String/gauge theory duality and QCD

M. Kruczenski

Purdue University

Summary

- Introduction

String theory
Gauge/string theory duality. AdS/CFT correspondence.

- Mesons in AdS/CFT
- Chiral symmetry breaking
- Spin chains as a way to see strings in field theory

Introduction

String theory

-) Quantum field theory:
Relativistic theory of point particles.
Strong, weak and electromagnetic interactions are described in this way. In particular by gauge theories. Quantum gravity?
-) String theory:
Relativistic theory of extended objects: Strings
 Why?

Original motivation: Phenomenological model for hadrons (proton, neutron, pions, rho, etc.)

Regge trajectories

Simple model of rotating strings gives $E \approx \sqrt{J}$

improvement

Strings were thought as fundamental, however...

Strings as a fundamental theory

Only one fundamental object, strings (open and closed). Different modes of oscillation of the string give rise to the different observed particles.

Interactions are the splitting and rejoining of the strings.
Tachyons \longrightarrow Taking care by supersymmetry
Quantum mechanically consistent only in 10 dim.
Unified models? Including gravity
Too many vacua.

What about hadrons?

Instead: bound states of quarks. mesons: q̄ baryons: qqq
Interactions: $\underset{\text { quarks }}{\mathrm{SU}(3) ;} \mathrm{q}=\left[\begin{array}{l}- \\ - \\ -\end{array}\right] ; \quad \mathrm{A}_{\mu}=\left[\begin{array}{l}--- \\ \text { gluons } \\ --- \\ ---\end{array}\right]$
Coupling constant small at large energies (100 GeV) but large at small energies. No expansion parameter.

Confinement
 (color) electric flux=string?

Idea ('t Hooft)

$N \rightarrow \infty, \quad g_{Y M}^{2} N=\lambda$ fixed ('t Hooft coupling)
1/N: perturbative parameter.
Planar diagrams dominate (sphere)
Next: $1 / \mathrm{N}^{2}$ corrections (torus) $+1 / \mathrm{N}^{4}$ (2-handles) $+\ldots$
Looks like a string theory
Can be a way to derive a string descriptions of mesons

AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between strings and a gauge theory. (Curiously non-confining).

Gauge theory

String theory

$$
\begin{gathered}
\mathcal{N}=4 \text { SYM SU(N) on } R^{4} \\
\mathrm{~A}_{\mu}, \Phi^{\mathrm{i}}, \Psi^{\mathrm{a}}
\end{gathered}
$$

Operators w/ conf. dim. Δ

IIB on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

 radius RString states w/ $E=\frac{\Delta}{R}$

$$
g_{s}=g_{Y M}^{2} ; \quad R / l_{s}=\left(g_{Y M}^{2} N\right)^{1 / 4}
$$

$N \rightarrow \infty, \lambda=g_{Y M}^{2} N$ fixed \Rightarrow
λ large \rightarrow string th. λ small \rightarrow field th.

D-branes (Polchinski)

Region of space where strings world-sheets can end.
._Open strings. Low energy: $\mathrm{SU}(\mathrm{N})$ gauge th.
S Emission of graviton \rightarrow D-branes have mass
If $\mathrm{N}, \#$ of D -branes is large \rightarrow mass large \rightarrow deforms space e.g. D3- brane:

$$
d s^{2}=\frac{1}{\sqrt{f}}\left(d X^{+} d X^{-}+d X_{[2]}^{2}\right)+\sqrt{f} d Y_{[6]}^{2}, \quad f=X^{\prime}+4 \pi \alpha^{\prime} \frac{g_{s} N}{Y^{4}}
$$

Suggests an interesting rep. of the large-N limit

AdS/CFT $\quad \mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ II B on $\mathrm{AdS}_{5} \times S^{5}$

S5: $X_{1}{ }^{2}+X_{2}{ }^{2}+\ldots X_{6}{ }^{2}=R^{2}$
AdS $5: Y_{1}{ }^{2}+Y_{2}{ }^{2}+\ldots-Y_{5}{ }^{2}-Y_{6}{ }^{2}=-R^{2}$

How about hadrons and QCD?

Strings?
Escher

Other points in AdS/CFT

-) Allows gauge theory computations at strong coupling.
-) Describes confining gauge theories. Confinement transition in interpreted geometrically.
-) Finite temperature quark-gluon plasma is described by a black hole. (e.g. compute viscosity).
-) Quantum gravity in AdS is unitary. Usual QM rules apply to gravity!

Mesons (Non-confining case)

(w/ D. Mateos, R. Myers, D. Winters)
We need quarks (following Karch and Katz)

So, in AdS/CFT, a meson is a string rotating in 5 dim.!

Meson spectrum

($\mathcal{N}=4$ is conformal \rightarrow Coulomb force)

The cases $J=0,1 / 2,1$ are special, very light , namely "tightly bound". ($\mathrm{E}_{\mathrm{b}} \sim 2 \mathrm{~m}_{\mathrm{q}}$)

For $J=0,1 / 2,1$ we can compute the exact spectrum (in 't Hooft limit and at strong coupling)

2 scalars $\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0$
1 scalar $\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 1$
1 scalar
1 scalar
$\left(M / M_{0}\right)^{2}=(n+m+2)(n+m+3) \quad, m \geq 1$
$\left(M / M_{0}\right)^{2}=(n+m) \quad(n+m+1) \quad, m \geq 1$
1 vector
$\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0$
1 fermion
$\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0$
1 fermion
$\left(M / M_{0}\right)^{2}=(n+m+2)(n+m+3) \quad, m \geq 0$
$n \geq 0$; there is a mass gap of order M_{0} for $m_{q} \neq 0$
$M_{0}=\frac{L}{R}=\frac{m_{q}}{\sqrt{g_{Y M}^{2} N}} \ll m_{q} \quad$ for $\quad \sqrt{g_{Y M}^{2} N} \gg 1$

Confining case (w/ D. Mateos, R. Myers, D. Winters)

Add quarks to Witten's confining bkg.

- Spectrum is numerical
- We see $\mathrm{U}(1)_{\mathrm{A}}$ chiral symmetry geometrically
- For $\mathrm{m}_{\mathrm{q}}=0$ there is a Goldstone boson $\Phi .\left(\mathrm{M}_{\Phi}=0\right)$
- For $m_{q} \neq 0 \quad M_{\phi}^{2}=-\frac{m_{q}}{f_{\phi}^{2}}\langle\bar{\psi} \psi\rangle$

GMOR- relation

- Rot. String (w/ Vaman, Pando-Zayas, Sonnenschein)
reproduces "improved model":

Witten's confining background

Extra dimension τ. Breaks susy. Two bkgs. (conf. \& non conf.)

Background metric (not AdS any more):

$$
\begin{gathered}
d s^{2}=\left(\frac{U}{R}\right)^{3 / 2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+f\left(U\left(d \tau^{2}\right)+\left(\frac{R}{U}\right)^{3 / 2} \frac{d U^{2}}{f(U)}+R^{3 / 2} U^{1 / 2} d \Omega_{4}^{2},\right.\right. \\
e^{\phi}=g_{s}\left(\frac{U}{R}\right)^{3 / 4}, \quad F_{4}=\frac{N_{c}}{V_{4}} \varepsilon_{4}, \quad f(U)=1-\frac{U_{\mathrm{KK}}^{3}}{U^{3}} . \\
\tau \quad \mathrm{U}, \mathrm{~S}^{4}
\end{gathered}
$$

D4 branes: 0123456789 + D6 branes (quarks)

Chiral symmetry breaking $\mathrm{U}(1)_{\mathrm{A}}$

$\psi_{L} \rightarrow e^{i \alpha} \psi_{L}, \psi_{R} \rightarrow e^{-i \alpha} \psi_{R}$
$m_{q}=0 \rightarrow$ spontaneous
$m_{q} \neq 0 \rightarrow$ explicit
Here χ-symmetry is geometric, a rotation:

Brane embeddings

Quark condensate (as a function of quark mass)

Figure 2: The quark condensate $\langle\bar{\psi} \psi\rangle \propto c$ as a function of the quark mass $m_{\mathrm{q}} \propto r_{\infty}$.
Creating a condensate costs energy when the quark mass is non-zero

Gell-Mann Oakes Renner relation

When m_{q} is non-zero the pion acquires a mass given by:

$$
M_{\pi}^{2}=-\frac{m_{\mathrm{q}}\langle\bar{\psi} \psi\rangle}{f_{\pi}^{2}}
$$

Here we can compute all quantities and it is satisfied.
M_{π} is computed using pert. theory.
f_{π} is the normalization of ϕ in the eff. action.
$\langle\bar{\psi} \psi\rangle$ was already computed.

We can compute meson spectrum at strong coupling. In the confining case results are similar to QCD, including qualitative features. (Also Sakai-Sugimoto) How close are we to QCD?

Can we derive the string picture from the field theory?
Study known case: $\mathcal{N}=4$ SYM
Take two scalars $\mathrm{X}=\Phi_{1}+i \Phi_{2} ; \mathrm{Y}=\Phi_{3}+i \Phi_{4}$
$O=\operatorname{Tr}(X X \ldots Y . . Y \ldots X), J_{1} X \prime s, J_{2} Y \prime s, J_{1}+J_{2}$ large
Compute 1-loop conformal dimension of O, or equiv. compute energy of a bound state of J_{1} particles of type X and J_{2} of type Y (but on a three sphere)

Large number of ops. (or states). All permutations of Xs and Ys mix so we have to diag. a huge matrix.

Nice idea (Minahan-Zarembo). Relate to a phys. system

$$
\left.\begin{array}{rl}
\operatorname{Tr}(X X \ldots Y X X Y) & \longleftrightarrow \\
\text { operator } \\
\text { mixing matrix }
\end{array} ~ \longleftrightarrow \uparrow \uparrow \ldots \downarrow \uparrow \uparrow \downarrow\right\rangle, ~ \begin{gathered}
\text { conf. of spin chain } \\
\text { op. on spin chain }
\end{gathered}
$$

Ferromagnetic Heisenberg model!

Ground state (s)

$$
\begin{aligned}
& |\uparrow \uparrow \ldots \uparrow \uparrow \uparrow \uparrow\rangle \longleftrightarrow \operatorname{Tr}(X X \ldots X X X X) \\
& |\downarrow \downarrow \ldots \downarrow \downarrow \downarrow \downarrow\rangle \longleftrightarrow \operatorname{Tr}(Y Y \ldots Y Y Y Y)
\end{aligned}
$$

First excited states

$$
\begin{aligned}
& |k\rangle=\sum e^{i k l|\uparrow \uparrow \ldots \downarrow \ldots \uparrow \uparrow\rangle, \quad k=\frac{2 \pi n}{J} ;\left(J=J_{1}+J_{2}\right)} \\
& \varepsilon(k)=\frac{\lambda}{J^{2}}(-1+\cos k) \xrightarrow[k \rightarrow 0]{ } \frac{\lambda n^{2}}{2 J^{2}} \quad(\mathrm{BMN})
\end{aligned}
$$

More generic (low energy) states: Spin waves

Other states, e.g. with $J_{1}=J_{2}$

Spin waves of long wave-length have low energy and are described by an effective action in terms of two angles θ, φ : direction in which the spin points.
$S_{\text {eff. }}=J\left\{-\frac{1}{2} \int d \sigma d \tau \cos \theta \partial_{\tau} \phi^{-}\right.$

$$
\left.-\frac{\lambda}{32 \pi J^{2}} \int d \sigma d \tau\left[\left(\partial_{\sigma} \theta\right)^{2}+\sin ^{2} \theta\left(\partial_{\sigma} \phi\right)^{2}\right]\right\}
$$

Taking J large with λ / J^{2} fixed: classical solutions

According to AdS/CFT there is a string description
particle: $\mathrm{X}(\mathrm{t})$ string: $\mathrm{X}(\sigma, \mathrm{t})$
We need $S^{3}: \frac{X_{1}{ }^{2}+X_{2}^{2}}{J_{1}}+\frac{X_{3}{ }^{2}+X_{4}{ }^{2}}{J_{2}}=R^{2}$

CM: J_{1} Rot: J_{2}

Action: $\mathrm{S}[\theta(\sigma, t), \varphi(\sigma, t)]$, which, for large J is: (agrees w/f.t.)

$$
S_{\text {eff. }}=J\left\{-\frac{1}{2} \int d \sigma d \tau\left[\cos \theta \partial_{\tau} \phi-\frac{\lambda}{32 \pi J^{2}}\left[\left(\partial_{\sigma} \theta\right)^{2}+\sin ^{2} \theta\left(\partial_{\sigma} \phi\right)^{2}\right]\right]\right\}
$$

Suggests that $(\theta, \varphi)=(\theta, \varphi)$ namely that $\langle\vec{S}\rangle \quad$ is the position of the string

Examples

Strings as bound states

Fields create particles:

$$
\begin{aligned}
& \mathrm{X} \rightarrow|\mathbf{x}\rangle, \quad \mathrm{Y} \rightarrow|\mathbf{y}\rangle \\
& \text { Q.M. : }|\psi\rangle=\cos (\theta / 2) \exp (\mathrm{i} \phi / 2)|\mathbf{x}\rangle \\
&+\sin (\theta / 2) \exp (-\mathrm{i} \phi / 2)|\mathbf{y}\rangle
\end{aligned}
$$

We consider a state with a large number of particles
$\mathrm{i}=1 \ldots \mathrm{~J}$ each in a state $\mathrm{v}_{\mathrm{i}}=\left|\psi\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}}\right)\right\rangle$. (Coherent state)
Can be thought as created by $O=\operatorname{Tr}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{n}}\right)$

Strings are useful to describe states of a large number of particles (in the large-N limit)

Rotation in AdS $_{5} \underline{\underline{?}}$ (Gubser, Klebanov, Polyakov)

$$
\begin{gathered}
\frac{Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}}{-Y_{5}^{2}-Y_{6}^{2}}=-R^{2} \\
\sinh ^{2} \rho ; \Omega_{[3]} \quad \cosh ^{2} \rho ; t
\end{gathered}
$$

$d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{[3]}^{2}$

$$
E \cong S+\frac{\sqrt{\lambda}}{2 \pi} \ln S, \quad(S \rightarrow \infty)
$$

$$
\theta=\omega t
$$

$$
O=\operatorname{Tr}\left(\Phi \nabla_{+}^{S} \Phi\right), \quad x_{+}=z+t
$$

Verification using Wilson loops (MK, Makeenko)

The anomalous dimensions of twist two operators can also be computed by using the cusp anomaly of light-like Wilson loops (Korchemsky and Marchesini).

In AdS/CFT Wilson loops can be computed using surfaces of minimal area in AdS_{5} (Maldacena, Rey, Yee)

The result agrees with the rotating string calculation.

Generalization to higher twist operators (MK)

$E \cong S+\left(\frac{n}{2}\right) \frac{\sqrt{\lambda}}{2 \pi} \ln S, \quad(S \rightarrow \infty)$
$O=\operatorname{Tr}\left(\nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \ldots \nabla_{+}^{S / n} \Phi\right)$
Also Belitsky, Gorsky, Korchemsky

Strings rotating on AdS_{5}, in the field theory side are described by operators with large spin.

Operators with large spin in the SL(2) sector

Spin chain representation
$\operatorname{Tr}\left[\nabla_{+}^{s_{1}} X \nabla_{+}^{s_{2}} X \nabla_{+}^{s_{3}} X \ldots \nabla_{+}^{s_{L}} X\right] \quad \rightarrow \quad\left|s_{1} s_{2} s_{3} \ldots s_{L}\right\rangle$
s_{i} non-negative integers.

Spin
Conformal dimension
$S=S_{1}+\ldots+S_{L}$
$\mathrm{E}=\mathrm{L}+\mathrm{S}+$ anomalous dim.

Belitsky, Korchemsky, Pasechnik described in detail the L=3 case using Bethe Ansatz.

It can be generalized to all loops (Beisert, Eden, Staudacher $\rightarrow \mathrm{E}=\mathrm{S}+(\mathrm{n} / 2) \mathrm{f}(\lambda) \ln \mathrm{S}$

Large spin means large quantum numbers so one can use a semiclassical approach (coherent states).

Conclusions

AdS/CFT provides a unique possibility of analytically understanding the low energy limit of non-abelian gauge theories (confinement).

Two results:

- Computed the masses of quark / anti-quark bound states at strong coupling.
- Showed a way in which strings directly emerge from the gauge theory.

