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Summary

Introduction

String / gauge theory duality (AdS/CFT )

Classical strings and field theory operators:
folded strings and spin waves in spin chains
folded strings and twist two operators

Spiky strings and higher twist operators (M.K.)

Classical strings moving in AdS and their
field theory interpretation



Spin chain interpretation of the giant magnon
(Hofman-Maldacena)

More generic solutions: 
Spiky strings and giant magnons on S5

(Russo, Tseytlin, M.K.)

Conclusions

Spiky strings on a sphere and giant magnon limit
(Ryang, Hofman-Maldacena)

Other solutions on S 2 (work in prog. w/ R.Ishizeki )



String/gauge theory duality: Large N limit (‘t Hooft)

mesons

String picture
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Quark model 

Fund. strings

( Susy, 10d, Q.G. )

QCD [ SU(3) ]

Large N-limit [SU(N)]

Effective strings

q q

Strong coupling

q q

Lowest order: sum of planar diagrams (infinite number)

N g N fixedYM→ ∞ =, λ 2More precisely: (‘t Hooft coupl.)



AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between
strings  and gauge theory.

Gauge theory

N  = 4 SYM SU(N) on R4
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Operators w/ conf. dim. 

String theory

IIB on AdS5xS5
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Can we make the map between string and gauge
theory precise?  

It can be done in particular cases.

Take two scalars X = 1+ i 2 ; Y= 3 + i 4

O = Tr(XX…Y..Y…X) ,   J1 X’s ,  J2 Y’s, J1+J2 large

Compute 1-loop conformal dimension of O , or equiv.
compute energy of a bound state of J1 particles of 
type X and J2 of type Y (but on a three sphere)

R4 S3xR
E



Large number of ops. (or states). All permutations 
of Xs and Ys mix so we have to diag. a huge matrix.

Nice idea (Minahan-Zarembo). Relate to a phys. system

Tr( X X…Y X X Y ) | … ›
operator conf. of spin chain

mixing matrix op. on spin chain

Ferromagnetic  Heisenberg  model !
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Ground state (s)

| … › Tr( X X … X X X X )

| … › Tr( Y Y … Y Y Y Y )

First excited states

More generic (low energy) states:   Spin waves
(FT, BFST, MK, …)
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Other states , e.g. with J1=J2

Spin waves of long wave-length have low energy and
are described by an effective action in terms of two 
angles , : direction in  which the spin points.

Taking J large with /J2 fixed:  classical solutions
Moreover, this action agrees with the action of a 
string moving fast on S5 .
What about the case k ~ 1 ?
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Since ( , ) is interpreted as the position of the string 

we get the shape of the string from ‹ S ›(σ)

Examples

| … ›
point-like

( , )

Folded string



Rotation in AdS 5? (Gubser, Klebanov, Polyakov)
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Verification using Wilson loops (MK, Makeenko)

The anomalous dimensions of twist two operators can 
also be computed by using the cusp anomaly of 
light-like Wilson loops (Korchemsky and Marchesini ).

In AdS/CFT Wilson loops can be computed using 
surfaces of minimal area in AdS5 (Maldacena, Rey, Yee )

z

The result agrees with the rotating string calculation.



Generalization to higher twist operators (MK)
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In flat space such solutions are easily found in conf. gauge



Spiky strings in AdS:
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Spiky strings on a sphere: (Ryang )

Similar solutions exist for strings rotating on a sphere:

(top view)

The metric is:

We use the ansatz:
And solve for        .  Field theory interpretation?

ds dt d d2 2 2 2 2= − + +θ θ ϕsin
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Special limit: (Hofman-Maldacena)
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The energy and angular momentum of the giant magnon
solution diverge. However their difference is finite:
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Field theory interpretation: (Hofman-Maldacena)
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States with one spin flip and k~1 are giant magnons



More spin flips: (Dorey, Chen-Dorey-Okamura)

In the string side there are solutions with another
angular momentum J2. The energy is given by:
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More general solutions: (Russo, Tseytlin, MK)

Strategy: We generalize the spiky string solution
and then take the giant magnon limit.

In flat space:
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The reduced e.o.m. follow from the lagrangian:

L x x i x x x x x x x xa a a a a a a a a a a a= − + − − + −( ) ' ' ( ' ' ) ( )α β βω ω2 2 2 1Λ

If we interpret ξ as time this is particle in a sphere 
subject to a quadratic potential and a magnetic field.
The trajectory is the shape of the string

The particle is attracted to 
the axis but the magnetic 
field curves the trajectory



Using the polar parameterization we get: 
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Solutions:

One angular momentum:

x3=0, x2 real  (µ2=0),   r1
2+r2

2=1,   one variable.

Two angular momenta:

x3=0,   r1
2+r2

2=1,   one variable

Since only one variable we solve them using
conservation of H. Reproduced Ryang, 
Hofman-Maldacena and Chen-Dorey-Okamura

Three angular momenta: r1
2+r2

2+r3
2=1,  r1,2



Therefore the three angular momenta case is 
the first “non-trivial” and requires more effort.
It turns that this system is integrable as shown 
long ago by Neumann, Rosochatius and more 
recently by Moser.

Can be solved by doing a change of variables to ζ+, ζ−
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In the new variables, the system separates
if we use the Hamilton-Jacobi method:

Compute the Hamiltonian:

Find                such that 

In this case we try the ansatz:                            
and it works!  Variables separate!.

A lengthy calculation gives a solution for ζ+, ζ− which 
can then be translated into a solution for ra
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The resulting equations are still complicated but 
simplify in the giant magnon limit in which

We get for ra :
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We can compute the energy and angular extension
of the giant graviton obtaining:
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We get two superposed magnons. 
However there is a relation: same group velocity.
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In the spin chain side we need to use more fields
to have more angular momenta.
We consider therefore operators of the form:

Tr(…XXXXYYXYYZZZYYXXYZZZXXXXXXXXXXXX…)

Where X = 1+ i 2 ; Y= 3 + i 4 , Z= 5 + i 6

The J2 Y’s form a bound state and the J3 Z’s another,
both superposed to a “background” of J1 X ’s ( )

The condition of equal velocity appears because in the
string side we use a rigid ansatz which does not allow
relative motion of the two lumps. 
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Other solutions on S 2: (Work in progr. w/ R. Ishizeki)

It turns out that looking at rigid strings rotating on 
a two-sphere one can find other class of solutions
and in particular another limiting solution:

Antiferromagnetic magnon?
(see Roiban,Tirziu,Tseytlin)

(Goes around infinite times)



Conclusions:
Classical string solutions are a powerful tool
to study the duality between string and gauge
theory.

We saw several examples:

folded strings rotating on S5

spiky strings rotating in AdS5 and S5

giant magnons on S2 and S3

giant magnons with three angular momenta

work in progress on other sol. on S2


