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1. Introduction

2. Classical strings

2.1 Action and equations of motion

A convenient method to describe a physical system is through a principle of minimal

action. Given an initial and final state for the system, a number, the action, is assigned

to every possible trajectory. The classical trajectory that the system follows is the one

which has minimal (or extremal) action. For example Newton’s equation for a particle

in an external potential follows from the action:

S =

∫

dt
1

2
m

(
d~x

dt

)2

− V (~x) (2.1)
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and the equations of motion for a relativistic particle in an external electromagnetic

field Aµ from the action:

S = m

∫

ds+ q

∫

Aµ(x)dxµ (2.2)

Exercise Verify that extremizing eq.(2.1) gives Newton’s equation

m
d2~x

dt2
= −~∇V (x) (2.3)

and that extremization of eq.(2.2) gives the (relativistic) equation of motion for a

particle (see appendix for notation) in an electromagnetic field

d

dt

m~v√
1 − v2

= q
(

~E + v × ~B
)

, (2.4)

where

~E = −~∇φ+
∂ ~A

∂t
, B = ~∇× ~A. (2.5)

�
��
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(x ,t )

t

i i

f f
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Figure 1: From all possible trajectories, the particle follows the one with minimal action.

Now we would like to find a principle of minimal action for a string. Given an initial

and final shape for the string, all possible trajectories are surfaces that describe the

motion of the initial shape into the final one. Topologically these surfaces are cylinders.

To each of them we want to assign a number. A natural suggestion that generalizes
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the action of a particle is to assign to each trajectory, the area of the corresponding

surface. A way to understand the physical meaning of this is to divide the string in

portions of fixed length and consider each portion as a particle of mass proportional to

the length. Using eq.(2.2) (with no external field) we would get the total action as the

area of the surface.
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Figure 2: A string also follows the path of minimal action.

We should now get a concrete formula for the area. The surface is parameterized

by two coordinates that are usually called (σ, τ). The surface is given by functions

Xµ(σ, τ). The coordinate σ runs between 0 and 2π and the functions Xµ are periodic

in σ. The parameter τ runs between and initial τi and a final τf value. The functions

Xµ(σ, τ) satisfy:

Xµ(σ, τi) = Xµ
i (σ), Xµ(σ, τf ) = Xµ

f (σ), Xµ(σ + 2π, τ) = Xµ(σ, τ) (2.6)

where Xµ
i (σ) and Xµ

f (σ) are the (arbitrary) initial and final shape of the string.

To compute the area of the surface determined by the functions Xµ(σ, τ) we use

standard analysis with the caveat that the space time metric is Minkowski. To do

that consider first the standard Euclidean case, where we embed a surface in Rn. In

that case, we compute the area by making a grid in σ, τ , sum the areas of all the

small rectangles and then taking the limit of the size of the grid going to zero. If we

are at a given point Xµ(σ, τ) and change σ by dσ, the position is going to change by

dXµ
1 = ∂σX

µdσ and if we move in τ by dXµ
2 = ∂τX

µdτ . The area of the corresponding
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parallelogram (see fig.3) is

dA = |dX1||dX2| sin θ12 (2.7)

where θ12 is the angle between the two vectors dX1 and dX2. The simplest way to

compute the angle is to use the scalar product:

dX1.dX2 = |dX1||dX2| cos θ12 (2.8)

which then gives

(dA)2 = |dX1|2|dX2|2 − (dX1.dX2)
2 (2.9)

The area can then be computed as

A =

∫

dσ dτ
√

(∂σX)2(∂τX)2 − (∂σX.∂τX)2 (2.10)

Exercise Verify that for a sphere parameterized as:

X1 = R sin θ cosφ (2.11)

X2 = R sin θ sin φ (2.12)

X3 = R cos θ (2.13)

the previous formula gives the standard result for the area.

The generalization to Minkowski space is simply to consider the scalar products

with the Minkowski metric, namely

∂σX.∂τX = −∂σX0∂τX0 + ∂σX1∂τX1 + ∂σX2∂τX2 + ∂σX3∂τX3 (2.14)

and the same with the other ones. The string action is then

S =
1

2πα′

∫

dσ dτ
√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2 (2.15)

where we changed signs inside the square root because otherwise, in Minkowski space,

the area would be imaginary. Also we included a constant α′ with units of length

squared to make the action adimensional. Anticipating that we are going to quantize

the string, we take ~ = 1. Usually the action has the same units as ~ and since ~ = 1

now is adimensional. The physical interpretation of 1/α′, as we see later, is the tension

of the string. Namely, a string of length L has a mass L/alpha′.

After having obtained the action we have to find the equations of motion that

describe the trajectory that minimizes it. Let us derive those equations in general.

Suppose we have an action

S =

∫

dσdτL(Xµ, ∂σX
µ, ∂τX

µ) (2.16)
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Figure 3: Computation of area element.

where L, the Lagrangian is an arbitrary function of Xµ and its first derivatives. Let

us say now that X̄µ(σ, τ) are the, as yet undetermined functions, that minimize the

action. The statement means that, if we perform a first order variation X̄ → X̄ + δX

then, at first order the action remains stationary. This assumes that the variations

respect the boundary conditions, namely:

δXµ(σ, τi) = 0, δXµ(σ, τf ) = 0, δXµ(σ + 2π, τ) = δXµ(σ, τ) (2.17)

Formally, we have

S = S̄ +

∫

dσ dτ
δS

δXµ(σ, τ)
δXµ(σ, τ) (2.18)

+
1

2

∫

dσ1 dτ1

∫

dσ2 dτ2
δ2S

δXµ(σ1, τ1)δXν(σ2, τ2)
δXµ(σ1, τ1)δX

ν(σ2, τ2) + . . .

If δS
δXµ is not zero then performing different variations δXµ we can get the action to

increase or decrease at will, namely we cannot be at a minimum. The first variation is

computed from

δS =

∫

dσdτL(X̄µ+δXµ, ∂σX̄
µ+∂σδX

µ, ∂τX̄
µ+∂τδX

µ)−
∫

dσdτL(X̄µ, ∂σX̄
µ, ∂τ X̄

µ)

(2.19)
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where only first order terms in the variation are to be kept. A little algebra leads to

δS =

∫

dσdτ
∂L
∂Xµ

δXµ +
∂L

∂(∂σXµ)
∂σδX

µ +
∂L

∂(∂τXµ)
∂τδX

µ (2.20)

In the last two terms it is convenient to integrate by parts. This gives rise to a boundary

term in the integral in τ (not in σ since that coordinate is periodic). In total we get

δS =

∫

dσdτ

{
∂L
∂Xµ

− ∂σ

∂L
∂(∂σXµ)

− ∂τ

∂L
∂(∂τXµ)

}

δXµ +

[
∂L

∂(∂τXµ)
δXµ

]∣
∣
∣
∣

f

i

(2.21)

Since the position of the string at the initial and final times is fixed we consider, as

mentioned, only variations such that δXµ(σ, τi,f ) = 0 which eliminates the boundary

term. We get in the end:

δS

δXµ
=

∂L
∂Xµ

− ∂σ

∂L
∂(∂σXµ)

− ∂τ

∂L
∂(∂τXµ)

= 0 (2.22)

with

L(X̄µ, ∂σX̄
µ, ∂τ X̄

µ) =
√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2 (2.23)

These gives the equations of motion:

∂σ

{

(∂σX.∂τX)∂τX
µ − (∂τX)2∂σX

µ

√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2

}

+ ∂τ

{

(∂σX.∂τX)∂σX
µ − (∂σX)2∂τX

µ

√

(∂τX.∂σX)2 − (∂τX)2(∂σX)2

}

= 0

(2.24)

one for each value of µ.

These equations determine the surface of minimal area. Consider now an example

of a solution to these equations. Consider a string moving in a plane (x, y) and propose

a solution1:

t = κτ (2.25)

x = κ sin σ cos τ (2.26)

y = κ sin σ sin τ (2.27)

To understand the shape of the string it is convenient to consider the complex coor-

dinate x + iy = κ sin σeiτ which shows that the string extends in the radial direction

to a distance κ of the center and is folded over itself (remember 0 ≤ σ ≤ 2π). The

1Here we give the solution, later we are going to learn how to find such solutions
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dependence in τ (which is identified with time up to a constant κ) is simply a rotation

in the (x, y) plane. We can compute now:

Xµ = (t, x, y) (2.28)

∂τX
µ = (κ,−κ sin σ sin τ, κ sin σ cos τ) (2.29)

∂σX
µ = (0, κ cosσ cos τ, κ cosσ sin τ) (2.30)

(∂τX)2 = −κ2 + κ2 sin2 σ = −κ2 cos2 σ (2.31)

(∂σX)2 = κ2 cos2 σ (2.32)

(∂τX.∂σX) = 0 (2.33)

which implies
√

(∂τX.∂σX)2 − (∂σX)2(∂τX)2 = κ2 cos2 σ (2.34)

The equations of motion (2.24) reduce to

(∂2
σ − ∂2

τ )X
α = 0 (2.35)

for α = 0, 1, 2. This is just the usual wave equation and it can easily be seen that the

functions in (2.27) satisfy it.

Another example appears when we consider one coordinate to be periodic:

x ≡ x+ 2πR (2.36)

for some radius R. This is an example of compactification of a spatial dimension,

something that we are going to use later. Here we can see it as a trick to get a simple

solution. In that case we can take

t = κτ (2.37)

x = σ R (2.38)

and is easy to verify that all equations are satisfied. Note that we have to take the

coordinate x to be periodic to respect the periodicity in σ.

To finalize let us mention that one possible but unrelated application is to find

the shape of a film of soap attached to a given contour. In that case, in a static

configuration, the film of soap minimizes the energy which is the area times the tension

of the film (as opposed to the string where the surface is in space-time and we minimize

the action).

Exercise Consider two circles x2 + y2 = R2, z = −a and x2 + y2 = R2, z = a

and suppose they represent two rings which are the boundary of a film of soap. Find

the shape of the film assuming it is the surface of minimal area. Hint: by rotational

symmetry parameterize the surface as: x = f(τ) cosσ, y = f(τ) sin σ, z = τ and use

the equations of motion that we derived to obtain f(τ).
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2.2 Noether’s theorem and conserved quantities

For a free string, we expect that the total energy and momentum are conserved. We

can now derive this by using a general procedure due to E. Noether. We start first by

noticing that, although we consider L to be a generic function, in reality, from (2.15)

we see that it is independent of Xµ, namely it only depends on the derivatives. This

means that the equations of motion are:

∂σ

∂L
∂(∂σXµ)

+ ∂τ

∂L
∂(∂τXµ)

= 0 (2.39)

Integrating in σ and dropping the boundary terms we get that

∂τ

∫

dσ
∂L

∂(∂τXµ)
= 0 (2.40)

namely

Pµ =

∫

dσ
∂L

∂(∂τXµ)
(2.41)

are conserved quantities: ∂τPµ = 0. The component P0 is naturally identified with the

energy and the spatial component Pi with the total center of mass momentum. Using

the action (2.15) we get

Pµ =
1

2πα′

∫

dσ
(∂σX.∂τX)ηµα∂σX

α − (∂σX)2ηµα∂τX
α

√

(∂τX.∂σX)2 − (∂τX)2(∂σX)2
(2.42)

Example Consider the solution (2.27) we checked in the previous section. Using

formula (2.42) we can compute its energy and momentum resulting in

Pµ = −ηµα

1

2πα′

∫ 2π

0

dσ ∂τX
α (2.43)

The only non-vanishing integral is for µ = 0 (energy) and gives:

E = P0 =
κ

α′
(2.44)

That the momentum (Pi) is zero, is not surprising since the center of mass is at rest.

The second example (2.38) gives

Pµ = − 1

2πα′

∫ 2π

0

dσ∂τX
α (2.45)

Again, only P0 is non-zero and its value is

P0 =
R

α′
(2.46)

– 9 –



That means that the energy of a stretched string is proportional to the length. The

proportionality constant is the tension 1/α′.

The action is also invariant under Lorentz transformations, namely linear transfor-

mations of the form

X̃µ = Λµ
νX

ν (2.47)

that leave the scalar product invariant. Consider an infinitesimal Lorentz transforma-

tion given by

Λµ
ν = δµ

ν + ε ηµα ωαν . (2.48)

where ω is antisymmetric (see appendix). Since the Lagrangian is written in terms of

scalar products it is invariant under these transformations, namely:

L(Xµ, ∂σX
µ, ∂τX

µ) = L(X̃µ, ∂σX̃
µ, ∂τ X̃

µ) (2.49)

At first order in ε we have:

X̃µ = Xµ + εηµαωανX
ν (2.50)

and the same for ∂σ,τX
µ since ω is independent of σ and τ . The fact that the Lagrangian

is invariant implies

∂L
∂Xµ

ηµαωανX
ν +

∂L
∂(∂σXµ)

ηµαωαν∂σX
ν +

∂L
∂(∂τXµ)

ηµαωαν∂τX
ν = 0 (2.51)

Using the equations of motion we obtain

∂σ

(
∂L

∂(∂σXµ)
ηµαωανX

ν

)

+ ∂τ

(
∂L

∂(∂τXµ)
ηµαωανX

ν

)

= 0 (2.52)

which, as before, implies the conservation of:

Mω =

∫

dσ

(
∂L

∂(∂τXµ)
ηµαωανX

ν

)

(2.53)

This is true for any antisymmetric omega. Looking at each independent component of

ω we obtain the conserved quantities:

Mµν =
1

2

∫

dσ

(
∂L

∂(∂τXα)
ηαµXν − ∂L

∂(∂τXα)
ηανXµ

)

(2.54)

which is the angular momentum of the string.

Example Going back to our example of the rotating string, we get, after all the

simplifications due to the form of the solution:

Mµν =
1

4πα′

∫

dσ (Xµ∂τX
ν −Xν∂τX

µ) (2.55)
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The integral is zero for M01 and M02 since the integrands are proportional to sinσ or

cosσ. The only non-zero one is

M12 = J =
κ2

2πα′

∫ 2π

0

sin2 σdσ =
κ2

4α′
(2.56)

which is conventionally denoted as J . Using the result we already have for the energy

(2.44) we obtain the important relation

P0 = E =
2√
α′

√
J (2.57)

that is, a linear relation between the energy squared and the angular momentum . It

turns out that mesons obey, to a certain approximation, such relation between their

mass squared and their spin (a law known as Regge trajectories). This was one of the

origins of string theory as a model for hadrons.

We can obtain other two conservation laws from the fact that the Lagrangian does

not depend explicitly on σ and τ . Namely, given a solution of the equations of motion

Xµ(σ, τ), after replacing in the Lagrangian we get L as a function of (σ, τ). We have:

dL
dσ

=
∂L
∂σ

+
∂L
∂Xµ

∂σX
µ +

∂L
∂(∂σXµ)

∂2
σX

µ +
∂L

∂(∂τXµ)
∂στX

µ (2.58)

The first term is zero ∂L
∂σ

= 0 and the others can be simplified using the equations of

motion to give:

dL
dσ

= ∂σ

(
∂L

∂(∂σXµ)
∂σX

µ

)

+ ∂τ

(
∂L

∂(∂τXµ)
∂σX

µ

)

(2.59)

Integrating in σ we obtain the conservation law:

∂τPσ = ∂τ

∫

dσ

(
∂L

∂(∂σXµ)
∂σX

µ

)

= 0 (2.60)

Doing the same for τ we obtain:

dL
dτ

= ∂τ

(
∂L

∂(∂τXµ)
∂τX

µ

)

+ ∂σ

(
∂L

∂(∂σXµ)
∂τX

µ

)

(2.61)

Integrating in σ we get now

∂τPτ = ∂τ

∫

dσ

(
∂L

∂(∂τXµ)
∂τX

µ − L
)

= 0 (2.62)
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Since we already obtained the conservation of energy, momentum and angular momen-

tum, it is not clear what these new conserved quantities Pσ,τ could be. To find out we

replace the Lagrangian (2.15) that we had and actually find that

∂L
∂(∂σXµ)

∂σX
µ = 0 (2.63)

and
∂L

∂(∂τXµ)
∂τX

µ − L = 0 (2.64)

so Pσ,τ = 0 and no new conservation laws appear. This is actually very important and

is related to the fact that the action is invariant under reparameterizations of σ and τ .

That is, the area of the surface does not depend on how we parameterize it.

2.3 Static, conformal and light-cone gauges

The equation of motion as they stand are rather complicated. However, as we men-

tioned, the action is invariant under reparameterizations of (σ, τ). A judicious choice of

coordinates can simplify the equations. Now we are going to see several such choices.

In string theory, a choice of coordinates on the world-sheet is usually called a gauge

choice and hence the name of this section.

The first choice is static gauge. In this gauge we identify two space time coordinates

with σ and τ . For example we can choose:

X0 = τ, X1 = σ (2.65)

This reduces the number of equations that we need to solve. However, we notice that

the solutions are not general, for example already, to choose such a gauge we need

to have that X1 is a periodic coordinate, otherwise the string will not be closed. A

more generic choice is to use other space-time coordinates, for example spherical or

cylindrical and then identify one of those coordinates with σ. We will see examples of

that below.

Let us consider another common choice called conformal gauge. First compute the

distance between two points on the world-sheet which are very close to each other. Let

us say we have point X(σ, τ) and X(σ + dσ, τ + dτ). The distance between those two

points is:

ds2 = dXµdXνηµν = (∂σX
µdσ + ∂τX

µdτ)(∂σX
νdσ + ∂τX

νdτ)ηµν (2.66)

= (∂σX)2dσ2 + (∂τX)2dτ 2 + 2(∂σX.∂τX)dσdτ (2.67)

This distance is called the induced metric on the world sheet. It can be written in the

generic form:

ds2 = hσσdσ
2 + hττdτ

2 + 2hστdσdτ (2.68)
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where

hσσ = (∂σX)2, hττ = (∂τX)2, hστ = (∂σX.∂τX) (2.69)

If we redefine (σ, τ) then, although the distance is the same, the components of the

metric hσ,σ, hττ and hστ change. Since we have two functions to choose, namely the two

new coordinates as a function of the old ones, we can put the metric in a form which

contains only one arbitrary function. In fact it is possible to prove that the metric can

always be put in the form:

ds2 = eφ
(
dσ2 − dτ 2

)
(2.70)

In such gauge we have

hστ = (∂σX.∂τX) = 0 (2.71)

hσσ + hττ = (∂σX)2 + (∂τX)2 = 0 (2.72)

This simplifies the equations of motion enormously because, from (2.24) they reduce

to:

(∂2
σ − ∂2

τ )X
µ = 0 (2.73)

The most generic solution to these equations is

Xµ = XL(σ + τ) +XR(σ − τ) (2.74)

with XL,R two arbitrary functions describing left and right moving waves. It appears

that we have solved the problem completely but that is not the case. For our purpose

these functions are not arbitrary, they have to satisfy the constraints (2.72). This

makes the problem complicated again but in a different way. Which gauge, static or

conformal is more convenient depends on which problem we have to solve.

There is a further refinement of conformal gauge which is the light-cone gauge.

Notice that we can introduce world-sheet coordinates σ± defined as

σ± = σ ± τ (2.75)

in terms of which the reference metric can be written as

ds2 = eφ(σ,τ)dσ+dσ− (2.76)

It is obvious now that if we make a coordinate change

σ̃+ = σ̃+(σ+), σ̃− = σ̃−(σ−) (2.77)

the metric transforms as

ds2 = eφdσ+

dσ̃+

dσ−
dσ̃−

dσ̃+dσ̃− (2.78)
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which has the same form. This means that our choice of gauge does not fix the coordi-

nates completely. However we are now allowed to choose two functions of one variable

(as opposed to two functions of two variables as we had before). It is convenient at this

point to also choose light-cone coordinates in space time by defining:

X± = X0 ±X1 (2.79)

In the world-sheet there is only one spacial coordinate to do this, but in space time we

need to single out one particular coordinate (in this case X1) making Lorentz invariance

less explicit. The equations of motion for these coordinates is the same as before:

(∂2
σ − ∂2

τ )X
± = 0 (2.80)

Consider X+. The generic solution of the equation of motion is

X+ = X+
L (σ+) +X+

R (σ−) (2.81)

We can define now new coordinates σ̃+ = X+
L (σ+), σ̃− = −X+

R (σr) such that

X+ = σ̃+ − σ̃− = 2τ̃ (2.82)

This means that we can fix the last ambiguity by choosing

X+ = 2τ (2.83)

This gauge is called light cone gauge. It is usually more convenient when studying the

quantum theory as we will see later.

2.4 Strings in curved space

We saw that the metric on the world-sheet is determined by its embedding in space

time. Suppose now that space time itself has a non-trivial metric. For example we can

consider that the string is constrained so stay in the surface of a two-sphere parame-

terized by polar angles (θ, φ) as:

x = R sin θ cosφ (2.84)

y = R sin θ sinφ (2.85)

z = R cos θ (2.86)

The distance between two points at (θ, φ) and (θ + dθ, φ+ dφ) is

dx2 + dy2 + dz2 = R2(dθ2 + sin2 θdφ2) (2.87)
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If we include time the total space time metric is given by:

ds2 = −dt2 +R2(dθ2 + sin2 θdφ2) (2.88)

Generically we can have a space time metric given by

ds2 = Gµν(X)dXµdXν (2.89)

where Gµν are given functions of the coordinates. If we embed a string in this space we

can again compute the action as the area of the surface that the string describes when

it moves. Suppose we are in the case we mentioned before, namely that the string is

moving on the surface of a sphere. What we can do is consider the world-sheet of the

string as embedded on ordinary space time and compute the area there which gives

the result we already know (2.15). Now we can compute the same scalar products in

coordinates (θ, φ). For example:

(∂σX)2 = −(∂σt)
2 + (∂σx)

2 + (∂σy)
2 + (∂σz)

2 (2.90)

= −(∂σt)
2 +R2

[
(∂σθ)

2 + sin2 θ(∂σφ)2
]

(2.91)

= Gµν∂σX
µ∂σX

ν (2.92)

So, we see that the action is the same, we only need to replace ηµν by Gµν in all scalar

products. The only difference is that, since Gµν are functions of the coordinates then

it is no longer true that ∂L/∂Xµ = 0. In particular this implies that momentum and

energy are not necessarily conserved. The equations of motion are now

∂σ

{

(∂σX.∂τX)∂τX
µ − (∂τX)2Gµα∂σX

α

√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2

}

+ ∂τ

{

(∂σX.∂τX)∂σX
µ − (∂σX)2∂τGµαX

α

√

(∂τX.∂σX)2 − (∂τX)2(∂σX)2

}

=
2∂µGαβ∂τX

α∂σX
β(∂σX.∂τX) − ∂µGαβ∂τX

α∂τX
β(∂σX)2 − ∂µGαβ∂σX

α∂σX
β(∂τX)2

2
√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2

A final comment is that one can also use the formalism of curved space to study strings

in flat space when using non-cartesian coordinates. For example in spherical coordinates

we have that the metric is:

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (2.93)

and therefore

G =








−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ








(2.94)

For some string configurations it is useful to work with a metric like this one instead

of the Cartesian one.
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3. Quantum strings and string spectrum

Now we are going to consider the quantum mechanics of a string. Before going into

details let us describe the results that we are going to obtain since their general features

can be easily understood. First, we expect the string to have a continuous value of the

center of mass momentum. On the other hand the internal motion of the string is

bounded so, for that part, we expect a discrete spectrum. As we discuss below, the

discrete set of internal states is labeled by two infinite sets of non-negative integers

which are usually denoted as (N i
m=1...∞, Ñ

i
m=1...∞). A generic state of the string is then

given by:

|ψ〉 = |pµ, {N i
m, Ñ

i
m}〉 (3.1)

where, as we said pµ is the space time momentum, and {N i
m, Ñ

i
m} are non-negative

integers describing the internal motion of the string. The index i in N i
m refers to the

transverse directions in light-cone gauge and runs from 1 to (D − 2) where D is the

number of space time dimensions. For reasons that will become apparent later we leave

the number of dimensions D arbitrary. The total energy is a function of the momentum

and internal energy. It turns out that we find:

M2 = p2
0 − ~p2 =

2

α′

(

N + Ñ − 2
)

(3.2)

where

N =

D−2∑

i=1

∞∑

m=1

mN i
m, Ñ =

D−2∑

i=1

∞∑

m=1

mÑm, (3.3)

This means that the internal motion leads to a discrete spectrum of mass. We can

therefore think a string as an infinite set of particles, each with a mass given by the

formula (3.3)2. In the rest of the section we show how to derive the spectrum and

the physical meaning of the quantum numbers N i
m. In order to do that, we have to

quantize the string, namely we have to replace the classical quantities by operators

obeying canonical commutation relations. In the case of strings, a straight-forward

quantization is possible in light-cone gauge since there the variables X i are independent

and their equations of motion are linear. All quantum states are physical states of

the string. This is not that case if we do not fix completely the reparameterization

symmetry. For example in conformal gauge, many states describe the same physical

state of the string. In light-cone gauge, the only problem we face is when studying

Lorentz invariance. Since we single out a spacial coordinate, the operators that mix

X± with the transverse coordinates X i have complicated expressions and it is not

2As we see later there is a constraint N = Ñ on the states
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straight-forward to verify that they behave as they should. In particular, it turns out

that Lorentz symmetry is preserved only if the string moves in 26 dimensions!. This is

a rather peculiar and fundamental property of strings, namely that they determine the

dimension of space-time. Of course it is a bit odd that the result is 26 but nevertheless

quite remarkable that only a certain dimension is allowed.

Having discussed the general results, let us now concentrate on their detailed deriva-

tion.

3.1 Quantization in light-cone gauge and free string spectrum

As mentioned, quantization is straight-forward in light-cone gauge, so let us revise some

formulas. If the space-time dimension is D we have coordinates X0, ,X1,. . . , XD−1.

First we introduce two new space-time coordinates:

X± = X0 ±XD−1 (3.4)

The metric becomes

ds2 = ηµνdX
µdXν = −dX+dX− + dX idX i, i = 1 . . . (D − 2) (3.5)

From here we see that, in these coordinates, η+− = η−+ = −1
2
, ηii = 1 and the inverse

η+−, η−+ = −2, ηii = 1. We now consider conformal gauge. In this gauge there is a

residual symmetry that allows us to choose:

X+ = x+ + α′p+τ (3.6)

where we introduced the constant p+. From the conformal constraints we obtain

∂σX
− =

2

α′p+
∂σX

i∂τX
i (3.7)

∂τX
− =

1

α′p+

[
∂σX

i∂σX
i + ∂τX

i∂τX
i
]

(3.8)

From here we derive a constraint on the X i:
∫ 2π

0

dσ ∂σX
i∂τX

i =
α′p+

2

∫ 2π

0

dσ ∂σX
− = 0 (3.9)

Otherwise, the X i are independent and determine completely the dynamics, since X+

is fixed and X− is derived from (3.8). Now we use the formulas in conformal gauge to

find the momenta:

P µ =
1

2πα′

∫ 2π

0

dσ ∂τX
µ (3.10)
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Of particular interest are

P+ =
1

2πα′

∫ 2π

0

dσ ∂τX
+ = p+ (3.11)

P− =
1

2πα′

∫ 2π

0

dσ ∂τX
− =

1

2π(α′)2

∫ 2π

0

dσ
[
∂σX

i∂σX
i + ∂τX

i∂τX
i
]

(3.12)

We should remember that P− is the conjugate of X+. Since X+ and τ are proportional

we can also think P− as the world-sheet Hamiltonian that generates translations in τ .

We should also note that

P± = P 0 ± P 1 (3.13)

which implies that they are both positive. Finally, we can compute the mass of the

string as:

M2 = P+P− − P iP i =
1

2π(α′)2

∫ 2π

0

dσ
[
∂σX

i∂σX
i + ∂τX

i∂τX
i
]
− P iP i (3.14)

Since P µ are conserved, so is M2. Not only that, it is also Lorentz invariant and

therefore an important quantity to characterize the motion of the string.

Before discussing the quantization we are going to write the dynamic in terms of

normal modes which are then easy to quantize.

3.1.1 Normal modes

The X i satisfy the equations of motion

(∂2
σ − ∂2

τ )X
i = 0 (3.15)

which are solved by

X i = X i
L(σ + τ) +X i

R(σ − τ) (3.16)

Taking into account the periodicity in σ we can write X i as;

X i = xi + piτα′ + i

√

α′

2

∑

n 6=0

(
1

n
αi

ne
−in(σ+τ) +

1

n
α̃i

ne
in(σ−τ)

)

(3.17)

The periodicity in σ rules out a term linear in σ and the rest is simply Fourier analysis in

σ. The coefficients follow some peculiar conventions that are standard in string theory

and facilitate some of the calculations. The factors of α′ are necessary for dimensional

reasons. Since X i is real we should have

αi
−n = (αi

n)∗ (3.18)
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The interpretation of the expansion is that xi, pi are the center of mass position and

momentum. The rest simply describes oscillations of the string around its center of mass

and the αi
n, α̃i

n are the normal coordinates, corresponding to independent oscillations.

We can now write everything in terms of them. Using

∂σX
i =

√

α′

2

∑

n 6=0

(
αi

ne
−in(σ+τ) − α̃i

ne
in(σ−τ)

)
(3.19)

∂τX
i = piα′ +

√

α′

2

∑

n 6=0

(
αi

ne
−in(σ+τ) + α̃i

ne
in(σ−τ)

)
(3.20)

(3.21)

we compute

0 =

∫ 2π

0

dσ ∂σX
i∂τX

i = πα′
∑

n 6=0

(
αi

nα
i
−n − α̃i

nα̃
i
−n

)
(3.22)

which gives the only constraint among the αi
n, α̃i

n. The momenta follow as

P i =
1

2πα′

∫ 2π

0

dσ piα′ = pi (3.23)

P− =
pipi

p+
+

1

α′p+

∑

n 6=0

(
αi

nα
i
−n + α̃i

nα̃
i
−n

)
(3.24)

which justifies calling pi the center of mass momentum. The mass follows as:

M2 =
1

α′

∑

n 6=0

(
αi

nα
i
−n + α̃i

nα̃
i
−n

)
(3.25)

Finally we would like to obtain the coordinate X−. In conformal gauge, X− satisfies

the same equation as the X i so we can also write

X− = x− + p−τα′ + i

√

α′

2

∑

n 6=0

(
1

n
α−

n e
−in(σ+τ) +

1

n
α̃−

n e
in(σ−τ)

)

(3.26)

However the α−
n are not independent variables nor is p−. On the other hand x− is

independent, since the constraints involve derivatives of X−. In fact, x− is conjugate

to the other independent variable p+. To find the α−
m we use that:

∂σX
− =

2

p+α′
∂σX

i∂σX
i (3.27)

=
√

2α′
pi

p+

∑

n 6=0

(
αi

ne
−in(σ+τ) − α̃i

ne
in(σ−τ)

)
(3.28)

+
1

p+

∑

n 6=0,m6=0

(
αi

nα
i
me

−i(n+m)(σ+τ) − α̃i
nα̃

i
me

i(n+m)(σ−τ)
)

(3.29)
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Introducing the expansion of X− and identifying coefficients we obtain

α−
n =

2pi

p+
αi

n +

√

2

α′

1

p+

∑

m6=0,m6=n

αi
n−mα

i
m (3.30)

and the same formula replacing the α’s by α̃’s. From here we see that it is convenient

to define:

αi
0 =

√

α′

2
pi (3.31)

and write

α−
n =

√

2

α′

1

p+

∞∑

m=−∞

αi
n−mα

i
m (3.32)

What we have just done is reproduce the usual result that the Fourier components of

the product are given by the convolution (defined by the sum over m) between the

Fourier components of the terms.

The last calculation is to compute the angular momentum:

Mµν =
1

2πα′

∫ 2π

0

dσ (Xµ∂τX
ν −Xν∂τX

µ) (3.33)

= xµpν − xνpµ − i

2

∑

n 6=0

1

n

(
αµ
−nα

ν
n − αν

−nα
µ
n

)
− i

2

∑

n 6=0

1

n

(
α̃µ
−nα̃

ν
n − α̃ν

−nα̃
µ
n

)

which can be interpreted as the sum of an orbital angular momentum plus an internal

spin. Note that we can use this formula for components such as M i− but we should

remember then to replace α−
n by its value (3.30). It should be noted that in the

calculation of P µ and Mµν the dependence on τ canceled as it should since they are

conserved quantities.

This concludes our discussion of the classical dynamics in terms of normal modes.

We are ready to go to the quantum theory.

3.1.2 Quantization

We managed to write the dynamics of the string in terms of simple variables x±, p+,

xi, pi, αi
n, α̃i

n. Formally, quantizing means that we replace these variables by operators

with some particular commutation relations. The operators are then represented as

linear operators acting on a Hilbert space, the space of all possible states of the string.

The canonical commutation relations are that [p, x] = −i for canonically conju-

gated variables. The momentum p is defined as the derivative of the Lagrangian with
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respect to the velocity: p = ∂L
∂∂tx

. In our case we have as coordinates Xi(σ, τ), and the

Lagrangian is L =
∫ 2π

0
dσL. The derivative gives, in conformal gauge,

Πi(σ, τ) =
∂L

∂(∂τX)
=

1

2πα′
∂τX

i(σ, τ) (3.34)

where we denote with Πi(σ, τ) the momentum conjugate to X i(σ, τ). Note that we

have

P i =

∫ 2π

0

dσΠi(σ, τ) (3.35)

namely, the zero mode of Πi is the center of mass momentum. The canonical commu-

tation relations read now:

[
Πi(σ, τ), X

j(σ′, τ)
]

= −iδj
i δ(σ − σ′) (3.36)

and all other commutators vanish. Notice that the commutator is taken between fields

evaluated at the same value of τ . The function δ(σ − σ′) is the Dirac delta function3.

The commutation relations should be considered as a definition of the quantum theory

but they are natural since they express the fact that Πi(σ) is canonically conjugated

to X i(σ), namely at the same value of σ and with the same index i. If σ 6= σ′ or i 6= j

the commutator vanishes.

We can now use that, from (3.17), we have

αi
n =

1

4π

√

2

α′
einτ

∫ 2π

0

dσ einσ
(
−inX i + ∂τX

i
)

(3.37)

Using (3.36) we can compute

[
αi

n, α
j
m

]
= nδijδm+n (3.38)

where δ0 = 1 and δn 6=0 = 0. Similarly, from

α̃i
n =

1

4π

√

2

α′
einτ

∫ 2π

0

dσ e−inσ
(
−inX i + ∂τX

i
)

(3.39)

we obtain

[
α̃i

n, α̃
j
m

]
= nδijδm+n (3.40)

[
αi

n, α̃
j
m

]
= 0 (3.41)

3Technically it is called a distribution and is defined by the equation
∫

2π

0
dσ f(σ)δ(σ − σ′) = f(σ′)
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That means that the only non-zero commutators are

[
αi

n, α̃
i
−n

]
= n (3.42)

[
α̃i

n, α̃
i
−n

]
= n (3.43)

and we can consider n > 0 (since n < 0 is the same commutator). Moreover, since the

relation (3.18) becomes

αi
−n = (αi

n)† (3.44)

we see that the commutation relations are the standard commutation relations of the

harmonic oscillator up to a rescaling. In fact

ai
n =

1√
n
αi

n, ãi
n =

1√
n
α̃i

n, (n > 0) (3.45)

obey the usual relations:
[
ai

n, (a
i
n)†
]

= 1, (3.46)

and the same for ãi
n. That is, αi

n with positive index is understood as a lowering or

annihilation operator and αi
n with negative subindex as raising or creation operator.

We can then represent each ai
n on a space of states labeled by occupation numbers N i

n

such that

ai
n|N i

n〉 =
√

N i
n|N i

n〉, (ai
n)† =

√

N i
n + 1|N i

n〉, n = 1 . . .∞, (3.47)

and the same with ãi
n. In fact, N i

n is the eigenvalue of the number operator:

N i
n = (ai

n)† ai
n =

1

n
αi
−n α

i
n (3.48)

The space of states of the string is the product of all the possible states of the oscillators

and therefore is labeled by the set of non-negative integers N i
m, Ñ

i
m. An important state

is the vacuum state |0〉 where all N i
n = Ñ j

m = 0 which satisfies

αi
n|0〉 = 0, for all n > 0. (3.49)

We still have to consider the zero modes:

xi =
1

2π

∫ 2π

0

dσX i − τ

∫ 2π

0

dσ ∂τX
i, pi =

∫ 2π

0

dσ ∂τX
i (3.50)

Again from (3.36) we obtain
[
xi, pj

]
= iδij (3.51)
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as expected. They can be represented on the space of wave functions ψ(xi) where xi

acts by multiplication and pi = −i ∂
∂xi . Of particular importance are the eigenstates of

momentum |pi〉 with wave-function ψpi = eixipi

. We complement this by defining

[
x−, p+

]
= iη+− = −2i (3.52)

to be consistent with Lorentz invariance (namely [xµ, pν ] = iηµν). A generic state of

the string is then determined as

|ψ〉 = |p+, pi, N i
n, Ñ

j
m〉 (3.53)

where p+, pi are real numbers and N i
n, Ñ j

m non-zero integers.

Now we have to extend this to all operators which, generically, are sums of terms,

each of which is a product of αi
n, α̃i

n. When doing that one has to face the problem

that the αi
n do not commute. For that reason it is important to define normal ordered

operators. Those are operators such that all annihilation operators appear to the right

of the creation operators. Since creation operators commute among themselves and so

do the annihilation ones, that defines uniquely the order in which to multiply them.

The important property of normal ordered operators is that their expectation value in

the vacuum is finite. In fact it is given by whatever c-number term one has since all

terms containing operators have zero expectation value in the vacuum. For example,

for the operator

A =
∑

n 6=0

αi
nα

i
−n (3.54)

we have

〈0|A|0〉 = 〈0|
∑

n>0

αi
nα

i
−n|0〉 =

∑

n>0

n = divergent (3.55)

On the other hand, the normal ordered operator that we denote as : A : is

: A :=:
∑

n 6=0

αi
nα

i
−n := 2

∑

n>0

αi
−nα

i
n (3.56)

and satisfies

〈0| : A : |0〉 = 0 (3.57)

Of course A and : A : are not the same, they differ in commutators which in this case

is an infinite constant. We should always work with normal ordered operators which

are well defined (as opposed to for example A in the previous example).

After this digression we are in position of writing all momenta and angular momenta

in terms of the oscillators. The momenta p+ and pi are trivial but P− is precisely of
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the form of the operator A we discussed in our example. We define it to be equal to

P− =
pipi

p+
+

2

α′p+

(
∞∑

n=1

αi
−nα

i
n +

∞∑

n=1

α̃i
−nα̃

i
n − 2a

)

(3.58)

When going from the classical to the quantum expression there is an order ambiguity

that we resolved by writing the operators in normal ordered form. However one can

think of other orderings that differ by a commutator which in this case is just a number.

For that reason we introduce the (for now) arbitrary constant a. If we introduce the

notation

N =
∞∑

n=1

αi
−nα

i
n =

D−2∑

i=1

∞∑

n=1

mN i
m, Ñ =

∞∑

n=1

α̃i
−nα̃

i
n =

D−2∑

i=1

∞∑

n=1

mÑ i
m, (3.59)

we have

P− =
pipi

p+
+

2

α′p+

(

N + Ñ − 2a
)

(3.60)

and the condition (3.22) upon quantization becomes

N = Ñ (3.61)

which is usually called the level matching condition (since N is sometimes called the

level). That means that the total contribution to P− from left and right moving

oscillators is the same but the states can be different.

With all this in mind we find the mass spectrum to be

M2 =
2

α′

(

N + Ñ − 2a
)

(3.62)

The degeneracy of each mass level is determined by different ways in which we can

choose the N i
n and Ñ j

m such that N = Ñ is fixed.

The lowest levels are:

vacuum: N = Ñ = 0. Mass: M2 = −4a
α′

. One state: |0〉.

first level: N = Ñ = 1. Mass M2 = 4(1−a)
α′

. (D − 2)2 states: αi
−1α̃

j
−1|0〉.

second level: N = Ñ = 2. Mass M2 = 4(2−a)
α′

. 1
4
(D − 2)2(D + 1)2 states:

(D − 2)2 states: αi
−2α̃

j
−2|0〉,

1
2
(D − 2)2(D − 1) states: αi

−1α
j
−1α̃

k
−2|0〉,

1
2
(D − 2)2(D − 1) states: αi

−2α̃
j
−1α̃

k
−1|0〉,

1
4
(D − 2)2(D − 1)2 states: αi

−1αj−1α̃k
−1α̃

l
−1|0〉.

(3.63)
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To understand the spectrum we should remember that massive particles transform in

representations of SO(D − 1) and massless ones in representations of SO(D − 2). At

level two we have (1
2
(D−2)(D+1))2 states. Since the number of states in the traceless

symmetric representation of SO(D − 1) is precisely 1
2
(D − 2)(D + 1) we seem to have

two copies of such representation. In fact such representation splits into the singlet,

traceless symmetric and vector representations of SO(D− 2) which is what we have in

the left and right moving sides.

However, at level one we have a representation of SO(D − 2) which cannot be

lifted to a representation of SO(D − 1). We expect then this level to be massless and

therefore a = 1. In that case we have massless particles in the symmetric traceless,

antisymmetric and singlet representations of SO(D−1). These states are the graviton,

the B-field and the dilaton. From here is where the idea of string theory as a theory

of quantum gravity arose. However, if a = 1 we have that the vacuum has M2 = − 4
α′

which means that there is a tachyon. The potential for such field is an upside down

quadratic potential and the theory is unstable. In later section we find a solution to this

problem but for the moment we are going to study the bosonic string a little further.

3.2 Massive and massless particles in D dimensions

In this subsection we briefly recall some facts about massive and massless particles in

arbitrary dimension D.

3.2.1 Massive particles

The different states of a particle are labeled by their momentum and polarization. The

momentum p is such that p2 = −m2 where m is the mass of the particle. For a fixed

momentum, there is always a frame where the momentum is of the form:

p = (m, 0, 0, . . . , 0) (3.64)

that is where the particle is at rest. After fixing the momentum, a particle still has a

discrete set of possible states which are its different polarization states. If we perform

an SO(D − 1) rotation in the spacial directions, the momentum does not change, i.e.

the particle is still at rest. However the different polarization states of the particle

transform into each other filling some representation of SO(D − 1). Examples are:

Scalar particle Corresponds to the identity representation, namely a single state in-

variant under rotations.

Vector particle The states transform in the vector representation of SO(D − 1),

therefore there are D − 1 states.
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Two index antisymmetric representation The states are organized into an anti-

symmetric tensor of two indices. Therefore it has (D−1)(D−2)
2

components.

Two index traceless symmetric The states transform as a two index traceless sym-

metric tensor. Therefore it has D(D−1)
2

− 1 states.

3.2.2 Massless particles

A massless particle moves at the speed of light and there is no frame of reference where

it is at rest. However we can always choose our axis such that one of them is parallel

to the direction of motion. Namely, we can take the momentum to be of the form

p = (k, k, 0, 0, . . . , 0), ⇒ p2 = 0 (3.65)

for some k. Now, we can perform an SO(D − 2) rotation that leaves the momentum

invariant and therefore only transform the different polarization states among them-

selves. Thus, the polarizations of a massless particle fit in representations of SO(D−2).

Examples are:

Scalar particle Corresponds to the identity representation, namely a single state in-

variant under rotations. It is the same as in the massive case.

Vector particle (gauge boson, e.g. photon) The states transform in the vector rep-

resentation of SO(D − 2), therefore there are D − 2 states.

Two index antisymmetric representation (B-field) The states are organized into

an antisymmetric tensor of two indices. Therefore it has (D−2)(D−3)
2

components.

Two index traceless symmetric (graviton) The states transform as a two index

traceless symmetric tensor. Therefore it has (D−1)(D−2)
2

− 1 states.

Notice that, in four dimensions, both, the photon and the graviton have two polariza-

tions but in higher dimensions that is not the case any more.

To write a Lorentz invariant equation of motion for a massless field we need to

add unphysical components to fill a finite dimensional representation of the Lorentz

group. For example a photon is represented by a vector field Aµ with D components

of which only D − 2 should be physical. The fact that there are extra components

which are not physical means that there is a large symmetry because changing the

value of the non-physical components at any point of space time should not change the

physics. The symmetries that arise are local, namely depending on parameters which

are arbitrary functions of space-time, and are called gauge symmetries. We proceed

in the next subsection to see how the equation of motion and the gauge symmetry

eliminate the unwanted components reducing the field to its physical components.
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3.3 Massless vectors

A massless vector field is represented by a field Aµ. We have to impose a gauge invari-

ance, compatible with the Lorentz symmetry, to eliminate the unwanted components.

The only possibility is:

Ãµ = Aµ + ∂µλ (3.66)

where λ is an arbitrary function of the position and the statement is that Aµ and Ãµ

describe the same physical situation. Consider now an equation of motion for Aµ which

we are going to take to be up to second order in partial derivatives. Since we need D

equations for D variables, we need to construct a vector out of Aµ, ∂αAµ and ∂αβAµ.

The most general possibility is:

a∂ααAµ + b∂µαAα + cAµ = 0 (3.67)

where repeated indices are contracted with the Minkowski metric ηµν and a, b, c are

arbitrary constant coefficients. If we write the equation in terms of Ãµ = Aµ + ∂µλ, we

get

a∂ααÃµ + b∂µαÃα + cÃµ − a∂ααµλ− b∂µααλ− c∂µλ = 0 (3.68)

If we impose gauge invariance, namely that, for any λ, the equation for Ã were the

same as for Aµ we need to have

a = −b, c = 0 (3.69)

and the equation of motion is then

∂ααAµ − ∂µαAα = 0 (3.70)

which is the Maxwell equation for the vector potential.

Now we want to see that the equation of motion and gauge invariance determine

that, for a wave with given momentum p there are only D − 2 physical polarizations.

We start by noticing that we can always do a gauge transformation to an Ãµ such that

∂αÃα = 0. Indeed we just need to choose λ such that

∂ααλ = −∂αAα (3.71)

which can always be done. In fact this is just a wave equation with a source that can

be solved for example by the method of Green functions. In this gauge, known as the

Lorentz gauge, the equations of motion simplify to

∂ααAµ = 0, ∂αAα = 0 (3.72)
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The solutions are plane waves. For a given momentum p = (k, k, 0 . . . , 0) we have

Aµ = aµe
ipx (3.73)

which solve ∂ααAµ = 0 if p2 = 0 as we have. The vector aµ is a constant vector called

the polarization. It has D components but they are not independent since the gauge

condition ∂αAα = 0 implies

ηµνpµaν = 0, ⇒ −ka0 + ka1 = 0, ⇒ a0 = a1 (3.74)

So it has only D− 1 independent components, still one more than the expected D− 2.

Now we notice that we have not fixed the gauge completely with the condition ∂αAα = 0

since a gauge transformation

Ãµ = Aµ + ∂µλ (3.75)

leaves this condition invariant if

∂ααλ = 0 (3.76)

So we still have a freedom that can allow us to eliminate one more component. Consider

then a gauge transformation generated by

λ = λ̄eipx (3.77)

where λ̄ is a constant. The vector Ãµ = ãµe
ipx has components

ãµ = aµ + ipµλ̄, i.e. ã0 = ã1 = a0 + ikλ̄, ãi = ai, i = 2, . . . (D − 1) (3.78)

If we choose λ̄ as

λ̄ = −a0

ik
(3.79)

then the only non-vanishing components of Ã are Ãi with i = 2 . . . (D − 1), namely

D − 2 independent components as expected.

In summary, we can impose a gauge symmetry and write an equation of motion

in a Lorentz invariant way for a vector field Aµ such that only D − 2 components are

physical. The same number we obtained by group theory considerations for a massless

vector representation.

Finally, if we want to put a source to the equation, namely couple the photon to

charged matter we can do so by constructing, out of the matter fields, a vector jµ, the

current, and inserting it in the right hand side of eq.(3.70):

∂ααAµ − ∂µαAα = jµ (3.80)

Taking the derivative ∂µ on both sides we obtain

∂µjµ = ∂µ (∂ααAµ − ∂µαAα) = 0 (3.81)

namely jµ has to be a conserved current.
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3.4 Graviton: massless two index traceless symmetric representation

In general relativity the gravitational interaction is described by variations in the space

time metric. Thus, the (square) distance between two points whose coordinates differ

by dxµ is given by

ds2 = gµν(x) dx
µdxν (3.82)

where gµν is a symmetric tensor function of the position. For our purpose here we only

need to consider small fluctuations around the Minkowski metric, namely:

gµν = ηµν + hµν(x) (3.83)

where the components of h are much smaller than 1. Since gravity is a long range

force the fluctuations hµν should describe a massless particle. An obvious candidate is

the traceless symmetric representation which has (D−1)(D−2)
2

− 1 components. On the

other hand hµν has D(D−1)
2

components so the equation of motion together with a local

symmetry should eliminate some of them. The correct equation of motion follows from

general relativity and is the linearized Einstein equation. We can derive it here doing

the same procedure than in the previous section for the photon. The most general local

symmetry we can impose is generated by a vector ξµ:

h̃µν = hµν + ∂µξν + ∂νξµ (3.84)

If the equation has up to two partial derivatives, it has to be a combination of ∂αβhµν ,

∂αhµν , and hµν . It has to be a two index tensor, so the most general equation is

a∂ααhµν + b∂µνhαα + c∂αµhαν + d∂ανhαµ + ehµν = 0 (3.85)

Imposing gauge invariance as before determines:

a = b = −c = −d, e = 0, (3.86)

and the equation becomes

∂ααhµν + ∂µνhαα − ∂αµhαν − ∂ανhαµ = 0 (3.87)

Now we have to use the equation of motion and the gauge symmetry to determine how

many physical components we have. First notice that we can rewrite the equation of

motion as:

∂ααhµν − ∂µ

(

∂αhαν −
1

2
∂νhαα

)

− ∂ν

(

∂αhαµ − 1

2
∂µhαα

)

= 0 (3.88)
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Thus, it seems natural to choose the gauge condition

∂αhαν −
1

2
∂νhαα = 0 (3.89)

To see if that is possible consider an h which does not satisfy that and perform a gauge

transformation of parameters ξν to h̃µν = hµν + ∂µξν + ∂νξµ. It is easy to see that h̃

satisfies the gauge condition if

∂ααξµ = −
[

∂αhαν −
1

2
∂νhαα

]

(3.90)

which is again a wave equation with source for the ξµ and which can be solved. In fact,

we can do still slightly more since we have

h̃αα = hαα + ∂αξα (3.91)

we can always choose ξµ such that

∂αξα = −hαα (3.92)

which implies h̃αα = 0. Putting everything together, we find that the equation of

motion is reduced to

∂ααhµν = 0 (3.93)

∂αhαµ = 0 (3.94)

hαα = 0 (3.95)

The solutions of the wave equation with given momentum p = (k, k, 0 . . . , 0) are of the

form

hµν = h̄µνe
ipx (3.96)

where h̄µν are constants related by

∂αhαµ = 0 ⇒ ηαβpαh̄βµ = 0, −kh̄0µ + kh̄1µ = 0 (3.97)

hαα = 0, ⇒ −h̄00 + h̄11 +
D−1∑

i=2

h̄ii = 0 (3.98)

From the first equation we get, taking µ = 0 and µ = 1, that h̄00 = h̄01 = h̄11 and

taking µ = i that h̄0i = h̄1i. We conclude that, in this gauge the matrix h̄µν is of the

form:

h̄µν =










h̄00 h̄00 h̄02 · · · h̄0(D−1)

h̄00 h̄00 h̄02 · · · h̄0(D−1)

h̄02 h̄02 h̄22 · · · h̄2(D−1)

...
...

...
. . .

...

h̄0(D−1) h̄0(D−1) h̄2(D−1) · · · h̄(D−1)(D−1)










(3.99)
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and we have to impose −h00 +h11 +
∑D−1

i=2 h̄ii =
∑D−1

i=2 h̄ii = 0. As before, we still have

a gauge invariance generated by ξµ’s that satisfy

∂ααξµ = 0, ∂αξα = 0 (3.100)

This means that they are of the form

ξµ = ξ̄µe
ipx, p.ξ̄ = 0, ⇒ −kξ0 + kξ1 = 0, ⇒ ξ0 = ξ1 (3.101)

The gauge transformation that they generate is

˜̄hµν = h̄µν + ipµξν + ipνξµ (3.102)

It is clear that such gauge transformation with ξ0 = ξ1 preserves the form (3.99) of the

matrix h̄ which had to be the case since they preserve the gauge conditions. The new

independent components are:

˜̄h00 = h̄00 + 2ikξ0 (3.103)
˜̄h0i = h̄0i + ikξi, i = 2 . . . (D − 1) (3.104)
˜̄hij = h̄ij i, j = 2 . . . (D − 1) (3.105)

Taking

ξ0 = − h̄00

2ik
, ξi = − h̄0i

ik
(3.106)

we get that the new matrix ˜̄h is of the form:

h̄µν =










0 0 0 · · · 0

0 0 0 · · · 0

0 0 h̄22 · · · h̄2(D−1)

...
...

...
. . .

...

0 0 h̄2(D−1) · · · h̄(D−1)(D−1)










(3.107)

and we still have
∑D−1

i=2 h̄ii = 0. Therefore we see that the physical degrees of freedom

are precisely those of a traceless symmetric matrix of (D−2)× (D−2) as we expected.

Summarizing we were able to write a gauge and Lorentz invariant wave equation

for the graviton that left only (D−1)(D−2)
2

− 1 physical components. General relativity

is in fact a non-linear theory and the equations we got are valid only for small fluctu-

ations. However these small fluctuations are the gravitational waves whose number of

independent polarizations we wanted to count.
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Finally, if we want to put a source to equation (3.87) we need a two index symmetric

tensor Sµν to write

∂ααhµν + ∂µνhαα − ∂αµhαν − ∂ανhαµ = Sµν (3.108)

Taking the derivative ∂µ on both sides we get:

∂µSµν = ∂µµνhαα − ∂µναhαµ = ∂ν (∂µµhαα − ∂αµhαµ) (3.109)

At first sight, it seems that Sµν does not need to satisfy any equation, but, if we compute

Sαα from (3.108) we get
1

2
Sαα = ∂µµhαα − ∂αµhαµ (3.110)

so that Sµν in fact has to satisfy the equation:

∂µSµν −
1

2
∂νSαα = 0 (3.111)

If we define the tensor

Tµν = Sµν −
1

2
ηµνSαα (3.112)

we have

∂µTµν = 0 (3.113)

namely Tµν is a conserved tensor which can be identified with the energy momentum

tensor. From the definition of Tµν in terms of Sµν and from (3.108) we can write and

equation for hµν with Tµν as a source:

[∂ααhµν + ∂µνhαα − ∂αµhαν − ∂ανhαµ] − ηµν [∂ααhββ − ∂αβhαβ ] = Tµν (3.114)

If there is no source Tµν = 0 we get an equation for hµν that is exactly equivalent to

(3.87).

3.5 Lorentz symmetry and the critical dimension

To see if the theory is Lorentz invariant we have to consider the Lorentz generators

which are the components of the angular momentum:

Mµν = xµpν − xνpµ − i

∞∑

n=1

1

n

(
αµ
−nα

ν
n − αν

−nα
µ
n

)
− i

∞∑

n=1

1

n

(
α̃µ
−nα̃

ν
n − α̃ν

−nα̃
µ
n

)
(3.115)

We should now check the commutation relations:

[
Mµν ,Mαβ

]
= −iηναMµβ + iηµαMνβ + iηνβMµα − iηµβMνα (3.116)
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A particular case is
[
M i−,M j−

]
= 0 (3.117)

If the commutator does not vanish, it is problematic since it implies that the Lorentz

group is not a symmetry of the string. It turns out that quantum mechanically the

commutator vanishes only if the number of dimensions is 26 and a = 1. To see that let

us write:

M i− = xip− − x−pi − 2i

√

2

α′

1

p+
Ei − 2i

√

2

α′

1

p+
Ẽi (3.118)

where

Ei =
∞∑

n=1

1

n

(
αi
−nLn −L−nα

i
n

)
(3.119)

with

Ln =
1

2

√

α′

2
p+α−

n (3.120)

and the same for Ẽi and L̃n.

Before continuing it is instructive to compute the commutator of the operators Ln.

Using the value of α−
n that we found in (3.30) we get:

Ln =
1

2

∞∑

n̄=−∞

: αi
n−n̄α

i
n̄ : (3.121)

Since n 6= 0, [αi
n−n̄, α

i
n] = 0. Therefore we can drop the normal order and compute

[Ln,Lm] =
1

4

[
∑

n̄

αi
n−n̄α

i
n̄,
∑

m̄

αi
m−m̄α

i
m̄

]

(3.122)

=
1

2

∑

n̄

(
n̄αi

n−n̄α
i
n̄+m + (n− n̄)αi

n−n̄+mα
i
n̄

)
(3.123)

= (n−m)Ln+m (3.124)

where in the first step we used [AB,CD] = AC[B,D] + A[B,C]D + C[A,D]B +

[A,C]DB and in the last step we shifted n̄ → n̄ − m in the first sum. We see from

here that, if n + m = 0 we get L0 which we have actually not defined. In fact, L0

is related to p− and has normal ordering ambiguities. Let us compute that special

commutator. When doing so we have to be extremely careful and always use normal

ordered expressions. Consider now n > 0. We have

Ln =

√

α′

2
piαi

n +
1

2

n−1∑

n̄=1

αi
n−n̄α

i
n̄ +

∞∑

n̄=1

αi
−n̄α

i
n+n̄ (3.125)

L−n =

√

α′

2
pjαj

−n +
1

2

n−1∑

n̄=1

αj
−n+n̄α

j
−n̄ +

∞∑

n̄=1

αj
−n̄−nα

j
n̄ (3.126)
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For example in Ln the first term is an annihilation operators, the second term has

two annihilations ops. and the third, one creation and one annihilation. We can now

compute:

[Ln,L−n] =
α′

2
npipi +

1

2

n−1∑

n̄=1

n̄αi
n−n̄α

i
n̄−n +

1

2

n−1∑

n̄=1

(n− n̄)αi
−n̄α

i
n̄ (3.127)

+
∞∑

n̄=1

(n̄+ n)αi
−n̄α

i
n̄ −

∞∑

n̄=1

n̄αi
−n−n̄α

i
n̄+n (3.128)

=
α′

2
npipi + 2n

∞∑

m=1

αi
−mα

i
m +

1

2

n−1∑

n̄=1

(n− n̄)
[
αi

n̄, α
i
−n̄

]
(3.129)

where the commutator appears when we normal order the terms and the rest is similar

to the calculation of [Ln,Lm]. We can now compute:

1

2

n−1∑

n̄=1

(n− n̄)
[
αi

n̄, α
i
−n̄

]
=

1

2

n−1∑

n̄=1

(n− n̄) n̄ δii =
D − 2

12
(n3 − n) (3.130)

If we now define

L0 =
α′

4
pipi +N − a (3.131)

we obtain

[Ln,L−n] = 2nL0 +
D − 2

12
(n3 − n) + 2na (3.132)

If we do the same for the left moving modes we see that the definition of L0 is chosen

so that we can write

p+p− =
2

α′

(

L0 + L̃0

)

(3.133)

In total, it turns out that the Ln obey an algebra:

[Ln,Lm] = (n−m)Ln+m +

(
D − 2

12
(n3 − n) + 2na

)

δm+n (3.134)

which is called a Virasoro algebra (with central extension). Classically one can see that

the second term is absent. This phenomenon is called an anomaly and means that a

classical symmetry is not present quantum mechanically.

This lengthy calculation is a preliminary step to understand the computation of

the commutator [M i−,M j−]. As a first stage of that calculation we use [x−, p+] = −2i

and the definition of p− to obtain

[x−, p−] =
2i

p+
p−, [xi, p−] =

2i

p+
pi (3.135)
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from where we find

[xip− − x−pi, xjp− − x−pj] = 0 (3.136)

The second stage requires computing

[xi,Ln] = i

√

α′

2
αi

n (3.137)

[xi, Ej] = −i
√

α′

2
Eij = −i

√

α′

2

∞∑

n=1

(αi
−nα

j
n − αj

−nα
i
n) (3.138)

and using again [x−, p+] = −2i to get

[M i−,M j−] = − 4

(p+)2

√

2

α′

(
piEj − pjEi

)
− 4

p+
Eijp− − 8

α′(p+)2
[Ei, Ej] (3.139)

− 4

(p+)2

√

2

α′

(

piẼj − pjẼi
)

− 4

p+
Ẽijp− − 8

α′(p+)2
[Ẽi, Ẽj] (3.140)

At this stage we could use the same techniques than when we computed [Ln,Lm].

However we can reason in the following way: after evaluating the commutator [Ei, Ej]

the right hand side will be a sum of terms at most quartic in creation and annihilation

operators. As we saw in the previous computation, a quantum mechanical anomaly

can appear from normal ordering the terms. The anomaly can therefore have at most

two oscillators. One can easily see that the indices of the oscillators should add up

to zero which leaves only quadratic or constant terms. By rotational invariance any

constant term should be of the form δij which is impossible since the result should

by antisymmetric in ij. In fact we can take i 6= j since for i = j the commutator is

obviously zero.

We conclude that, quantum mechanically, we can have contributions quadratic in

oscillators, namely

[M i−,M j−] =
∞∑

m=1

cm(αi
−mα

j
m − αj

−mα
i
m) (3.141)

and a similar contribution from the right moving modes. We can obtain such contri-

bution from evaluating

〈0|αk
mα̃

k̃
m [M i−,M j−] αl

−mα̃
l̃
−m|0〉 (3.142)

where we put the same oscillator number in the left and right moving modes as required

by the level matching condition. We can also concentrate on the left moving modes

since the other terms in the commutator give the same result. We start by computing

〈0|Lmα
j
−m|0〉 =

√

α′

2
mpj , 〈0|αi

mL−m|0〉 =

√

α′

2
mpi (3.143)
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which helps us to find that

〈0|αk
mE

jαl
−m|0〉 = m

√

α′

2

(
δjkpl − δjlpk

)
(3.144)

It is also simple to see that

〈0|αk
mE

ijp−αl
−m|0〉 =

(
pipi

p+
+

2

α′p+
(N + Ñ − 2a)

)

m
(
δikδjl − δjkδil

)
(3.145)

where N = Ñ = m (although we are ignoring the right moving modes we have to

remember that they contribute to Ñ). Finally we can use that

〈0|αk
m

∞∑

n=1

1

n
L−nα

i
n = 〈0|

[√

α′

2
pkαi

m +

m−1∑

n=1

m

n
αk

m−nα
i
n

]

(3.146)

to simplify

〈0|αk
m[Ei, Ej]αl

−m|0〉 = 〈0|
(

δikLm −
√

α′

2
pkαi

m −
m−1∑

n=1

m

n
αk

m−nα
i
n

)

(3.147)

(√

α′

2
αj
−mp

l +
m−1∑

n=1

m

n
αj
−nα

l
n−m − δjlL−m

)

|0〉 (3.148)

We can now compute

〈0|LmL−m|0〉 =
α′

2
mpipi +

D − 2

12
(m3 −m) (3.149)

〈0|Lm

m−1∑

n=1

m

n
αj
−nα

l
n−m|0〉 =

1

2
m2(m− 1)δjl (3.150)

〈0|
m−1∑

n=1

m

n
αk

m−nα
i
nL−m|0〉 =

1

2
m2(m− 1)δik (3.151)

m2
m−1∑

n=1

m−1∑

n̄=1

1

nn̄
〈0|αk

m−nα
i
nα

j
−n̄α

l
n̄−m|0〉 = m2(m− 1)δjkδil, (i 6= j) (3.152)

Using this we find

〈0|αk
m[Ei, Ej]αl

−m|0〉 =
mα′

2

(
δikpjpl + δjlpipk − δjkpipl − δilpjpk

)
(3.153)

+
(
δikδjl − δjkδil

)
(

−mα
′

2
pipi + 2m3 − 2m2 − D − 2

12
(m3 −m)

)

– 36 –



We can now put everything together and compute:

〈0|αk
mα̃

k̃
m [M i−,M j−] αl

−mα̃
l̃
−m|0〉 =

mδk̃l̃

{

− 4m

(p+)2

(
δjkpipl − δjlpipk − δikpjpl + δilpjpk

)

− 4m

(p+)2

(

p2
⊥ +

2

α′

(

N + Ñ − 2a
))(

δikδjl − δjkδil
)

(3.154)

− 8

α′(p+)2

mα′

2

(
δikpjpl + δjlpipk − δjkpipl − δilpjpk

)

+
8

α′(p+)2

(
δikδjl − δjkδil

)
(
mα′

2
p2
⊥ − 2m3 + 2m2 +

D − 2

12
(m3 −m)

) }

plus a similar contribution from the right moving modes. Although many terms cancel,

after we use N = Ñ = m we get

〈0|αk
mα̃

k̃
m [M i−,M j−] αl

−mα̃
l̃
−m|0〉 = (3.155)

− 8

α′(p+)2
mδk̃l̃

(
δikδjl − δjkδil

)
[
26 −D

12
m3 +m

D − 2 − 24a

12

]

(3.156)

This can only vanish for all m if D = 26 and a = 1. We managed to quantize the

theory but at the price of obtaining a tachyon and living in 26 dimensions.

We conclude this section by studying the dependence between mass and spin which

classically was found to be M =
√

2
α′

√
J . To do that define the operator:

αz
−1 = α1

−1 + iα2
−1 (3.157)

We can easily compute

[M12, αz
−1] = −i

[
(α1

−1α
2
1 − α2

−1α
1
1) , α

z
−1

]
= αz

−1 (3.158)

which implies that

M12(αz
−1)

J |0〉 = J(αz
−1)

J |0〉 (3.159)

Therefore the state |J〉 = (αz
−1)

J |0〉 has angular momentum J = 0 . . .∞. Its level is

clearly J since we have J oscillators each of wave-number one. We can put the same

state in the right moving part which then gives angular momentum 2J . The mass is

M2 =
2

α′

(

N + Ñ − 2a
)

=
2

α′
(2J − 2) (3.160)

and then

M2 =

√

2

α′

√
2J − 2 (3.161)
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which is equal to the classical one for large J except that the total angular momentum

is quantized. More generically, we see that

α′

2
M2 + 2 = integer (3.162)

For a given spectrum of particles one can in principle observe this behavior even if the

integer is not associated with angular momentum.
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4. Superstrings

The superstring generalizes the bosonic string by incorporating fermions propagating

on the world-sheet. The first important difference is that the superstring does not

have a tachyon thus avoiding a severe problem of the bosonic case. Besides that, the

critical dimension is now 10 and the theory has space-time fermions. These fermions,

together with the bosonic states form, at each mass level, representations of supersym-

metry, a larger symmetry than the Lorentz symmetry. Whereas the different states

making up a representation of the Lorentz symmetry are associated with polarizations

of the same particle, supersymmetry relates the states of different particles with the

same mass (although of course they can be interpreted as different states of the same

“superparticle”).

To understand the space-time symmetry, the first thing to do is to generalize spinor

representations to higher dimensions. Since superstrings live in 10 dimensions, the

appropriate Lorentz group is SO(9, 1). The different polarization states of massive

particles fill representations of SO(9) and those of massless ones fill representations

of SO(8). Moreover, since we are going to work exclusively in light-cone gauge, the

only manifest symmetry of the theory will actually be SO(8), although, of course, one

can construct all the Lorentz generators as in the bosonic case. For that reason it

seems appropriate to start our study by considering the rotational group in arbitrary

dimension.

4.1 Spinor representations of SO(n)

The group of rotations in n dimensions can be represented by orthogonal matrices A

of n× n, namely satisfying

AtA = 1 (4.1)

These matrices act on an n-dimensional space of vectors v by multiplication:

v → Av (4.2)

and the representation is irreducible, namely there is no subspace invariant under all

rotations. We can always write A as

A = eM (4.3)

where, if A is orthogonal, M is antisymmetric, i.e.

M = −M t ⇒ A−1 = At (4.4)
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as can be easily seen. An n × n antisymmetric matrix is determined by 1
2
n(n − 1)

parameters. For example defining the matrices M ij as

(
M ij

)

pq
= δi

pδ
j
q − δi

qδ
j
p (4.5)

we can write a generic matrix M as

M = θijM
ij ⇒ A = eθijM ij

(4.6)

where i, j are summed from 1 to n. In the previous expression, θij are numbers with

θij = −θij . Notice that the indices ij in M ij indicate which matrix we are dealing with.

For example M12 is the matrix

M12 =








0 1 0 . . . 0

−1 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0








(4.7)

and the same for all the M ij . The matrix M ij represents an infinitesimal rotation in

the (i, j) plane and commutes with another Mkl as

[
M ij ,Mkl

]
= δilM jk + δjkM il − δikM jl − δjlM ik (4.8)

as can be found by explicitly computing the matrix elements of both sides using the

definition (4.5). Sometimes it is convenient to define hermitian operators as

J ij = iM ij (4.9)

which commute according to;

[
J ij , Jkl

]
= i
(
δilJ jk + δjkJ il − δikJ jl − δjlJ ik

)
(4.10)

The representation we discussed is the fundamental or defining representation of SO(n)

and of its Lie algebra so(n). In the following we try to find other representations

of the Lie algebra, namely of the generators J ij . This simply means finding a set

of 1
2
n(n − 1) matrices obeying (4.10). If the matrices are of, say, m × m then the

representation is m-dimensional, namely, the generators act on m-dimensional vectors.

After that, by exponentiation as in (4.3) we get an m-dimensional representation of

the full rotational group. In previous sections we saw some examples. Indeed, given

the fundamental representation we saw that one can construct tensor representations

by direct product. Although reducible, these representations can be easily decomposed
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into irreducible ones. For example, the two-index representation splits into the two-

index antisymmetric representation, the two-index traceless symmetric and the singlet

or identity representation given by the trace. However, now we want to look for other

representations called spinor representations which can be found by generalizing the

well known construction of SO(3) spinors.

As we mentioned, after obtaining a representation of the Lie algebra we get a

representation of the group by exponentiation as in (4.3). Formally, a representation

of dimension m is a function ρ from a group G into the space of invertible matrices of

m×m such that

ρ(g1.g2) = ρ(g1).ρ(g2), ∀ g1,2 ∈ G (4.11)

where the dot on the left-hand side represents the product in the group and on the

right hand side the usual matrix product. Notice that given a representation ρ we can

write four representations ρ1,2,3,4:

ρ1(g) = ρ(g), ρ2(g) =
[
ρt(g)

]−1
, ρ3(g) = ρ∗(g), ρ4(g) =

[
ρ†(g)

]−1
, (4.12)

which are the original representation, the inverse transpose, and their conjugates. In

principle they can be equivalent to the original one, namely they can be the same

representation in a different basis. If there is a fixed matrix S such that

ρ(g) = Sρ∗(g)S−1, ∀ g ∈ G (4.13)

then the representation is self-conjugate and the same in the other cases. For example

the fundamental representation does not give any new representation in this way since

A = A∗ = [At]−1. In terms of the Lie algebra what this means is that, if we find

matrices J ij satisfying (4.10) then the following matrices all satisfy the same algebra:

J ij , −
(
J ij
)t
, −

(
J ij
)∗
,
(
J ij
)†

(4.14)

If we look at unitary representations then (J ij)
†

= J ij and the only possible new

representation is the inverse transpose (or conjugate) one. The bottom line is that, if

we find a representation, we should look at the other ones that can be constructed in

this way to see if they are the same or not.

With all this in mind we try now to generalize the spinor representations. In the

case of SO(3) the spinor representations are constructed by using the Pauli matrices

that obey:

[σa, σb] = 2iεabcσc, {σa, σb} = 2δab (4.15)

where a = 1, 2, 3, {A,B} = AB +BA and

σ1 =

(
0 1

1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0

0 −1

)

, (4.16)
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The Pauli matrices obey the SO(3) algebra if we take J12 = 1
2
σ3, J

13 = −1
2
σ2, J

23 =
1
2
σ1 and, for that reason, define a two dimensional complex representation of SO(3).

Technically it is not a representation of SO(3) since to each rotation correspond two

matrices, for example, the identity is represented by 1 and −1. However, physically

this is actually correct since a 2π rotation does not restore an electron to its original

state, but to minus the state, a physically relevant effect.

We should note at this point that another way to construct spinors is to use that

SO(3) ∼ SU(2) in which case the fundamental representation of SU(2) are the spinors.

In higher dimension this only works for SO(4) ∼ SU(2)× SU(2) and SO(6) ∼ SU(4).

so we need to generalize the Pauli matrices to higher dimension. As shown by Dirac, it

turns out that it is convenient to generalize the anticommutation relations of the Pauli

matrices and find n matrices γi such that

{γi, γj} = γiγj + γjγi = 2δij (4.17)

Later we are going to see a concrete construction of these matrices and which dimension

the have but, for the moment, let us just assume that we have the γi which square to

one and anticommute with each other. Consider now the commutator

[γiγj, γkγl] = γiγjγkγl − γkγlγiγj (4.18)

= −γiγkγjγl + 2δjkγiγl − γkγlγiγj (4.19)

= γkγiγjγl − 2δikγjγl + 2δjkγiγl − γkγlγiγj (4.20)

= −γkγiγlγj + 2δjlγkγi − 2δikγjγl + 2δjkγiγl − γkγlγiγj (4.21)

= −2δilγkγj + 2δjlγkγi − 2δikγjγl + 2δjkγiγl (4.22)

where we used (4.17) repeatedly. This has a similar flavor to the commutation relations

of the J ij but since the J ij are antisymmetric in the indices ij we should antisymmetrize

the product γiγj . After doing that one can see that a normalization constant is needed

and that

Σij =
i

4
[γi, γj ] (4.23)

obey the same algebra as the J ij and therefore provide a new representation of so(n).

This representation is the spinor representation we were looking for. With slightly more

algebra we can find that

[Σij , γk] = i
(
δjkγi − δikγj

)
(4.24)

which has a very nice interpretation. Expanding in indices we find that the last equality

can be understood as

(
Σij
)

αβ
γk

βδ − (Σij)t
δβγ

k
αβ + (J ij)klγ

l
αδ = 0 (4.25)
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which is interpreted as saying that γk
αβ is a symbol with three indices such that, if we

rotate the index α in the spinor representation, the index β in the inverse transpose

of the spinor representation (which we later see to be the same as the spinor repre-

sentation) and the index k in the fundamental or vector representation, the symbol

γk
αβ is invariant. In that sense it is completely analogous to the Clebsch-Gordan co-

efficients or the 3j-symbols and they determine the appropriate way to compose two

spinor representations into a vector representation.

Now we should find a concrete representation of the gamma matrices whose proper-

ties, as we will see, depend on the particular dimension n in which we are working. We

start by considering so(n) for the case where n is an even number. In that case it turns

out to be convenient to define an auxiliary space of n
2

fermions created an annihilated

by anticommuting operators ca, c
†
a, a = 1 . . . n

2
. For the moment we are going to work

toward finding a concrete representation for these operators and later see their relation

to gamma matrices. The anticommutation relations we want to represent are:

{c†a, cb} = δab, {ca, cb} = 0, {c†a, c†b} = 0 (4.26)

The operators ca and c†a act on a 2
n
2 dimensional space, since each fermionic state can

be empty or full. A basis on this space is given by

|ψ〉 = |m1, . . . , mn
2
〉, ma = 0, 1 (4.27)

On this basis the operators act as

c†a|m1, . . . , ma = 0, . . . , mn
2
〉 = (−1)

�
b<a ma |m1, . . . , ma = 1, . . . , mn

2
〉 (4.28)

ca|m1, . . . , ma = 1, . . . , mn
2
〉 = (−1)

�
b<a ma |m1, . . . , ma = 0, . . . , mn

2
〉 (4.29)

and zero otherwise, namely if we want to create a fermion on a site which is occupied

or destroy one that is empty. Note that there is a sign given by the number of fermions

occupying states to the left of the one we create or destroy. This is crucial for the

operators at different sites to anticommute and reflects the fact that, for fermions, there

is an overall sign on the state depending in which particular order they are created. If,

in each site a we define a two dimensional space with basis |ma = 0〉, |mb = 1〉, then

the operators can be written as direct product of two by two matrices acting on each

site:

c†a =

(
1 0

0 −1

)

⊗ . . .⊗
(

1 0

0 −1

)

⊗
(

0 0

1 0

)

︸ ︷︷ ︸

a

⊗1 ⊗ . . .⊗ 1 (4.30)

(4.31)
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ca =

(
1 0

0 −1

)

⊗ . . .⊗
(

1 0

0 −1

)

⊗
(

0 1

0 0

)

︸ ︷︷ ︸

a

⊗1 ⊗ . . .⊗ 1 (4.32)

where 1 represents the identity matrix,

(
1 0

0 −1

)

is the operator (−1)nb at each site

and the matrices

(
0 0

1 0

)

,

(
0 1

0 0

)

represent the act of creating or destroying a fermion.

Now we can proceed to define the following hermitian operators:

γa = ca + c†a (4.33)

γ
n
2
+na = i(c†a − ca) (4.34)

They obey the anticommutation relations

{γa, γb} = 2δab (4.35)

{γa, γ
n
2
+b} = 0 (4.36)

{γ n
2
+a, γ

n
2
+b} = 2δab (4.37)

(4.38)

as can be derived by simple application of the relations (4.26). This shows that such

operators provide a concrete representation for the gamma matrices of so(n). Using

(4.32) we can write them explicitly as:

γa = τ3 ⊗ . . .⊗ τ3 ⊗ τ1 ⊗ 1 ⊗ . . .⊗ 1 (4.39)

γ
n
2
+a = τ3 ⊗ . . .⊗ τ3 ⊗ τ2 ⊗ 1 ⊗ . . .⊗ 1 (4.40)

where

τ1 =

(
0 1

1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0

0 −1

)

(4.41)

are the Pauli matrices. For example, in the case of so(8) that will interest us later, we

have

γ1 = τ1 ⊗ 1 ⊗ 1 ⊗ 1 (4.42)

γ2 = τ3 ⊗ τ1 ⊗ 1 ⊗ 1 (4.43)

γ3 = τ3 ⊗ τ3 ⊗ τ1 ⊗ 1 (4.44)

γ4 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ1 (4.45)

γ5 = τ2 ⊗ 1 ⊗ 1 ⊗ 1 (4.46)

γ6 = τ3 ⊗ τ2 ⊗ 1 ⊗ 1 (4.47)

γ7 = τ3 ⊗ τ3 ⊗ τ2 ⊗ 1 (4.48)

γ8 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ2 (4.49)
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knowing that τaτb = iεabcτc + δab and multiplying the matrices at each site it is easy to

verify that they obey the commutation relations (4.17).

An important property of the gamma matrices defined in this way is that they

create or destroy one fermion, therefore if we have a state with an even total number

of fermions then, applying the gamma matrices we get a state with an odd number of

fermions and vice versa. The generators of rotations are given by the product of two

gamma matrices:

Σij =
i

4
[γi, γj ] (4.50)

and therefore preserve the parity (odd of even) of the total number of fermions in the

state. So, the 2
n
2 states in the basis split in two sets which transform among themselves

under rotations. We should remember that these fermions are an auxiliary concept. We

are always dealing with one particle with 2
n
2 polarizations. Going back to the example

of so(8) the states can be written as

|ψ〉 = α1|0000〉 + α2|1100〉 + α3|1010〉 + α4|1001〉+ α5|0110〉+ α6|0101〉 + α7|0011〉 + α8|1111〉
+β1|1000〉 + β2|0100〉 + β3|0010〉 + β4|0001〉+ β5|1110〉+ β6|1011〉 + β7|1101〉 + β8|1110〉

and the statement is that, under rotations, the upper row transform separate from the

lower row. The reader can check this statement by finding explicitly the matrices Σij

using (4.49) and (4.50) although another example such as so(6) might be simple to deal

with.

The two representations into which the spinor representation splits are called left

and right spinor representations. The corresponding 2
n
2
−1 dimensional spinors are called

Weyl spinors. The operator that distinguishes the two representations is the total

fermionic parity :

γ = (−1)
�

a na = τ3 ⊗ τ3 ⊗ . . .⊗ τ3 (4.51)

It is obvious that this operators squares to one and is easy to see that anticommutes

with all gamma matrices since they increase or decrease the number of fermions by one.

So we have

γ2 = 1, {γ, γj} = 0, j = 1 . . . n (4.52)

meaning that γ is the extra matrix that we need if we want to represent the gamma

matrices of so(n + 1). In that case, since γ does not change the number of fermions,

infinitesimal rotations such as Σj(2n+1) change the fermionic parity of the states and mix

left and right spinors. For that reason, in odd dimension n, the spinor representation

of dimension 2
n−1

2 is irreducible and there are no left and right spinors.
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After constructing the gamma matrices and, by commutation, the Σij matrices, we

can obtain a representation for a generic rotation by exponentiation:

R = eiθijΣij

(4.53)

Since the γ’s are hermitian, so are the Σij and therefore the representation is unitary,

namely RR† = 1. This means that, out of the possible three new representations we

can get, only one could be different: R∗ = (Rt)−1. This representation is actually the

same as we can prove by finding a matrix C such that

CγiC−1 = [γi]∗ = [γi]t (4.54)

If that is the case, then

CΣijC−1 = −[Σij ]∗ = −[Σij ]t ⇒ CRC−1 = R∗ = [Rt]−1 (4.55)

We still need to find C. Looking at the expressions (4.34) or (4.40) we see that

[γa]∗ = γa, [γ
n
2
+a]∗ = −γ n

2
+a (4.56)

So we need a matrix that produces that sign change. For example in the case of so(8)

one can see that a rotation in planes (56) and (78) will do the job. A perhaps simpler

way to do this is to observe that, from (4.17) we deduce that

γiγjγi = −γj , if i 6= j (4.57)

γiγjγi = γj , if i = j (4.58)

Therefore if we multiply all gamma matrices which should change sign:

C = γ
n
2
+1γ

n
2
+2 . . . γn (4.59)

C−1 = γnγn−1 . . . γ
n
2
+1 (4.60)

we have

CγaC−1 = (−1)
n
2 γa (4.61)

Cγ
n
2
+aC−1 = (−1)

n
2 γ

n
2
+a (4.62)

which has the desired effect up to the overall sign (−1)
n
2 . This sign does not affect

the matrices Σij so we have just proved that the spinor representation is equal to its

conjugate and found the matrix that relates the two. Since C is the product of n
2

matrices, it will convert a left spinor into a right spinor if n
2

is odd or a left into a left is
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n
2

is even. So, if n = 4k, (k integer) the conjugate of a left(right) spinor is a left(right)

spinor and if n = 4k + 2 the conjugate of a left spinor is a right spinor and vice versa.

If n = 2k+1 then the spinor representation is irreducible and self-conjugate (since also

CγC−1 = (−1)
n
2 γ).

Since a spinor and its conjugate transform in the same way we can ask ourselves

if we could take the spinor to be real. This is not necessarily the case, for example, in

so(3), the spin 1
2

representation is complex even if it is conjugate to itself. The second

caveat is that we cannot impose ζ = ζ∗ since that is not Lorentz invariant but, in

principle we can impose

ζ∗ = Cζ (4.63)

since both transform equally under rotations as we just found out. The problem is that

we need

ζ = (ζ∗)∗ = C∗Cζ, namely, C∗C = 1 (4.64)

which is not always true. In fact, from the definition of C and of the gamma matrices

we get, if n = 2k:

C∗ = (−1)kC, C2 = (−1)
k(k−1)

2 (4.65)

The last one follows from the fact that

γ1 . . . γpγ1 . . . γp = (−1)
p(p−1)

2 (4.66)

as can be seen by commuting the gamma matrices so that we can use (γi)2 = 1 and

keeping track of all the minus signs. All in all we need

C∗C = (−1)
k(k+1)

2 = 1, ⇒ k
2

even or k+1
2

even (4.67)

In terms of n this means that n = 8p or n = 8p − 2 for some integer p. If that is not

the case however, we can still do something. If a representation is irreducible then the

only matrix commuting with all rotations is the identity but the spinor representation

is not, so there is another matrix, namely γ commuting with all rotations. We can then

impose a reality condition

ζ∗ = γCζ (4.68)

In this case, since γ is real and γCγ = (−1)kC we need (−1)
k(k−1)

2 = 1 so we can still

impose a reality condition if n = 8p+ 2.

Now that we understand how to impose a reality condition, we would like to know

if that means that the representation is real, namely if, for any rotation given by:

R = eiθijΣij

(4.69)
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we can have, in some basis, that the matrix R has all real elements. That is equivalent

to say that we have, in that basis, Σij to be purely imaginary. A way to ensure that, is

to have all gamma matrices real or all purely imaginary since Σij = i
4
[γi, γj]. Suppose

that such a change of basis is given by a matrix S for which we propose, for reasons

that become clearer later, the form

S =
1 + αC√

2
(4.70)

for some constant α (and in dimension n = 8p + 2 we replace C → γC). This matrix

has to be invertible. The inverse is:

S−1 =
1 − αC√

2
if α2 = (−1)k+1 since C2 = (−1)k (4.71)

where k = n
2
. Now we compute the gamma matrices in this new basis:

γ̃i = SγiS−1 (4.72)

and see that
(
γ̃i
)∗

=
(
SγiS−1

)∗
= (−1)kγ̃i (4.73)

after a short calculation where we use that C∗ = (−1)kC and α2 = (−1)k+1. That

means that if k is even, the gamma matrices are real and if k is odd, they are purely

imaginary. In both cases, the matrix R for any rotation is real so we have a real

representation. It is easy to see also, that, if ζ satisfies the reality condition then we

can find a real spinor η through:

η = βSζ, (4.74)

Exercise: Find β in the previous equation such that η is real whenever ζ∗ = Cζ .

Now we can study an example. In the case of SO(8) we wrote the gamma matrices

explicitly but they are not real. Let us compute C in that case:

C = γ5γ6γ7γ8 = −τ1 ⊗ τ2 ⊗ τ1 ⊗ τ2 (4.75)

which is real since k = n
2

= 4 is even. If we want to transform the gamma matrices we

have to do:

γ̃i = SγiS−1 =
1 + iC√

2
γi 1 − iC√

2
=

1

2

(
γi + (γi)∗

)
− i

2
[γi, C] (4.76)

Now, γi for i = 1, 2, 3, 4 are real and also:

CγiC = γi ⇒ [γi, C] = 0, i = 1, 2, 3, 4 (4.77)
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So, γi=1,2,3,4 stay the same which is satisfying since they are already real. For γi=5,6,7,8,

We have instead

γi + (γi)∗ = 0, γiC = −Cγi, ⇒ γ̃i = iCγi, i = 5, 6, 7, 8 (4.78)

By explicit computation we find then:

γ1 = τ1 ⊗ 1 ⊗ 1 ⊗ 1 (4.79)

γ2 = τ3 ⊗ τ1 ⊗ 1 ⊗ 1 (4.80)

γ3 = τ3 ⊗ τ3 ⊗ τ1 ⊗ 1 (4.81)

γ4 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ1 (4.82)

γ5 = −τ3 ⊗ ε⊗ τ1 ⊗ ε (4.83)

γ6 = ε⊗ 1 ⊗ τ1 ⊗ ε (4.84)

γ7 = −ε⊗ τ1 ⊗ τ3 ⊗ ε (4.85)

γ8 = ε⊗ τ1 ⊗ ε⊗ 1 (4.86)

where we replaced τ2 by ε =

(
0 1

−1 0

)

using τ2 = −iε to emphasize that all matrices

are real.

Exercise: Show, by direct computation, that these new matrices obey the com-

mutation relations of the gamma matrices (4.17).

We have seen before that, if the dimension is a multiple of 4, the left and right

representations are conjugate to themselves. This means that, when the dimension is

a multiple of 8, the spinors can be Weyl and Majorana at the same time. Namely

the left and right spinors transform by themselves in real representations. In that case

the number of independent real components is one fourth of the Dirac representation.

Namely, spinors in n = 8 have 8 real components and can be left or right.

We can summarize our findings for the spinor representations of SO(n) as follows:

Weyl spinors: In even dimension, n = 2k, the spinor representation is reducible and

splits into left and right spinors.

Conjugate of Weyl spinors: In dimension n = 4k the left and right representations

are self-conjugate, namely the conjugate of a left spinor is a left spinor and the

same with right spinors. In dimension n = 4k + 2 the conjugate of a left spinor

is a right spinor and vice versa.

Majorana spinors: In dimension n = 8p, n = 8p± 2 we can do a change of basis so

that the matrices of rotations are real. The gamma matrices are real if n = 8p

and imaginary if n = 8p± 2.
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Majorana-Weyl spinors: If n = 8p then, the left and right spinor representations

are real. Spinors have one fourth the number of real components as the Dirac

spinors of that dimension.

Now that we understand thoroughly the spinor representations we are interested

in composing two of them. In the case of SO(3) we know that two representations of

spin 1
2

compose to spin 1 or 0. Now, we should obtain the analogous result for SO(n).

Suppose we have a rotation given by some angles θij . We know that we can repre-

sent such rotation by an n× n matrix given by

A = eiθijJij

(4.87)

or by an 2
n
2 × 2

n
2 matrix given by

R = eiθijΣij

(4.88)

or by many others, given by tensor products, etc. But let us concentrate on these two.

To emphasize the meaning of different representations, what we have is that

eiθ
(1)
ij

Jij

eiθ
(2)
ij

Jij

= eiθ
(3)
ij

Jij ⇒ eiθ
(1)
ij

Σij

eiθ
(2)
ij

Σij

= eiθ
(3)
ij

Σij

(4.89)

that is, the product of two rotations of angles θ
(1)
ij and θ

(2)
ij is another rotation of angles

θ
(3)
ij and these last angles can be found using any of the representations.

Consider now the following matrix

γ̃l =
(

e−itθijJij
)

lk
e−itθijΣ

ij

γke−itθijΣij

(4.90)

where t is a real parameter. Compute now

∂tγ̃
l = −itθij

{(

eitθijJij
)

lk

(
J ij
)

kp
e−itθijΣij

γpe−itθijΣij

(4.91)

+
(

eitθijJij
)

lk
e−itθijΣij

[Σij , γk]e−itθijΣij
}

(4.92)

= 0 (4.93)

where we used the identity (4.24). This means that γ̃l is independent of t. On the

other hand we have γ̃l(t = 0) = γl so γ̃l = γl for any t. In particular if t = 1 we get

the rotation matrices A and R, so we just derived:

R−1γkR = Aklγ
l (4.94)

which shows that, if we rotate the indices of the gamma matrix in the spinor rep-

resentation, the index k rotates as a vector. Again, we see that the gamma matrix
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is a Clebsch-Gordan coefficient that composes the two spinor representations into the

vector representation.

We are ready now to compose two spinor representations. If we have two spinors

of 2
n
2 components, η, ζ that rotate as

η → Rη, ζ → Rζ (4.95)

when we multiply them we get 2
n
2 × 2

n
2 = 2n components out of which we want to

extract linear combinations transforming by themselves under rotations. For example

we can form a scalar by doing:

s = ηtCζ (4.96)

To see it is a scalar we have to use (see eq.(4.55)) that:

CRC−1 = (Rt)−1, ⇒ C−1RtC = R−1 (4.97)

Indeed, the scalar s transforms as:

s→ s̃ = ηtRtCRζ = ηtCC−1RtCRζ = ηtCR−1Rζ = s (4.98)

namely is invariant. We can also form a vector:

vk = ηtCγkζ (4.99)

Again, we check, using eq.(4.94) :

vk → ηtRtCγkRζ = ηtCR−1γkRζ = Aklη
tCγlζ = Aklv

l (4.100)

which is the usual rotations for vectors. In fact now we can form several antisymmetric

tensors by doing:

vk1k2 = ηtCγ[k1γk2]ζ (4.101)

vk1k2k3 = ηtCγ[k1γk2γk3]ζ (4.102)

vk1k2...kj = ηtCγ[k1γk2 . . . γkj ]ζ (4.103)

vk1k2...kn = ηtCγ[k1γk2 . . . γkn]ζ (4.104)

(4.105)

The square brackets mean that we antisymmetrize the corresponding indices. We need

to do so because the symmetric part can be extracted using the anticommutation rules

of the gamma matrices. An antisymmetric tensor of j indices has

(
n

j

)

components,

therefore we found

1 + n+

(
n

2

)

+

(
n

3

)

+ . . .

(
n

2

)

= 2n (4.106)
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independent components (as follow from using Newton’s binomial formula to expand

(1 + 1)n). Therefore we exhausted all independent products. This gives the product of

two spinor representations in any dimension. Now there are some particulars in even

dimension. We can ask what happens if we compose two left representations or a left

and a right for example. The answer follows simply from the fact that a gamma matrix

times a left spinor gives a right spinor and vice versa. The only caveat is the matrix C

that converts a left representation into a right one if n = 4k + 2 or the left into a left

(and right into a right) if n = 4k. For example the vector representation is obtained

out of a left and a right representation if n = 4k and from two lefts or two rights if

n = 4k + 2. In general we have:

n = 4k:

LL and RR give: scalar, two index tensor ,etc. Namely, antisymmetric tensors

with an even number of indices.

LR or RL give: antisymmetric tensors with odd number of indices (including

vector rep.)

n = 4k + 2:

LL and RR give: antisymmetric tensors with odd number of indices (including

vector rep.)

LR or RL give: scalar, two index tensor ,etc. Namely, antisymmetric tensor with

even number of indices.

4.2 More on the case of SO(8)

We have found that, for SO(8) we can write the gamma matrices in a real representa-

tion:
γ1 = τ1 ⊗ 1 ⊗ 1 ⊗ 1 γ5 = −τ3 ⊗ ε⊗ τ1 ⊗ ε

γ2 = τ3 ⊗ τ1 ⊗ 1 ⊗ 1 γ6 = ε⊗ 1 ⊗ τ1 ⊗ ε

γ3 = τ3 ⊗ τ3 ⊗ τ1 ⊗ 1 γ7 = −ε⊗ τ1 ⊗ τ3 ⊗ ε

γ4 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ1 γ8 = ε⊗ τ1 ⊗ ε⊗ 1

(4.107)

Since the representation is real, the charge conjugation matrix is the identity, namely

we do not need any matrix to map the representation to its conjugate. We also know

that the 16 dimensional space of states on which these matrices act can be divided into

two eight dimensional spaces corresponding to the left and right spinors. This amounts

to a reordering of the states of the basis and therefore the gamma matrices in that

basis are still real and of the form:

γi =

(
0 ρi

ρ̂i 0

)

(4.108)
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where ρi and ρ̂i are eight dimensional matrices. The fact that the diagonal blocks are

zero is a reflection of the fact that a gamma matrix maps a left spinor into a right

spinor and vice versa as we saw before. Moreover, the matrices are symmetric which

implies:

ρ̂i =
(
ρi
)t

(4.109)

namely we only need to know the matrices ρi to reconstruct all the gamma matrices.

At this point it is useful to divide the spinor index α = 1 . . . 16 in two: α = (a, ȧ),

where a, ȧ = 1 . . . 8 and they correspond to left and right spinors respectively. With

that convention the indices of the matrices ρi are:

ρi aḃ, ρ̂i ȧb, with ρ̂i ȧb = ρi bȧ. (4.110)

From the properties of the gamma matrices we derive:

ρi
(
ρj
)t

+ ρj
(
ρi
)t

= 2δij (4.111)

or

ρi aċρj bċ + ρj aċρi bċ = 2δijδab (4.112)

From the matrices (4.107) we can extract the rho matrices as:

ρ1 = τ1 ⊗ 1 ⊗ 1 ρ5 = −1 ⊗ τ1 ⊗ ε

ρ2 = τ3 ⊗ τ1 ⊗ 1 ρ6 = τ1 ⊗ τ3 ⊗ ε

ρ3 = τ3 ⊗ τ3 ⊗ τ1 ρ7 = −τ1 ⊗ ε⊗ 1

ρ4 = τ3 ⊗ τ3 ⊗ τ3 ρ8 = ε⊗ τ1 ⊗ ε

(4.113)

which can be seen to satisfy (4.111) by direct computation.

Exercise Check the last statement, namely, by direct computation verify that the

rho matrices defined in (4.113) satisfy the properties (4.111).

In eq.(4.112), there is an intriguing symmetry between the indices (i, j) and (a, b)

since both run from 1 to 8 and enter equivalently in the relation. In fact we can define

a new set of 8 × 8 matrices labeled by a as:

ρ̃a, with ρ̃a iḃ = ρi aḃ (4.114)

We can then rewrite the relation (4.112) as:

ρ̃a iċρ̃b jċ + ρ̃a jċρ̃b iċ = 2δijδab (4.115)

or, equivalently:

ρ̃a
(
ρ̃b
)t

+ ρ̃b (ρ̃a)t = 2δab (4.116)
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Thus, we can define also new gamma matrices labeled by a:

γ̃a =

(
0 ρ̃a

(ρ̃a)t 0

)

(4.117)

which satisfy

{γ̃a, γ̃b} = 2δab (4.118)

Exercise Verify this last statement.

The γ̃a are 16×16 matrices labeled by an index in the left spinor representation and

which act on a space of states sum of the vector representation and the right spinor

representation. Essentially, the gamma matrices compose the vector representation

together with left and right spinor representations to the identity. In the case of SO(8)

the three representations are real and eight-dimensional and one can think of gamma

matrices labeled by i or a or ȧ. Each set rotating according to the corresponding

representation, vector, left or right spinor, with their corresponding indices rotating

according to the representation they belong to:

γi

aḃ
, γ̃a

iḃ
, γ̃ ḃ

ia (4.119)

At this stage this seems to be just a curiosity but will become very important in the

next subsection.

4.3 Green-Schwarz superstring: spectrum

The superstring lives in ten dimensions and therefore, in light cone gauge, the relevant

group of transverse rotations is SO(8), namely, all expressions are manifestly invari-

ant under SO(8). There are eight bosonic variables corresponding to the transverse

coordinates X i=1...8. They obey the wave equation whose general solution is of the

form:

X i(σ, τ) = X i
L(σ + τ) +X i

R(σ − τ) (4.120)

Therefore, the bosonic sector works as in the bosonic string. To that, in the light-cone

Green-Schwarz formulation of the superstring one adds, on the world-sheet, a set of

right moving and left moving fermionic variables.

The fermionic variables are taken to transform in one of the eight-dimensional

spinor real representations4. If both, the left and right moving variables transform

in the same spinor representation, the theory is called type IIB superstring, whereas

if they transform in opposite representations the theory is called type IIA. For that

4One should not confuse the idea of right and left moving variables on the world-sheet with the

idea of left and right spinors which are unrelated.
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reason, IIA strings are non-chiral, namely the theory is invariant under interchange of

left and right spinors. Type IIB on the other hand is a chiral theory. Massive states

transform in representations of SO(9) and therefore they have no chirality. In fact the

massive spectrum of type IIA and type IIB are exactly the same, only the massless

states are different as we are going to see. To be concrete, introduce the world sheet

variable

Sa(σ, τ) = Sa(σ + τ), Sa(σ + 2π, τ) = Sa(σ, τ) (4.121)

The index a = 1 . . . 8 transforms in the left spinor representation. Spinors transforming

in the right spinor representation we denote with a dotted index ȧ. These variables are

real which is expressed as:

(Sa)† = Sa (4.122)

We have to impose equal time anticommutation relations similar to the ones we imposed

for bosons. We have to respect rotational invariance so we naturally impose:

{Sa(σ, τ), Sb(σ′, τ)} = δabδ(σ − σ′) (4.123)

For rotational invariance the matrix on the right hand side of the equation should be

the charge conjugation matrix, but for SO(8) in the basis where the gamma matrices

are real, the charge conjugation matrix is the identity. We now expand in modes as

Sa(σ, τ) =
1√
2π

∞∑

n=−∞

e−in(σ+τ)Sa
n (4.124)

where we took into account that Sa is a function of σ + τ only. The fact that Sa(σ, τ)

is hermitian translates into

(Sa
n)† = Sa

−n (4.125)

The Fourier modes can be obtained through:

Sa
n =

1√
2π

einτ

∫ 2π

0

einσSa(σ, τ) dσ (4.126)

Using the anti-commutation relations (4.123) we obtain

{Sa
n, S

b
m} = δabδm+n (4.127)

In the mode expansion (4.124) we notice that modes with positive n multiply a wave

with negative frequency e−inτ . This means that those modes carry negative energy and

therefore Sa
n should be an annihilation operator, namely it decreases the energy of the
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system. For the same reason Sa
n with negative n is a creation operator. The vacuum is

therefore defined as:

Sa
n>0|0〉 = 0 (4.128)

From (4.125) and (4.127), the operators Sa
n obey:

{(Sa
n)† , Sb

n} = δab (4.129)

which means that they are standard fermionic creation and annihilation operators. The

space of states is labeled by the occupation number of each mode which can only be

zero or one since we cannot put more than one fermion in each state. We should also

introduce right moving fermions given by

S̃a(σ, τ) =
1√
2π

∞∑

n=−∞

ein(σ−τ)S̃a
n (4.130)

for type IIB or

S̃ ȧ(σ, τ) =
1√
2π

∞∑

n=−∞

ein(σ−τ)S̃ ȧ
n (4.131)

for type IIA. Notice that we put the sign in the exponent so that S̃a
n>0 is still an

annihilation operator. In fact everything is the same for the right moving modes so the

total oscillator space of states is given by:

|ψ〉 = |N i
n, Ñ

i
n, N

a
n , Ñ

a
n〉, N i

n, Ñ
i
n ≥ 0, Na

n , Ñ
a
n = 0, 1 (4.132)

where we added the bosonic sector. We labeled the right moving fermions with a as

corresponds to type IIB. In type IIA we should label them with ȧ. The fermionic

occupation numbers Na
n are the operators

Na
n = (Sa

n)† Sa
n, (n > 0). (4.133)

with no sum over a or n. As we know, increasing the occupation number in the bosonic

sector increases the mass of the string. Including the contribution from the fermionic

oscillators, the mass of the string is given by

M2 =
2

α′

(

N + Ñ +Nf + Ñf

)

=
2

α′

[
8∑

i=1

∞∑

m=1

m
(

N i
m + Ñ i

m

)

+

8∑

a=1

∞∑

m=1

m
(

Na
m + Ña

m

)
]

(4.134)

In terms of the variables Sa(σ, τ) we can write the fermionic contribution also as

M2
f =

i

α′

∫ 2π

0

dσ
(

Sa∂σS
a − S̃a∂σS̃

a
)

(4.135)
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This is rather straight-forward but there is a crucial point we ignored. The fermions

have zero modes Sa
0 which, from (4.127), obey

{Sa
0 , S

b
0} = δab (4.136)

and which do not appear in the expression for the mass. We also have, from (4.125):

(Sa
0 )† = Sb

0 (4.137)

Therefore, we have to represent the operators Sa
0 as hermitian matrices acting on a

space of states. The anticommutation relations are actually exactly the same as those

of the gamma matrices γ̃a that we found in (4.118). Therefore we can represent these

operators as symmetric and real matrices acting on a sixteen dimensional space of states

sum of the vector and right spinor representation:

Sa =
1√
2
γ̃a

iḃ
(4.138)

These sixteen states all have the same energy. Therefore the vacuum is degenerate.

This is a crucial difference with the bosonic string where the vacuum is unique and

corresponds to a scalar, the tachyon. We have to consider also the right moving fermions

which have another sixteen states in the vector times right spinor representation for type

IIB or vector times left spinor representation for IIA. In total we have 256 states. To

know how they transform under rotations we have to remember the rules of composition

derived in the previous subsection. What we obtain is:

IIA
[

|i〉 ⊕ |ȧ〉
]

⊗
[

|j〉 ⊕ |b〉
]

= (1 + 28 + 35 + 8 + 56)B + (8 + 56 + 8 + 56)F

IIB
[

|i〉 ⊕ |ȧ〉
]

⊗
[

|j〉 ⊕ |ḃ〉
]

= (1 + 28 + 35 + 1 + 28 + 35)B + (8 + 56 + 8 + 56)F

(4.139)

Let us analyze this result. From composing the two vector representations in the left and

right sectors we get a scalar, i.e. the trace, a two-index antisymmetric tensor which has

28 components and a two-index traceless symmetric tensor which has 35 components.

This is the same in type IIA and IIB and gives the dilaton, B-field and graviton. In

type IIB, composing two left spinors gives a scalar, a two-index antisymmetric tensor

and a four-index self dual antisymmetric tensor which has 35 independent components.

In type IIA, composing a left and a right spinor gives a vector, eight components, and a
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three index antisymmetric tensor, 56 components. Composing the vector representation

with the right spinors give a left spinor, eight components and a spin 3
2

representation

that has 56 components. Similarly with a vector and a left spinor. We can therefore

rewrite the result as:

IIA
[

|i〉 ⊕ |ȧ〉
]

⊗
[

|j〉 ⊕ |b〉
]

= (φ,Bij, Gij, A
[1]
i , A

[3]
ijk)B + (ψa + Ψiȧ + ψȧ + Ψia)F

IIB
[

|i〉 ⊕ |ȧ〉
]

⊗
[

|j〉 ⊕ |ḃ〉
]

= (φ,Bij, Gij, χ, B̃ij, A
[4]
ijkl)B + (ψa + Ψiȧ + ψa + Ψiȧ)F

(4.140)

where we have

A
[4]
ijkl =

1

4!
εijklmnopA

[4]
mnop (4.141)

and

ρiaḃΨia = 0, ρibȧΨiȧ = 0 (4.142)

We then have 256 ground states, half of which are bosonic and the other half fermionic.

The 64 bosons that come from multiplying the two vector representations are called

Neveau-Schwarz-Neveau-Schwarz (NS-NS) bosons and the 64 that come from multi-

plying the two spinor representations are called Ramond-Ramond (RR) bosons. These

names come from the Neveau-Schwarz-Ramond representation of the superstring which

we do not describe in this notes. The NS-NS sector consists of the dilaton, graviton and

B-field. The fields in the RR sector are p-forms A
[p]
i1...ip

. In fact one can also construct

higher order forms, for example in type IIA we can construct a 5-form and a 7-form

by using the antisymmetric products of the gamma matrices as we saw in the previous

subsection. They cannot be independent however since there are only 64 states in the

product of the left and right representations. By studying the gamma matrices one in

fact finds that:

A
[5]
i1...i5

=
1

3!
εi1...i5j1...j3A

[3]
j1...j3

(4.143)

A
[7]
i1...i7

= εi1...i7j1A
[1]
j1

(4.144)

In type IIB we have a 6-form and an 8-form:

A
[6]
i1...i6

= εi1...i8j1j2B̃j1j2 (4.145)

A
[8]
i1...i8

= εi1...i8χ (4.146)
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We know that a string is a source for the B-field since it couples to it through the

world-sheet action:

Sint =

∫

dσdτ∂σX
µ∂τX

nuBµν (4.147)

Higher order forms can couple to p-branes which are p dimensional branes that prop-

agate in time. Their trajectory is given by the coordinates Xµ as a function of p + 1

parameters: Xµ(σ1, . . . , σp, τ). The world-volume action contains a term:

Sint

∫

dτdσ1 . . . dσp ∂σ1X
µ1 . . . ∂σp

Xµp∂τX
µp+1 A[p+1]

µ1...µp+1
(4.148)

We can then anticipate that type IIA contains 0-branes (which are particles), 2-branes,

4-branes, 6-branes and 8-branes. On the other hand type IIB contains (-1)-branes

(instantons), 1-branes (string objects different from the fundamental string), 3-branes,

5-branes, and 7-branes. The fact that the corresponding forms are not independent but

dual to each other will imply that the branes are also dual to each other. The A-fields

are dual when their number of indices add up to eight so the branes are dual when

their spacial dimensions add up to 6. For example 0 and 6-branes are dual, and so are

2 and 4-branes, (-1) and 7-branes and 1 and 5-branes. The 3-brane is self-dual because

the 4-form is self-dual. We are going to study these objects in the next section. Here

we go back to the superstring spectrum.

The particles that we saw, namely those corresponding to the world-sheet vacuum,

are massless and there is no tachyon which is a significant improvement over the bosonic

string. The massive spectrum is constructed as we saw before, by applying the creation

operators of the different modes. The only point is that we have to take into account

that the vacuum is degenerate. Since in the vacuum sector we have that half the states

are bosonic and half fermionic, we are going to get always half and half at each level.

For example at level one the states are

αi
−1α̃

j
−1|0〉, αi

−1S̃
a
−1|0〉, Sa

−1α̃
i
−1|0〉, Sa

−1S̃
b
−1|0〉 (4.149)

which are 256 × 256 = 216 states, half bosonic and half fermionic. When doing this

calculation we should take into account that there are 256 vacua. We also imposed the

level matching condition which is the same as in the bosonic string, the total energy of

left and right movers should be the same. The fact that, at each level, the number of

bosons and fermions is always the same is a manifestation of a symmetry generated by

the zero modes of Sa and S̃a. When applied to a state they change it from bosonic to

fermionic and vice versa without changing the mass. We analyze this symmetry called

supersymmetry in the next subsection.
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4.4 Space-time supersymmetry of the superstring

A symmetry is an operator that commutes with the Hamiltonian or, in this case, the

mass squared operator. When applied to a state it gives another state with the same

mass. We found already sixteen such operators:

Qa =
√

2p+Sa
0 , Q̃a =

√

2p+S̃a
0 (4.150)

where the factors
√

2p+ are introduced for later convenience. It is interesting that one

can construct another sixteen hermitian operators:

Qȧ =
1

2α′

1√
πp+

∫

dσρi bȧSb
(
2πα′Πi + ∂σX

i
)

(4.151)

Q̃ȧ =
1

2α′

1√
πp+

∫

dσρi bȧS̃b
(
2πα′Πi − ∂σX

i
)

(4.152)

which are constructed so that they contain only left and right moving modes respec-

tively. This is clearly seen in their mode expansion:

Qȧ =
1√
α′p+

ρi ȧb

∞∑

m=−∞

Sb
mα

i
−m (4.153)

Q̃ȧ =
1√
α′p+

ρi ȧb

∞∑

m=−∞

S̃b
mα̃

i
−m (4.154)

where we used the convention αi
0 = α̃i

0 =
√

α′

2
pi. Using the known commutation

relations between the modes we can readily compute the commutation relations of the

Q’s:

{Qa, Qb} = 2p+δab (4.155)

{Qa, Qḃ} = ρi aḃpi (4.156)

{Qȧ, Qḃ} = δȧḃ

[

1

p+
p2
⊥ +

4

α′p+

(
∑

ni

nN i
n +

∑

na

nNa
n

)]

= p− (4.157)

where, in the last line, we get the contribution to the energy from the right moving

oscillators alone. However, we should remember that, from the level matching condi-

tion, the total contribution to p− from the left and right movers is the same. A similar

result is valid for the charges Q̃. In total we have 32 real supercharges, as the Q’s are

called. They all commute with the mass squared operator. Among themselves they

anticommute to a translation and for that reason sometimes they are described as the

square root of the translations.
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5. Open strings and D-branes

In the previous section we saw that, if the RR fields have sources, those should be

extended objects. These objects are called D-branes and appear in the study of open

strings. In this section we start by considering bosonic open strings and then open

superstrings. After that we study D-branes.

5.1 Bosonic open strings

As its name suggests, open strings are strings with two end points. The world-sheet

is now a strip instead of a cylinder but the action is still the area of the world-sheet.

If we parameterize the world-sheet by σ with 0 ≤ σ ≤ π and τ with τi ≤ τ ≤ τf , the

action is

S =
1

2πα′

∫ π

0

dσ

∫ τf

τi

dτ
√

(∂σX.∂τX)2 − (∂σX)2(∂τX)2 (5.1)

as before. The difference is that now we do not impose periodicity in σ. If we try to

minimize the action, the first order variation of S is:

δS =

∫

dσdτ

[
∂L
∂Xµ

− ∂σ

∂L
∂(∂σXµ)

− ∂τ

∂L
∂(∂τXµ)

]

δXµ (5.2)

+

∫ τf

τi

dτ
∂L

∂(∂σXµ)
δXµ

∣
∣
∣
∣

σ=π

σ=0

+

∫ π

0

dσ
∂L

∂(∂τXµ)
δXµ

∣
∣
∣
∣

τ=τf

τ=τi

(5.3)

The variation should be zero for arbitrary values of δXµ. This imposes the equation of

motion [
∂L
∂Xµ

− ∂σ

∂L
∂(∂σXµ)

− ∂τ

∂L
∂(∂τXµ)

]

= 0 (5.4)

However we still have to cancel the boundary terms. If we fix the initial and final shape

of the string we should have

δXµ(σ, τ = τi) = 0, δXµ(σ, τ = τf) = 0 (5.5)

which cancels the last term. For closed strings the other boundary term was zero

because of the periodicity of the string. In fact there was no boundary in sigma. Now

we have to impose some boundary condition at σ = 0, π such that the boundary term

vanishes. We see two possibilities:

∂L
∂(∂σXµ)

= 0, or δXµ = 0, at σ = 0, π (5.6)

More insight into the boundary conditions follows if we remember how we derived the

conservation of energy-momentum in the closed string. In flat space the Lagrangian
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in eq.(5.1) is actually independent of Xµ, it depends only on its derivatives. Therefore

the equation of motion reduces to:

∂σ

∂L
∂(∂σXµ)

+ ∂τ

∂L
∂(∂τXµ)

= 0 (5.7)

We can now integrate in σ and obtain:

∂τP
µ = ∂τ

∫

dσ
∂L

∂(∂τXµ)
=

∂L
∂(∂σXµ)

∣
∣
∣
∣

σ=π

σ=0

(5.8)

In the closed string the right hand side is zero because of periodicity and we conclude

that the energy-momentum defined as P µ =
∫
dσ ∂L

∂(∂τ Xµ)
is conserved. For the open

string it is only conserved if we impose the boundary condition

∂L
∂(∂σXµ)

= 0 (5.9)

at both ends of the string. Since conservation of energy momentum seems like a good

thing, the other boundary condition δXµ = 0 was ignored for a long time. The first

to completely understand what it meant was Polchinski. What he argued is that

such boundary condition fixes the end point of the string to live in some subspace.

Such subspace however should be thought as a dynamical object. The presence of this

object breaks translational invariance in the same way as, for example, an ordinary wall

does. The momentum perpendicular to the wall is not conserved whereas the parallel

one does. These objects are precisely the D-branes and their study is an extremely

interesting subject within string theory. However we are anticipating things a bit, we

continue now with the study of open strings but considering both types of boundary

conditions.

As in the case of the closed string we can take conformal gauge. In order to do so

we redefine (σ, τ) in such a way that the conditions

ηµν∂σX
µ∂τX

ν = (∂σX∂τX) = 0 (5.10)

ηµν (∂σX
µ∂σX

ν + ∂τX
µ∂τX

ν) = (∂σX)2 + (∂τX)2 = 0 (5.11)

are satisfied. As we know, this largely simplifies the equations of motion, in fact, they

reduce to the wave equation:
(
∂2

σ − ∂2
τ

)
Xµ = 0 (5.12)

It also simplifies the boundary conditions. They can be written as:

Neumann: ∂σX
µ = 0 (5.13)

Dirichlet: ∂τX
µ = 0 (5.14)
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where we used the standard names that they are given. Notice that we wrote ∂τX
µ = 0

which implies δXµ = 0, namely the µ coordinate of the end point of the string is fixed

and independent of τ . We should remember that we can impose different boundary

conditions for each coordinate and at each end point. Notice also that now we have

a standard problem in analysis, we have to solve the wave equation with Neumann

or Dirichlet boundary conditions, namely with the normal or parallel derivatives to

the boundary equal to zero. A simple way to solve the problem is by Fourier analysis.

Suppose first that we have Neumann boundary conditions at both ends, namely ∂σX
µ =

0 for σ = 0, π. A solution of the wave equation is a linear combination of left and right

moving waves. We can take

Xµ = e−iατ cosατ (5.15)

which satisfies ∂Xµ = 0 at σ = 0. We now want ∂σX
µ = 0 also at σ = π. This requires

α = integer. With that in mind we write the most generic solution as:

Xµ = xµ + pµτ +
∑

n 6=0

xne
−inτ cos(nσ) (5.16)

where we xn are the amplitudes of each oscillator and we also included a linear and a

constant term that satisfy the wave equation and the boundary conditions. Notice that

a term Xµ = Lσ satisfies the wave equation but not the Neumann boundary condition.

A similar result we can obtain by considering the expansion we had for the closed string

Xµ = xµ + pµτα′ + i

√

α′

2

∑

n 6=0

(
1

n
αµ

ne
−in(σ+τ) +

1

n
α̃µ

ne
in(σ−τ)

)

(5.17)

and imposing ∂σX
µ = 0, σ = 0, π. This gives αµ

n = α̃µ
n, namely we have only one set of

oscillators. The expansion is:

Xµ = xµ + pµτα′ + i

√

α′

2

∑

n 6=0

1

n
αµ

n

(
e−in(σ+τ) + ein(σ−τ)

)
(5.18)

= xµ + pµτα′ + i
√

2α′
∑

n 6=0

1

n
αµ

ne
−inτ cosnσ (5.19)

Doing the same for the case of Dirichlet boundary conditions we find that the condition

is αi
n = −α̃i

n we basically have to replace cosnσ → sinnσ. Also, now we admit a term

Lµσ but not pµτ . The case in which it is Neumann at σ = 0 and Dirichlet at σ = π

requires a similar analysis. We propose a solution

Xµ = e−iατ cosατ (5.20)
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but now we need cosαπ = 0 namely α = (n + 1
2
)π. So we have a generic expansion:

Xµ = xµ +
∑

n

xne
−i(n+ 1

2
)τ cos(n+

1

2
)σ (5.21)

Summarizing we have the expansions:

NN : Xµ = xµ
0 + pµτα′ + i

√
2α′
∑

n 6=0

1

n
αµ

ne
−inτ cos nσ

DD : Xµ = xµ
0 +

Lµ

π
σ +

√
2α′
∑

n 6=0

1

n
αµ

ne
−inτ sinnσ

ND : Xµ = xµ
0 + i

√
2α′

∑

n∈Z+ 1
2

1

n
αµ

ne
−inτ cosnσ

DN : Xµ = xµ
0 +

√
2α′

∑

n∈Z+ 1
2

1

n
αµ

ne
−inτ sinnσ

(5.22)

Notice that for the cases ND and DN there are no zero modes since n ∈ Z + 1
2
, i.e.

n = . . .− 3
2
,−1

2
, 1

2
, 3

2
, . . .. The functions Xµ(σ, τ) satisfy:

NN : ∂σX
µ(0, τ) = 0, ∂σX

µ(π, τ) = 0

DD : Xµ(0, τ) = xµ
0 Xµ(π, τ) = xµ

0 + Lµ

ND : ∂σX
µ(0, τ) = 0, Xµ(π, τ) = xµ

0

DN : Xµ(0, τ) = xµ
0 ∂σX

µ(0, τ) = 0,

(5.23)

where x0 is a constant which, for Dirichlet boundary conditions is interpreted as the

position of the D-brane. Now we should also impose the constraints. As we know, a

simple way to impose the constraints and identify the physical degrees of freedom is

to go to light-cone gauge as we did in the closed string. This means that we redefine

(σ, τ) keeping the conformal gauge conditions in such a way that:

X+ = x+ + p+τ (5.24)

Note that we have ∂σX
+ = 0 but not ∂τX

+ = 0 so we can take light-cone gauge only if

there is at least one spacial direction with Neumann boundary conditions. Time always
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is Neumann otherwise the string cannot move in time. In this gauge, the physical modes

are the transverse ones which can have any boundary condition and can be expanded

as in (5.22). Thus, the physical variables are αi=1...D−2
n with n integer or half-integer

for each i according to the boundary conditions in that direction.

Before discussing the quantization we are going to consider an example of a solution

and also a symmetry called T-duality. The example is, in fact, the same rotating string

we saw in the closed string case and given by:

t = κτ (5.25)

x = κ sin σ cos τ (5.26)

y = κ sin σ sin τ (5.27)

We can easily check that the solution satisfies the conformal constraints and the wave

equation. The Neumann boundary condition ∂σX
µ = 0 is satisfied for t since t is

independent of σ, and for x, y is satisfied if we take −π
2
≤ σ ≤ π

2
. As shown in fig.4 the

solution looks like the closed string rotating string solution but, if we recall that the

closed string was folded on itself, we see that it is only half of it. For that reason the

energy and angular momentum are also half, thus the Regge relation E ∼
√
J is still

valid but with a different coefficient.

5.2 T-duality

At the classical level, T-duality is a symmetry that, given a solution to the equations of

motion of the string, allows us to construct new solutions. Consider conformal gauge

and the world-sheet coordinates σ+ = σ + τ and σ− = σ − τ . The equation of motion

and conformal constraints read:

∂σ+∂σ−
Xµ = 0 (5.28)

(∂σ+X)2 = 0 (5.29)

(∂σ−
X)2 = 0 (5.30)

Excercise Verify that indeed these are the same as (5.12) and (5.11).

The general solution to the equations of motion is:

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−) (5.31)

It is simple to verify that, if we do the sign change Xµ
R(σ−) → −Xµ

R(σ−) for one or

more of the Xµ, then the new solution satisfies all constraints and equations of motion.

This procedure is call T-duality in the direction in which we flipped the sign of Xµ
R.
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For the case of the open string solution we describe in (5.27) we can do T-duality in x

to obtain:

x = κ sin σ cos τ =
κ

2
sin σ+ +

κ

2
sin σ− → κ

2
sin σ+ − κ

2
sin σ− = κ cosσ sin τ (5.32)

On the other hand, t and y remain the same so the new solution reads:

t = κτ (5.33)

x = κ cosσ sin τ (5.34)

y = κ sin σ sin τ (5.35)

We notice that x now satisfies Dirichlet boundary conditions at σ = ±π
2
. The solution

is shown in fig.4. If we do a further T-duality in direction y we get the solution

t = κτ (5.36)

x = κ cosσ sin τ (5.37)

y = −κ cosσ cos τ (5.38)

Now both, x and y satisfy Dirichlet boundary conditions and the solution looks like

half the closed string solution as shown also in fig.4.
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(a) (b) (c)

Figure 4: Rotating open string and its T-duals. The cases (b) and (c) correspond to a

string attached to a 1-brane and a 0-brane respectively. In case (a) we can say that there is

a 2-brane filling the space (x, y). Note that case (b) is a semi-circular string that pulsates

whereas (a) and (c) are rotating strings.

We see that in the case where we have Dirichlet boundary conditions, the momen-

tum is not conserved in the correspoding direction, because in that direction the motion

of the center of mass of the string is oscillatory. It seems as if the string is attached to

an object of infinite mass which absorbs the momentum. In case (b) the object is a line
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along the y axis, in case (c) it is a point at the origin. These objects are precisely the

D-branes. What we see is that if we take into account T-duality as an important sym-

metry, this gives another motivation to consider both boundary conditions, Dirichlet

and Neumann.

5.3 Open string spectrum

To quantize the open strings we proceed as for closed stirngs. We take light cone gauge

and quantize the amplitudes αi
n replacing them by a quantum operator. The difference

is that we have now only one set. The commutation relations are

[αi
n, α̃

j
m] = nδijδm+n (5.39)

and the mass of the string is given by

M2 =
2

α′

(
∑

i=1...D−2

∑

n≥1

nN i
n − a

)

(5.40)

where Nn ≥ 0 is the occupation number of the corresponding oscillator. If we have

a direction with half integer modes then we should sum over half-integer n for that

direction. In the case of all Neumann boundary conditions we have that the spectrum

is given by:
level 0: |0〉
level 1: αi

−1|0〉
level 2: αi

−2|0〉 , αi
−1α

j
−1|0〉

(5.41)

At level 0 we have one state which should correspond to a scalar particle. At level 1 we

have a vector of SO(D−2) which can only be a massless vector particle of SO(D−1, 1).

At level 2 we have states that fill the two-index traceless symmetric represetation of

SO(D− 1) and therefore it should be a massive two-index traceless symmetric tensor.

To obtain this result we should take the normal order constant a = 1 and therefore the

mass is

M2 =
2

α′

(
∑

i=1...D−2

∑

n≥1

nN i
n − 1

)

(5.42)

Therefore, the bosonic open string has a tachyon, same as the bosonic closed string.

For that reason we consider next the open superstring.
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5.4 Open superstrings

When we include fermionic modes we have to find the correct boundary condition for

them. In the bosonic sector we found that the number of modes is reduced by half since

we do not have independent left and right moving modes. The same is the case with the

fermions. The key point in finding the fermionic boundary conditions is that we want to

obtain a supersymmetric theory, namely some supersymmetry should be preserved. For

that to be the case we should have that the boundary conditions commute with some

of the supercharges. Each type of boundary condition should be treated separately so

we start by considering the case were the boundary conditions are all Neumann.

5.4.1 NN boundary conditions in all directions

The supercharges are

Qȧ =
1

2α′

1√
πp+

∫

dσρi ȧbSb
(
2πα′Πi + ∂σX

i
)

=
1√
α′p+

ρi ȧb

∞∑

m=−∞

Sb
mα

i
−m (5.43)

Q̃ȧ =
1

2α′

1√
πp+

∫

dσρi ȧbS̃b
(
2πα′Πi − ∂σX

i
)

=
1√
α′p+

ρi ȧb

∞∑

m=−∞

S̃b
mα̃

i
−m (5.44)

Qa =
√

2p+Sa
0 (5.45)

Q̃a =
√

2p+S̃a
0 (5.46)

We compute first:

[Qȧ, ∂σX
i] =

√
π

p+
ρj ȧb∂σ

∫

dσ′Sb(σ′)
[
Πj(σ′), X i(σ)

]
= −i

√
π

p+
ρi ȧb∂σS

b (5.47)

[Q̃ȧ, ∂σX
i] =

√
π

p+
ρj ȧb∂σ

∫

dσ′S̃b(σ′)
[
Πj(σ′), X i(σ)

]
= −i

√
π

p+
ρi ȧb∂σS̃

b (5.48)

We see that none of these supersymmetries commute with the boundary condition

∂σX
i = 0. However we have that

[Qȧ − Q̃ȧ, ∂σX
i] = −i

√
π

p+
ρi ȧb∂σ

(

Sb − S̃b
)

(5.49)

[Qȧ + Q̃ȧ, ∂σX
i] = −i

√
π

p+
ρi ȧb∂σ

(

Sb + S̃b
)

(5.50)

(5.51)

So if we impose

∂σ

(

Sb − S̃b
)

= 0 at σ = 0, π (5.52)
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half of the supersymmetry will be preserved. And if we, instead, impose ∂σ

(

Sb + S̃b
)

=

0 at σ = 0, π then the other half is preserved. So, we have a choice, but in both cases

only eight of the 16 supersymmetries Qȧ, Q̃ȧ are preserved. If we look at the mode

expansion

Sa(σ, τ) =
1√
2π

∑

n

e−in(σ+τ)Sa
n (5.53)

S̃a(σ, τ) =
1√
2π

∑

n

e−in(σ+τ)S̃a
n (5.54)

The condition

∂σ

(

Sb − S̃b
)

= 0 at σ = 0, π, implies Sa
n = −S̃a

n (5.55)

namely an identification between left and right modes similar to αi
n = α̃i

n for the bosonic

sector. It is natural to identify also the zero modes:

Sa
0 + S̃a

0 = 0 (5.56)

In fact this is necessary since

[Qȧ − Q̃ȧ, Sb
0 + S̃b

0] =
1√
α′p+

ρi ȧb
(
αi

0 − α̃i
0

)
= 0 (5.57)

because αi
0 = α̃i

0 =
√

α′

2
pi for Neumann directions. So (5.56) is an invariant condition.

If we also notice that

[Qa − Q̃a, Sb
0 + S̃b

0] =
√

2p+[Sa
0 − S̃a

0 , S
b
0 + S̃b

0] = 0 (5.58)

but

[Qa + Q̃a, Sb
0 + S̃b

0] =
√

2p+[Sa
0 + S̃a

0 , S
b
0 + S̃b

0] = 2
√

2p+δab 6= 0 (5.59)

then we see that there are 16 preserved supersymmetries in total:

Qa = Qa − Q̃a, Qȧ = Qȧ − Q̃ȧ (5.60)

Before continuing we can repeat the calculation in terms of modes to perhaps better

understand the result. We saw that the Neumann boundary condition is

αi
n − α̃i

n = 0 (5.61)

Using the mode expansion (5.46) we find

[Qȧ − Q̃ȧ, αi
n − α̃i

n] =
1√
α′p+

ρi ȧb
(

Sb
n + S̃b

n

)

(5.62)
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so the correct boundary condition is Sb
n + S̃b

n = 0 as we already found. It is easier to

work with modes but that can obscure the fact that we are imposing the conditions at

the boundary. In fact we can see that Sb
n + S̃b

n = 0 implies

S(σ = 0, τ) = −S̃(σ = 0, τ) ,

S(σ = π, τ) = −S̃(σ = π, τ)
(5.63)

Now we are ready to describe the string spectrum. The zero modes are Sa so again

they can be represented by the matrices γ̃a

kḃ
of eq.(4.118) which act on a space of states

sum of the vector representation and right spinor representation. Therefore the open

superstring has 16 vacua, eight bosonic in a vector representation and eight fermionic

in a right spinor representation. The rest of the spectrum is constructed by applying

creation operators to the vacua:

level 0: 16 states: |0〉 → |k〉 ⊕ |ḃ〉
level 1: 28 states: αi

−1|0〉, Sa
−1|0〉

level 2: 9 × 28 states: αi
−2|0〉, αi

−1α
j
−1|0〉 , Sa

−2|0〉 , Sa
−1S

b
−1|0〉 , αi

−1S
a
−1|0〉

(5.64)

where in computing the number of states we took into account the degeneracy of the

ground state. Since we have a massless vector particle, the theory is a gauge theory

instead of a gravitational theory. In fact, the massless content is that of N = 1, d = 10

super Yang-Mills theory. Such theory is anomalous meaning that it has a problem at

the quantum level. However we can use it to determine the world-volume theories of

lower dimensional branes as we see later. The theory that we are considering should

be understood as a theory on a D9-brane, since the ends of the string can move in

any direction. We see, at the same time that we can only have Neumann boundary

conditions in all directions if we are in IIB string theory because, in type IIA we have

Sa and S̃ ȧ and we can never identify them. We can now consider lower dimensional

branes. For that we have to understand Dirichlet boundary conditions.

5.4.2 NN + DD boundary conditions

Suppose we have a D5 brane that spans the directions 0 → 5. It is usually convenient

to write it as
0 1 2 3 4 5 6 7 8 9

D5 × × × × × × (5.65)

The coordinates 0 and 1 we use to define X± for light-cone gauge. From the transverse

coordinates we have to impose Neumann boundary conditions in directions 2,3,4,5 and

Dirichlet for directions 6,7,8,9. This means that the end points of the string are free
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to move along the brane, namely directions 0 to 5 but are fixed at some value in the

other directions, e.g. X6,7,8,9 = 0 (at σ = 0, π). We can now compute:

[Qȧ, ∂τX
i] =

√
π

p+
ρj ȧb∂σ

∫

dσ′Sb(σ′)
[
∂σX

j(σ′),Πi(σ)
]

= −i
√

π

p+
ρi ȧb∂σS

b(5.66)

[Q̃ȧ, ∂τX
i] =

√
π

p+
ρj bȧ∂σ

∫

dσ′S̃b(σ′)
[
∂σX

j(σ′),Πi(σ)
]

= i

√
π

p+
ρi ȧb∂σS̃

b (5.67)

where we used ∂τX
i = 2πα′Πi. There is a crucial minus sign in [Q̃ȧ, ∂τX

i] with respect

to the Neumann case, so, at first sight we should impose Sa
n = S̃a

n instead of Sa
n = −S̃a

n.

However, that is not possible since we have to preserve ∂σX
i = 0 for i = 2, 3, 4, 5 and

∂τX
i = 0 for i = 6, 7, 8, 9. We have to find then another boundary condition. For that

we can try to preserve the following supersymmetries:

Qȧ = Qȧ − ΓȧḃQ̃ḃ (5.68)

for some matrix Γ that we still have to find. At this stage it is convenient to consider

Dirac spinors which allows us to treat IIA and IIB together. Given the spinor Sa we

construct a Dirac spinor that we denote Sα by putting the left part Sα=a = Sa and the

right part zero: Sα=ȧ = 0. The same with the Q’s and all other Weyl spinors. We then

write

Q = Q− ΓQ̃ (5.69)

where Q̃ is a left spinor for type IIB and a right spinor for IIA whereas Q is a left

spinor for both. The commutation relations can now be written:

[Q, ∂σX
i] = −i

√
π

p+
∂σ

(

γiS − ΓγiS̃
)

(5.70)

[Q, ∂τX
i] = −i

√
π

p+
∂σ

(

γiS + ΓγiS̃
)

(5.71)

Therefore, we need then to impose

∂σ

(

γiS − ΓγiS̃
)

= 0 for i = 2, 3, 4, 5 (NN) (5.72)

∂σ

(

γiS + ΓγiS̃
)

= 0 for i = 6, 7, 8, 9 (DD) (5.73)

Mutliplying both sides by γi and using (γi)
2

= 1, we obtain:

∂σS = γiΓγi∂σS̃ for i = 2, 3, 4, 5 (NN) (5.74)

∂σS = −γiΓγi∂σS̃ for i = 6, 7, 8, 9 (DD) (5.75)
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Since the left hand side is the same in both cases we should have

γiΓγi = ±Γ (5.76)

γiΓγi = ∓Γ (5.77)

where we allow for a sign ambiguity. The important point is that the signs have to be

opposite to each other in the two lines. We solved a similar problem when we needed

to find the charge conjugation matrix. The solution is

Γ =
∏

i=2,3,4,5

γi (5.78)

If we consider a p-brane along directions 0, 1, . . . , p then we have (taking into account

one direction for the light-cone gauge):

Γ =
∏

i=2,...p

γi (5.79)

which, using the anticommutation relations {γi, γj} = 2δij results in

γiΓγi = (−)p Γ, i = 2 . . . p (NN) (5.80)

γiΓγi = −(−)p Γ, i = p+ 1 . . . 9 (DD) (5.81)

Therefore we should impose the boundary conditions

∂σS = (−)p Γ∂σ S̃ (5.82)

which implies

Sn = −(−)p Γ S̃n (5.83)

If we impose the same for the zero modes, namely

S0 = −(−)p Γ S̃0 (5.84)

we obtain

S(σ = 0, τ) = −(−)p Γ S̃(σ = 0, τ) ,

S(σ = π, τ) = −(−)p Γ S̃(σ = π, τ)
(5.85)

and the preserved supersymmetry is

Qȧ = Qȧ − Γȧḃ Q̃ḃ (5.86)

Qa = Qa − (−)p Γab Q̃b (5.87)
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for type IIB or

Qȧ = Qȧ − ΓȧbQ̃b (5.88)

Qa = Qa − ΓaḃQ̃ḃ (5.89)

for type IIA. At this point however we notice a crucial point. In type IIB both Q and

Q̃ have the same chirality, so we need Γ to have indices Γab and Γȧḃ. In type IIA we

need the components Γaḃ and Γȧb. But we already have Γ =
∏

i=2,...p γ
i. Since γi has

indices γi aḃ and γi ȧb we need p =odd for type IIB and p =even for type IIA. So we can

have the following supersymmetric branes:

Type IIA: D0 D2 D4 D6 D8

Type IIB: D(−1) D1 D3 D5 D7 D9
(5.90)

With the light-cone gauge formalism we are using here we cannot describe D0 and

D(−1) branes because we do not have one Neumann spacial direction to combine with

time. Nevertheless they can be described in conformal gauge and so we included them

here. The nice thing is that this precisely fits with the ideas of the previous section

where we needed exactly these same branes to source the RR fields. It is natural to

identify both but we still have to show that these D-branes actually couple to the RR

fields. Let us now ellaborate more on the condition (5.84). As before we can see that

this condition is preserved by the supersymmetries in eq. (5.87) or (5.89). To check

that we should remmeber the mode expansion for the Dirichlet modes (5.23) which

determines the zero mode part of the supercharges:

Qȧ =
1√
2p+

p
∑

i=2

ρi ȧbpi +
1

π
√

2p+

9∑

i=p+1

Liρi ȧbSb
0 +

1√
α′p+

ρi ȧb
∑

m6=0

Sb
mα

i
−m (5.91)

Q̃ȧ =
1√
2p+

p∑

i=2

ρi ȧbpi − 1

π
√

2p+

9∑

i=p+1

Liρi ȧbSb
0 +

1√
α′p+

ρi ȧb
∑

m6=0

S̃b
mα

i
−m (5.92)

where we work on type IIB and we used that αi
0 = α̃i

0 =
√

α′

2
pi. If we now commute

Q−ΓQ̃ with the condition (5.84) we find that it is preserved precisely because, for the

DD directions, the term Liσ contributes with opposite sign to the left and right moving

supercharges.

We are interested now in computing the spectrum. The zero modes are still the Sa
0

so the vacuum is degenerate with 16 states transforming as the vector plus the right

spinor representation. The momenta pi that label the states can only have components
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parallel to the brane. If the two D-branes between which the string stretches are sepa-

rated, namely Li 6= 0 we expect the mass of the string to be non-zero and proportional

to L
α′

even in the ground state. To check that we recall that the mass is given by

M2 =
1

2π(α′)2

∫ 2π

0

dσ
[
∂σX

i∂σX
i + ∂τX

i∂τX
i
]
−P iP i+

i

α′

∫ 2π

0

dσ
(

Sa∂σS
a − S̃a∂σS̃

a
)

(5.93)

which gives:

M2 =
LiLi

(πα′)2
+

2

α′

(

N + Ñ +Nf + Ñf

)

(5.94)

Besides the usual contribution from the oscillators, the mass has a contribution L2

(πα′)2

from the fact that the string is stretched. Therefore, we have massless particles only if

L2 = LiLi = 0, namely the D-branes are on top of each other. In that case, we have

that the massless modes are still 16 but they propagate only in a subspace. The field

theory describing the massless modes is the dimensional reduction of N = 1 in d = 10

to the corresponding dimension of the brane. For example for a D3-brane the world-

volume theory is the dimensionl reduction of N = 1, d = 10 to 3 + 1 dimensions which

is N = 4 Super Yang-Mills theory. The vector field Aµ has four componenets parallel

to hte brane that behave as a vector in the world-volume theory and six perpendicular

components that behave as scalar under rotations parallel to the brane. In fact, from

the Lorentz group SO(9, 1) only SO(3, 1) × SO(6) survives under the presence of the

D3-brane because we split the coordinates into NN and DD boundary conditions. From

the transverse group SO(8) only SO(2)×SO(6) survives. The fact that there is a gauge

field, namely a massless vector field Aµ, implies that there is a gauge symmetry which

eliminates the extra component of Aµ. For what we said we seem to have an abelian

theory with group U(1) since there is only one gauge field. However when we have

N branes on top of each other, the vector field Aµ carries two indices: Aµ
pq where

p, q = 1 . . .N label the D-branes between which the string is stretching. These are new

quantum numbers that do not exist for closed strings. Aµ becomes an N × N matrix

and the theory is non Abelian, we need a larger symmetry to get rid of all the extra

components. In fact the gauge group is U(N) with N2 parameters, as needed to get rid

of the extra components of N2 massless fields. If the D-branes are not on top of each

other then there are only N massless vectors from the open strings on each D-brane

and the gauge group is U(1)N .
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5.4.3 NN + DD + DN boundary conditions
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7.3 Glueball masses
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A. Lorentz group

Special relativity is based on the fact that the laws of physics are the same in all inertial

frames. The transformation between inertial frames moving with respect to each other

at velocity v are the Lorentz transformations or boosts given by:

t̃ =
t− vx√
1 − v2

(1.1)

x̃ =
x− vt√
1 − v2

(1.2)

where we set c = 1 by an adequate choice of unit to measure time. They can also be

written as:

t̃ = cosh β t− sinh β x (1.3)

x̃ = cosh β x− sinh β t (1.4)

where v = tanhβ. In this way they look similar to rotations on a plane:

x̃ = cos θ x+ sin θ y (1.5)

ỹ = cos θ y − sin θ x (1.6)

where the rotation is by an angle θ. Since space and time are related, it is convenient to

introduce a notation of cuadrivectors, where the position is given in terms of a vector

of four components:

x = (t, x, y, z) (1.7)

The components of x we denote with a greek index xµ, µ = 0, 1, 2, 3. The spacial

components are denoted with a latin index: xi, i = 1, 2, 3.

This notation is convenient to describe the group that includes all rotations and

boosts which is called the Lorentz group. It can be represented as the group of 4 × 4

matrices Λµ
ν that define a transformation: 5

x̃ν = Λν
µx

µ (1.8)

such that they leave the interval invariant:

(∆s)2 = −(∆t)2 + ∆xi∆xi = ∆xµ∆xνηµν (1.9)

5We use the convention that repeated indices are summed (e.g. in this case there is an implicit sum

over µ).
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where the matrix ηµν is given by

η =








−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








(1.10)

To leave the interval invariant, the matrix Λmu
ν has to satisfy:

ηµν = ηαβΛα
µΛβ

ν (1.11)

or in matrix notation:

η = ΛtηΛ (1.12)

For a boost in direction x and a rotation in the plane (x, y) the matrix Λ is:

Λboost =








cosh β − sinh β 0 0

− sinh β cosh β 0 0

0 0 0 0

0 0 0 0








(1.13)

Λrot. =








0 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 0








(1.14)

It is important to consider also infinitesimal Lorentz transformations. In that case we

can take:

Λµ
ν = δµ

ν + ε ηµα ωαν + . . . (1.15)

where ε is an infinitesimal parameter and ωµν is a four by four matrix. If Λ satisfies

(1.12), then we have, in matrix notation

η = (1 + εωtη)η(1 + εηω) ' η + ε(ω + ωt) + . . . (1.16)

Therefore, we need to have:

ω is an antisymmetric matrix: ωµν = −ωνµ (1.17)
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B. Problems

B.1 Classical strings

Consider a string moving in flat space. The metric is

ds2 = −dt2 + dx2 + dy2 + dz2 (2.1)

Suppose we have a solution of the form

t(σ, τ) = κτ (2.2)

x(σ, τ) = A cos [(n− 1)(τ + σ)] +B cos(τ − σ) (2.3)

y(σ, τ) = A sin [(n− 1)(τ + σ)] +B sin(τ − σ) (2.4)

z(σ, τ) = 0 (2.5)

where A, B, κ are constants and n is an integer number.

1) Find a condition on the constants A, B and κ for the conformal constraints (2.72)

to be satisfied.

2) Assuming the conditions on 1) show that the equations of motion are satisfied.

3) Compute the energy E and angular momentum J of the string. Eliminate the

constants to obtain a relation E(J) similar to the Regge trajectory (i.e. E ∼
√
J).

4) Use a computer porgram to plot the shape of the string for different values of n and

understand its motion.

As a guide for the computation notice that the case n = 2 is the rotating string

described in the text.

B.2 Quantum string and string spectrum

In the text we analyze the equation of motion for a massless vector particle and for

a graviton. We show that the number of physical components is given by D − 2 and
(D−1)(D−2)

2
−1 respectively as appropriate to representations of SO(D−2). Repeat the

analysis for the B-field. That is, take an antisymmetric tensor Bµν and impose a gauge

invariance. Find the equation of motion compatible with such gauge invariance and

by adequate gauge choices find the number of physical components of the B-field. The

calculations should be similar to the ones for the graviton in the main text.
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