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String/gauge theory duality: (‘t Hooft)

String picture — Fund. strings

/ ( Susy, 10d, Q.G.)
mesons
T, P, ...
Quark model = QCD[SU(@3)]
oo \
q q Large N-limit [SU(N)]
o S J
Strong coupling Effective strings

More precisely: N - oo,A = ggM N f|Xed (‘t Hooft coupl.)

Lowest order: sum of planar diagrams (infinite number)



AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between
strings and gauge theory.

Gauge theory String theory
A =4 SYM SU(N) on R4 1B on AdS:xS>
A, , O, Pa radius R
“ ] ] . . A
Operators w/ conf. dim. A String states w/ E = o

J; = Ow: R/l = (gg N)**

_ 2 . A large — string th.
N - 0, =gy N fixed = [ onfieid i




Can we make the map between string and gauge
theory precise?

It can be done In particular cases.

Take two scalars X=@+1P,. Y=P; +1 P,
O=Tr(XX...Y..Y...X), J; X's, J,Y’s, J,+J, large
Compute 1-loop conformal dimension of O , or equiv.
compute energy of a bound state of J, particles of

type X and J, of type Y (but on a three sphere)

RY <—p S3XR
A —> E



Large number of ops. (or states). All permutations
of Xs and Ys mix so we have to diag. a huge matrix.

Nice idea (Minahan-Zarembo). Relate to a phys. system

TrI(XX..YXXY) —s

operator

A

e

[TT T TlD

«— conf. of spin chain

M

>

J=1

1 -
4 >

:Sj +1)



Ground state (s)

111111 > e— s Tr(XX ... XXXX)
11l llll> —— Tr(YY..YYYY)

First excited states

k)= e[t 1.1 .11), kzz—m;(J: J,+J,)

| J
y An?
(k) = = (1- cosk) 0T - 222 (BMN)

More generic (low energy) states: Spin waves
(FT, BFST, MK, ...)



Other states , e.g. with J,=J,

FF ekt

Spin waves of long wave-length have low energy and
are described by an effective action in terms of two
angles 6, @: direction in which the spin points.
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Taking J large with A/J? fixed: classical solutions
Moreover, this action agrees with the action of a
string moving fast on S°.

What about the case k ~1 ?




Since ( 6, @ ) Is Interpreted as the position of the string

we get the shape of the string from ¢ S >(0)

Examples

point-like

[TT.TTTT> < .

(9, 9)

.........
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Rotation in AdS ;? (Gubser, Klebanov, Polyakov)

Y12+Y22_+Y32+Y42_Y52_Y62:_R2

| 1 | |

sinh’ p;Q 4 cosit p it
ds* = - coslt pdt“ + dp*+ sinit pdQ
JA
E0S+o IS, (S~ @)

O=Tr(00%), x, =z+t



Verification using Wilson loops (MK, Makeenko)

The anomalous dimensions of twist two operators can
also be computed by using the cusp anomaly of
light-like Wilson loops (Korchemsky and Marchesini ).

In AAS/CFT Wilson loops can be computed using
surfaces of minimal area in AdS; (Maldacena, Rey, Yee )

The result agrees with the rotating string calculation.



Generalization to higher twist operators (MK)

— S — S/n S/n S/n S/n
0, = Tr(o 0% ) 0, =Tr({0%o0e 0% ..050)
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In flat space such solutions are easily_sfound In conf. gaug
X= Acos[h-1)o, |+ A(h-1) cosp._ ]
y= Asin[(n-1o.]+ A(h-1sin[o_]



Spiky strings in AdS:

27T ( ?)
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Spiky strings on a sphere:  (Ryang )

Similar solutions exist for strings rotating on a sphere:

The metricis: ds®*=-dt°+d@°+sin“dg*

We use the ansatz: t=«r, ¢=wr+o, 6=06(0)
And solve for 8(o). Field theory interpretation?



Special limit:  (Hofman-Maldacena)

do _xsing [k?sito- A7 4= K do s o
do A Vk?-a’sin’6 ¥ do Acos@
E &
. A 1
Sing = .
K sino
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glant magnon



The energy and angular momentum of the giant magnon
solution diverge. However their difference is finite:

\/jAJ' do \/7A¢

E-J-= _ - SIN——
2K sifo T 2
Ag A | .
0087 R A @ = Angular distance between spikes

Interpolating expression:

N A
—sin—¢, A>>1
A@ T 2
E—J:\/1+—sm—D
7T 2 Y,
1+—sm—, A<<1]
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Field theory interpretation:  (Hofman-Maldacena)

1 H F+AYF 1
a2l s

=Y ey, k=sz;(J=Jl+Jz)

A
271°

A
k) =
(k) =

K - Ad
(The 1is J,)

States with one spin flip and k~1 are giant magnons

(1— cosk) -




More spin flips:  (Dorey, Chen-Dorey-Okamura)

In the string side there are solutions with another
angular momentum J,. The energy Is given by:

, AP A Ag
- J, = 2+—2 - r12— A <<1
E-J, \/J sin® > 0Jd, + 23, > Sl

Justifies interpolating formula for J,=1

In the spin chain, if we flip a number J, of spins
there Is a bound state with energy:

) K .
£(K) = sin? — K — Ag

2,1 2 (J, is absorbed in J)




More general solutions:  (Russo, Tseytlin, MK)

Strateqy. We generalize the spiky string solution
and then take the giant magnon limit.

X= Acos[(h-1)o, |+ A(h- 1) cosp._ |
y= Asin[(h-1o, ]+ A(nh- 1 sin[o_]

In flat space:

namely: X+1y= X:x(f)ei“”, c=ao+ BT
3 3

Consider xS ds? = -dt?+ ) dX,dXa, ), X, Xa.=1
a=1 a=1

Use similar ansatz:

Xo = X, (€ = 1,(8) @



The reduced e.o.m. follow from the lagrangian:
L= (a® - BP)X, X', +ifw, (X', Xa = X', X.) = @PX, Xa + N\ (X, Xa - 1)

If we Interpret ¢ as time this is particle in a sphere
subject to a quadratic potential and a magnetic field.
The trajectory Is the shape of the string

The particle is attracted to
the axis but the magnetic
field curves the trajectory




Using the polar parameterization we get:

1 C: a’

L=(a’- B°)r'z- +A(r2-1)
(@*- )12 (a*- B )

1 | C? ' |

:ula: (0’2 - ,82) i ra2 + IBa)a_ J Xa = rae'ua
2 2
Constraints: «@,C,+ Bk*=0, H-= Zz i ,Igz K°
L C a

Three ang. momenta: J_ = |d ( ot a)arjj

: l9\ g @5 " @ B

Corresponding to phase rotations of x, , ,



Solutions:

e One angular momentum:
X5=0, X, real (1,=0), r,2+r,2=1, one variable.
e Two angular momenta:
X,=0, r%+r,2=1, one variable
Since only one variable we solve them using
conservation of H. Reproduced Ryang,

Hofman-Maldacena and Chen-Dorey-Okamura

e Three angular momenta: r,?+r,2+r3?=1, r,,



Therefore the three angular momenta case Is
the first “non-trivial” and requires more effort.
It turns that this system is integrable as shown
long ago by Neumann, Rosochatius and more
recently by Moser.

Can be solved by doing a change of variablesto ¢, (_

o (€ - al)(E - @)
S ] (e )




In the new variables, the system separates
If we use the Hamilton-Jacobi method:

Compute the Hamiltonian: H ( pJ_r ,Zi )

A
Find W({, ) such that H( p, = ﬁ’éj = E = congt.

In this case we try the ansatz: W = W(Z{, ) + W({_)
and it works! Variables separate!.

A lengthy calculation gives a solution for (., (_which
can then be translated into a solution for r



The resulting equations are still complicated but
simplify in the giant magnon limit in which J, - o

We get forr, :

rz_(wz 6()3) 2 1 AZ

> T (W - @) 2 (SA - SA)
r2:(a)z a)z) A2 -1

(C‘)Z C‘)Z) (SsA?. B S‘2'6‘2)2

with AZ:tanf[ SZ; sz, A; = Cot’E 183; st

We have r_ explicitly in terms of ¢ and integration const.



We can compute the energy and angular extension
of the giant graviton obtaining:

A A

Ap=¢,+ ¢,

We get two superposed magnons.
However there Is a relation: same group velocity.

JE.
R )
J




In the spin chain side we need to use more fields
to have more angular momenta.
We consider therefore operators of the form:

Tr(... XXXXYYXYYZZZYY XXY ZZZXXXXXXXXXXXX...)

Where X =®,+i1 D, Y=P;+i1 O, 7= Oy +1i Py

The J, Y’'s form a bound state and the J; Z's another,
both superposed to a “background” of J; X's (J, -~ =)

2¢2 A
2\]772 2 2\]772

E-J,0J,+J,+ S|nz¢3 A<<1

The condition of equal velocity appears because in the
string side we use a rigid ansatz which does not allow
relative motion of the two lumps.



Some examples of solutions.
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Other solutions on S 2: (Work in progr. w/ R. Ishizeki)

It turns out that looking at rigid strings rotating on
a two-sphere one can find other class of solutions
and In particular another limiting solution:

Antiferromagnetic magnon?
(see Roiban,Tirziu, Tseytlin)

AN

(Goes around infinite times)




Conclusions:

Classical string solutions are a powerful tool
to study the duality between string and gauge
theory.

We saw several examples:

e folded strings rotating on S°

e spiky strings rotating in AdS; and S°

e giant magnons on S? and S3
e giant magnons with three angular momenta

e work in progress on other sol. on S



