mV0

µ~2

)2
2π

µ2(µ2 + 4k2)
(10.27)
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Interestingly, if we take V0 = e2µ and take the limt µ → 0 we get the Coulomb

differential cross section(
dσ

dΩ

)
Coulomb

=

(
2me2

~2

)2
1

16k4 sin4 1
2
θ

(10.28)

10.2 Scattering by a potential, time-independent approach

In the case of scattering by a potential it is actually possible to give a solution to

all orders in perturbation theory if we are able to solve the problem of finding the

Energy eigenstates for a particle in such potential. This can be done analytically or

perhaps numerically. Although showing the equivalence between the time dependent

and independent methods is a bit lengthy the result is very simple to understand.

If the incident particles have energy E then we need to look for an eigensate of

energy E. In the continuum spectrum there is an infinte number of states with a given

energy. Among those states we have to find a linear combination that behaves at inifity

as a superposition of an incident plane wave and and outgoing spherical wave:

ψE(~x) '|~x|=r→∞
1

(2π)
3
2

(
ei
~k~x +

eikr

r
f(r̂, ~k)

)
(10.29)

Here ~k is the momentum of the incident wave and ~x = rr̂. The outgoing spherical

waves represent the scattered particles and therefore the differential cross section is

given by

dσ =
outgoing flux× r2dΩ

ingoing flux
=

~k
m

1
r2 |f(r̂, ~k)|2 × r2dΩ

~k
m

(10.30)

= |f(r̂, ~k)|2 dΩ (10.31)

10.3 Central potential and phase shifts

If the potential depends only on the distance to the origin, V = V (r) then the angular

momentum is conserved. In this case it is more likely that we can solve the Schroedinger

problem analytically or numerically. The reason is that due to angular momentum

conservation, the three dimensional Schroedinger equation reduces to an independent

set of one-dimensional equation. Moreover, since the centrifugal barrier grows near the

origin, for a finite incident energy, only a finite set of angular momenta contribute to

the scattering. More precisely, the wave function is decomposed as

ψE =
∑
`,m

R`(r)Y`m(θ, φ) =
∑
`,m

1

r
χ`(r)Y`m(θ, φ) (10.32)
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The equation for χ`(r) is

− ~2

2m
χ′′` (r) +

(
V (r) +

`(`+ 1)~2

2mr2

)
χ`(r) = Eχ`(r) (10.33)

From now on we are going to assume that the potential has range a, namely that for

r > a the potential vanish (or can be well approximated by zero, e.g. Yukawa potential

that vanishes exponentially). A particle of energy E = ~2k2

2m
cannot penetrate the

centrifugal barrier much beyond a distance r̄ such that

~2k2

2m
=

`2~2

2mr̄2
, r̄ =

`

k
(10.34)

Thus, if r̄ > a such particle will not be affected by the potential. That means that only

waves with angular momentum

` < `max = ka (10.35)

are affected by the potential (for a given k). The next question is how are the waves

with ` < ka affected. At infinity χ` behaves as a superposition of an incoming and

outgoing waves:

χ`(r) 'r→∞ A`e
−ikr +B`e

ikr (10.36)

Since the coordinate r ends at r = 0 the incoming and outgoing fluxes have to tbe the

same |A| = |B|. There can only be a phase difference between A and B:

B` = (−)`+1e2iδ`(E)A` (10.37)

Such phase difference, up to the minus sign introduced by convenience, defines the

phase shift δ`(E) for that given incident energy E. The set of numbers δ`, ` < ka are

the whole information we can get from solving the Schroedinger equation and therefore

should determine the scattering cross section for that energy. Both, theoretically and

experimentally it is convenient to characterize the scattering from the phase shifts

δ`(E).

To see how to compute the cross section we consider the Schroedinger equation in

the region r � a where the potential vanishes. The equation reduces to

−χ′′` +
`(`+ 1)

r2
χ` =

2mE

~2
χ` (10.38)

This is a from of the Bessel equation whose solution are 1
r
J`+ 1

2
(kr) and 1

r
N`+ 1

2
(kr).

This is conveniently written in terms of the radial wave function as

R`(r) = C1j`(kr) + C2n`(kr) (10.39)
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with j` , n` called spherical Bessel functions and given by

j`(ρ) =

√
π

2ρ
J`+ 1

2
(ρ), n`(ρ) =

√
π

2ρ
(−)`+1N`+ 1

2
(ρ) (10.40)

Some properties are

j`(ρ) ∼ 2` `!

(2`+ 1)!
ρ`, ρ→ 0, j`(ρ) ' 1

ρ
cos(ρ− 1

2
(`+ 1)π), ρ→∞ (10.41)

n`(ρ) ∼ ρ−`−1, ρ→ 0, n`(ρ) ' 1

ρ
sin(ρ− 1

2
(`+ 1)π), ρ→∞ (10.42)

and some particular values are

j0(ρ) =
1

ρ
sin ρ, n0(ρ) = −1

ρ
cos ρ (10.43)

j1(ρ) = −1

ρ
cos ρ+

1

ρ2
sin ρ, n1(ρ) = −1

ρ
sin ρ− 1

ρ2
cos ρ (10.44)

According to the definition of phase shifts the radial wave function should behave

asymptotically as

R`(r) =
1

r
χ`(r) '

1

r

(
A`e

−ikr +B`e
ikr
)
' 1

r
A`
(
e−ikr + (−)`+1e2iδ`eikr

)
(10.45)

From the asymptotic form of the spherical Bessel functions we find

j`(kr) + in`(kr) =
1

kr
eikr(−i)`+1, j`(kr)− in`(kr) =

1

kr
e−ikri`+1 (10.46)

implying that the wave-function for r > a is

R` = A`
(
k(−i)`+1(j` − in`) + (−)`+1e2iδ`i`+1k(j` + in`)

)
(10.47)

= 2k(−i)`+1A`e
iδ`(j`(kr) cos δ` − n`(kr) sin δ`) (10.48)

Moreover, since the potential is spherically symmetric we can choose the axis any way

we want. It is convenient to choose z along the incident beam. In that way the wave

function we are looking for is independent of φ and can be written in terms of Legendre

polynomials P`(cos θ). Altogether, for r > a the wave-function can be written as

ψE(r) =
∑
`

2k(−i)`+1A`e
iδ`(j`(kr) cos δ` − n`(kr) sin δ`)P`(cos θ) (10.49)

The phase shifts should be computed by matching this expression to the wave-function

for r < a that can follow only from solving the Schroedinger equation in the potential
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in question. Equivalently, we can match equation (10.39) to the aymptotic form of the

wave-function and find

C1 + iC2 = |C1 + iC2|e−iδ` ⇒ δ` = arg(C1 − iC2) (10.50)

To summarize, the phase shift is computed by solving the Schroedinger equation and

matching the aymptotic form of the wave-function to eq.(10.45)

The next step is to compute the scattering cross section. For that we have to match

with the asymptotic form

ψE(~x) '|~x|=r→∞
1

(2π)
3
2

(
eikz +

eikr

r
f(r̂, ~k)

)
(10.51)

The plane wave can be written as

eikz =
∑
`

(2`+ 1)i`j`(kr)P`(cos θ) (10.52)

'r→∞
∑
`

2`+ 1

2ikr
P`(cos θ)

(
eikr + (−)`+1e−ikr

)
(10.53)

and therefore

ψE(~x) 'r→∞
1

(2π)
3
2

∑
`

2`+ 1

2ikr
P`(cos θ)

(
e2iδ`eikr + (−)`+1e−ikr

)
(10.54)

'r→∞
1

(2π)
3
2

∑
`

2`+ 1

2ikr
P`(cos θ)

[(
e2iδ` − 1 + 1

)
eikr + (−)`+1e−ikr

]
(10.55)

where we used eq.(10.37) to relate the incoming and outgoing waves. Thus the asymp-

totic wave-function is written as a sum of a plane wave and outgoing spherical waves

allowing us to identify:

f(r̂, ~k) =
∑
`

2`+ 1

2ik
P`(cos θ)

(
e2iδ` − 1

)
(10.56)

=
∑
`

2`+ 1

k
P`(cos θ)eiδ` sin δ` (10.57)

The total cross section is given by

σ =

∫
dΩ|f(r̂, ~k)|2 (10.58)

= 2π

∫ π

0

dθ sin θ
∑
`,`′

(2`+ 1)(2`′ + 1)

k2
sin δl sin δ`′e

i(δ`−δ`′ )P`(cos θ)P`′(cos θ)(10.59)

=
4π

k2

∑
`

(2`+ 1) sin2 δ` (10.60)
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where we have used ∫ 1

−1

P`(x)P`′(x) dx =
2

2`+ 1
δ``′ (10.61)

It interesting to note that

σ =
4π

k2

∑
`

(2`+ 1) sin2 δ` =
4π

k
Imf(θ = 0) (10.62)

that is known as the optical theorem.

10.4 Hard spheres example

The hard sphere potential is defined as

V (r) =

{
∞ r < a

0 r > a
(10.63)

The wave equation is the one for a free particle for r > a and has to vanish at r = a.

Form equation (10.49) we immediately find

j`(ka) cos δ` − n`(ka) sin δ` = 0 (10.64)

namely

tan δ` =
j`(ka)

n`(ka)
(10.65)

that completely solves the problem of computing the phase shifts. In hte case of ` = 0

we simply have

tan δ0 =
j0(ka)

n0(ka)
= − tan ka ⇒ δ0 = −ka (10.66)

Atlow energy, namely ka� 1 we can use the behavior of the Bessel functions to find

δ` ∼ (ka)2`+1 → 0 (10.67)

Therefore, in the low energy regime, the scattering is dominated by the s-waves. It

follows that

σ =
4π

k2
(ka)2 = 4πa2 (10.68)

larger than the classical cross section which is πa2 at all energies. This motivates the

following definition, for a generic system, the cross section at low energies the cross

section is dominated by s-waves and therefore

σT (k → 0)→ 4πa2
s (10.69)
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for some quantity as with units of length that is called the scattering length.

At large energies all angular momenta up to lmax ∼ ka contribute, as discussed at

the beginning of this section. For large ka we have

tan δ` '
cos(ka− 1

2
(`+ 1)π)

sin(ka− 1
2
(`+ 1)π)

= − tan(ka− 1

2
`π) ⇒ δ` ' −ka+

1

2
`π (10.70)

Therefore

σ ' 4π

k2

lmax∑
`

(2`+ 1) sin2(ka− 1

2
`π) =

2π

k2

lmax∑
`

(2`+ 1)(1− (−)` cos(2ka)) (10.71)

The sums can be done exactly now. The leading behavior is

σ ' 2π

k2
`2
max = 2πa2 (10.72)

Notice that is `max = ka+ ∆ for ∆ of order one in ka, the leading expansion is still the

same.

10.5 Shallow bound state

Consider the case where we have a deep potential V (r) that vanishes for r > a. Suppose

there is a shallow bound state, namely a bound state of energy E = −ε whose value

is small compared with the potential. Also assume we are interested in low energy

scattering ka� 1 and such that E is also small compared with the potential, but not

necessarily with ε. In this situation scattering is dominated by s-waves and

σ =
4π

k2
sin2 δ0 (10.73)

To compute the phase shift δ0 we write the wave function for r > a which is

χ(r > a) = A sin(kr + δ0) (10.74)

by definition of phase shift. We need to match the function and the derivative to the

function inside the potential. To compute the boundary condition we use the fact that

there is a shallow bound state. Indeed, inside the potential the scattering wave-function

satisfies

− ~2

2m
∂2χ+ V (r)χ = Eχ (10.75)

Since the energy E is small compared to the potential we can assume the wave-function

changes little when we change E. However, we know that for E = −ε the wave function

inside matches a decaying exponential outside:

χ(r > a) = Be−κr, κ =

√
2mε

~2
, ⇒ χ′(r = a)

χ(r = a)
= −κ (10.76)
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and then we should also have the same value for the scattering state

k
cos(ka+ δ0)

sin(ka+ δ0)
= −κ (10.77)

Since ka� 1 we find

cot δ0 = −κ
k

(10.78)

and then

sin2 δ0 =
k2

k2 + κ2
⇒ σ =

4π

k2 + κ2
=

2π~2

m

1

E + ε
(10.79)

The cross section at zero energy is given by

σ =
2π~2

m

1

ε
(10.80)

This cross section can be very large compared to the value 4πa2 that we could have

expected at low energy. In fact, if the bound state is at ε = 0 the cross section is

σ =
4π

k2
(10.81)

which is called the unitarity limit and is discussed more generally in the next subsection.

10.6 Unitarity limit

Consider the case of low energy that is dominated by s-wave scattering:

σ = 4π|f0|2 (10.82)

The optical theorem gives

σ =
4π

k
Imf0 (10.83)

Hence

(Imf0)2 =
σ2k2

16π2
≤ |f0|2 =

σ

4π
(10.84)

Implying

σ ≤ 4π

k2
(10.85)

which is known as the unitarity limit. In terms of the phase shift

σ =
4π

k2
sin2 δ0 (10.86)

The unitarity limit is reached at resonance δ0 = π
2
:

σ =
4π

k2
(10.87)
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Figure 5: Sacttering with energy E in the presence of a shallow bound state with energy

−ε.

The cross section has no parameters and is completely fixed by dimensional reasons.

The absence of a scale suggest that the system can display scale invariance. In atomic

physics it is possible to have a gas of particles such that the typical interactions occur

at a resonance. Such gas is said to be at the unitarity limit.

10.7 Resonances

Suppose we have a negative potential surrounded by a high barrier that ends at r = a

after which the potential vanishes. Let us consider the case ka � 1 and study s-wave

scattering. For simplicity, consider the barrier has constant potential V0 (see figure 6)

and write the wave-function as

χ(r) =


χI(r) for r < r0

χII(r) = Aeκr +Be−κr for r0 < r < a

χIII(r) = C sin(kr + δ0) for r > a

(10.88)

with

k =

√
2mE

~2
, κ =

√
2m(V0 − E)

~2
, (10.89)
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We do not know the wave-function χI(r) since we assume some general potential in the

region r < r0. On the other hand, matching the wave-functions at r = a we obtain

κAeκa − κBe−κa

κAeκa + κBe−κa
= k cot(ka+ δ0) (10.90)

For most values of energy, we have eκa � e−κa and therefore (recall ka� 1)

cot δ0 '
k

κ
(10.91)

a slowly varying function of energy. However, for a quasi-bound state at E = E0 we

have A(E0) = 0, namely only the decaying exponential survives. At E = E0 we have

cot δ0 ' −
k

κ
(10.92)

namely a sign change. It is clear that when going from E < E0 to E > E0 the phase

shift abruptly increases by π. For some value of energy E = ER close to E0 we should

have δ0 = π
2

giving a peak in the cross section (since sin δ0(ER) = 1). In principle the

phase shift could decrease by π instead but we are going to rule out that case later on.

If we assume δ0 is small away from the resonance, the cross section will increase and

have a peak whose highest value is σ = 4π
k2 , namely the unitarity limit. If the cross

section is large (more rare case), namely δ0 ' 1 then it will dip to zero. The shape of

the peak can be computed using the approximation that

cot δ0 ' −2
E − ER

Γ
⇒ sin2 δ0 '

Γ2/4

(E − ER)2 + Γ2/4
(10.93)

and the cross section

σ ' 4π

k2

Γ2/4

(E − ER)2 + Γ2/4
(10.94)

that is superimposed to the ”normal” cross section computed from cot δ0 ' k
κ

10.8 Equivalence of time-independent and dependent approaches

Consider the eigenstate of the Hamiltonian with energy E = ~2k2

2m
such that at infinity

behaves as

ψE '
1

(2π)
3
2

{
eikz +

1

r
f(θ, k)eikr

}
(10.95)

with

f(θ) =
∑
`

2`+ 1

2ik
P`(cos θ)(e2iδ` − 1) (10.96)
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Figure 6: Sacttering with energy E in the presence of a resonance.

Create now a wave packet

ψg =

∫
dkg(k)ψE(x), g(k) = Ae−

a2

2
(k−k0)2

(10.97)

The time dependent wave function will be

ψg(~x, t) = A

∫
dke−

a2

2
(k−k0)2

e−i
~k2

2m
tψE(x), (10.98)

We assume that this gaussian is sharply peaked and with small uncertainty in position

and momentum. For large values of |~x| we can use the expression of the wave func-

tion that we had before. The first term gives a wave packet propagating towards the

scattering center:

ψg1 =

√
2

a
π

1
4

1√
1 + i~

ma2 t
e
− (z− ~k0

m t)2

2a2(1+ i~
ma2 t) (10.99)

as can be seen from its modulus squared:

|ψg1|2 =

√
4π

a2 + ~2t2

m2a2

e
− 1

2

(z− ~k0
m t)2

a2+ ~2t2

m2a2 (10.100)
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The position of the wave packet is given by

z =
~k0

m
t = v0t, v0 =

~k0

m
(10.101)

For the second term we first ignore the dependence of f(θ, k) on k and get the same

result as for the first term but replacing z → r:

ψg2 '
1

r

√
2

a
π

1
4

1√
1 + i~

ma2 t
e
− (r− ~k0

m t)2

2a2(1+ i~
ma2 t) (10.102)

This represents a spherical wave whose radius grows as

r =
~k0

m
t = v0t, (10.103)

However, for t < 0 the gaussian is localized around an unphysical negative value of r.

Therefore, for r > 0 the wave functions is essentially zero. That is, for negative t we

only have a plane wave and for t > 0 we have a superposition of a plane wave and a

spherical wave as desired. More detail can be found by using the previous expression

for f(θ) and expanding

δ`(k) ' δ`(k0) +
∂δ`(k0)

∂k0

(k − k0) + . . . (10.104)

In this case we obtain a spherical wave of radius

r =
~k0

m
t− 2

∂δ`(k0)

∂k0

=
~k0

m
(t−∆t) (10.105)

with

∆t = 2~
∂δ`(E)

∂E
(10.106)

It should be noted that a very rapid decrease of the phase shift would lead to a neg-

ative time delay, in the extreme case implying that the spherical wave packet appears

before the plane wave reaches the scattering region. Since this is impossible, very rapid

decreases of the phase shift are ruled out. If the potential is non-zero within a radius

a we have a bound for the case ∆t < 0

|∆t| < a

v0

⇒ E|δ′(E)| < ka (10.107)
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10.9 Inelastic Scattering

Assuming a central potential but also the possibility of other processes happening,

the amplitude of the outgoing wave in each angular momentum channel should be

equal or smaller that the incoming one. Taking this into account, the elastic scattering

amplitude can be written as

f(θ) =
∞∑
`=0

2`+ 1

2ik
P`(cos θ) (S` − 1), |S`| ≤ 1 (10.108)

The total elastic cross section is given by

σe =

∫
dΩ|f |2 =

π

k2

∞∑
`=0

(2`+ 1)|S` − 1|2 (10.109)

For each channel, 1 − |S`|2 represents the probability going into other channels, for

example particle production. Therefore, the inelastic cross section is

σi =
π

k2

∞∑
`=0

(2`+ 1)(1− |S`|2) (10.110)

The total cross section is

σT = σe + σi =
2π

k2

∞∑
`=0

(2`+ 1)(1− ReS`) (10.111)

If |S`| = 1 then we only have elastic scattering, but if |S`| = 0 then σe = σi, that is we

cannot have just inelastic scattering. Finally, the optical theorem is

Imf(0) =
∞∑
`=0

2`+ 1

2k
(1− ReS`) =

k

4π
σT (10.112)

That means the imaginary part of the forward elastic cross section determines the total

cross section, including elastic and inelastic.
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