# Spiky Strings in the SL(2) Bethe Ansatz 

M. Kruczenski

## Purdue University

> Based on: arXiv:0905.3536
> (L. Freyhult, A. Tirziu, M.K.)

Quantum Theory and Symmetries 6, 2009

## Summary

- Introduction

String / gauge theory duality (AdS/CFT)
Classical strings and field theory operators: folded strings and twist two operators

- Spiky strings and higher twist operators

Classical strings moving in AdS and their field theory interpretation

- Spiky strings in flat space

Quantum description.

- Spiky strings in Bethe Ansatz

Mode numbers and BA equations at 1-loop

- Solving the BA equations

Resolvent

- Conclusions and future work

Extending to all loops we a find precise matching with the results from the classical string solutions.

## String/gauge theory duality: Large N limit ('t Hooft)



More precisely: $N \rightarrow \infty, \lambda=g_{Y M}^{2} N$ fixed (t Hooft coupl.)
Lowest order: sum of planar diagrams (infinite number)

## AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between strings and gauge theory.

## Gauge theory

$\mathfrak{N}=4 \operatorname{SYM} \operatorname{SU}(\mathrm{~N})$ on $\mathrm{R}^{4}$

$$
\mathrm{A}_{\mu}, \Phi^{i}, \Psi^{a}
$$

Operators w/ conf. dim. $\Delta$

## String theory

IIB on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ radius $R$
String states w/ $E=\frac{\Delta}{R}$

$$
g_{s}=g_{Y M}^{2} ; \quad R / l_{s}=\left(g_{Y M}^{2} N\right)^{1 / 4}
$$

$N \rightarrow \infty, \lambda=g_{Y M}^{2} N$ fixed $\Rightarrow$
$\lambda$ large $\rightarrow$ string th. $\lambda$ small $\rightarrow$ field th.

Can we make the map between string and gauge theory precise? Nice idea (Minahan-Zarembo).
Relate to a phys. system

$$
\begin{gathered}
\operatorname{Tr}(X X \ldots Y \times X Y) \\
\text { operator } \\
\text { mixing matrix }
\end{gathered} \stackrel{\longleftrightarrow|\uparrow \uparrow \ldots \downarrow \uparrow \uparrow \downarrow\rangle}{\longleftrightarrow} \text { conf. of spin chain }
$$

For large number of operators becomes classical and can be mapped to the classical string. It is integrable, we can use BA to find all states.

## Rotation in $\mathrm{AdS}_{\underline{5}} \underline{\underline{?}}$ (Gubser, Klebanov, Polyakov)

$$
\frac{Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}}{-Y_{5}^{2}-Y_{6}^{2}}=-R^{2}
$$

$$
\sinh ^{2} \rho ; \Omega_{[3]} \quad \cosh ^{2} \rho ; t
$$

$d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{[3]}^{2}$

$$
E \cong S+\frac{\sqrt{\lambda}}{\pi} \ln S, \quad(S \rightarrow \infty)
$$

$$
\theta=\omega t
$$

$$
O=\operatorname{Tr}\left(\Phi \nabla_{+}^{S} \Phi\right), \quad x_{+}=z+t
$$

## Generalization to higher twist operators (MK)

$$
O_{[2]}=\operatorname{Tr}\left(\Phi \nabla_{+}^{S} \Phi\right) \longrightarrow O_{[n]}=\operatorname{Tr}\left(\nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \ldots \nabla_{+}^{S / n} \Phi\right)
$$



In flat space such solutions are easily found in conf. gaug
$x=A \cos \left[(n-1) \sigma_{+}\right]+A(n-1) \cos \left[\sigma_{-}\right]$
$y=A \sin \left[(n-1) \sigma_{+}\right]+A(n-1) \sin \left[\sigma_{-}\right]$

## Spiky strings in AdS:




$$
\begin{aligned}
& E \cong S+\left(\frac{n}{2}\right) \frac{\sqrt{\lambda}}{\pi} \ln S, \quad(S \rightarrow \infty) \\
& O=\operatorname{Tr}\left(\nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \ldots \nabla_{+}^{S / n} \Phi\right)
\end{aligned}
$$

## Beccaria, Forini, Tirziu, Tseytlin

$E-S=\frac{n \sqrt{\lambda}}{2 \pi}\left(\ln \frac{4 \pi S}{\sqrt{\lambda}}+\ln \left(\frac{4}{n} \sin \frac{\pi}{n}\right)-1\right)+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}, \frac{\ln S}{S}\right)$

## Spiky strings in flat space Quantum case

Classical:

$$
\begin{aligned}
& x=A \cos \left[(n-1) \sigma_{+}\right]+A(n-1) \cos \left[\sigma_{-}\right] \\
& y=A \sin \left[(n-1) \sigma_{+}\right]+A(n-1) \sin \left[\sigma_{-}\right]
\end{aligned}
$$

Quantum:

$$
\begin{array}{ll}
n_{R}=A^{2}(n-1)^{2} & k_{R}=1 \\
n_{L}=A^{2}(n-1) & k_{L}=n-1 \\
n_{R} k_{R}=n_{L} k_{L} &
\end{array}
$$

$$
\begin{aligned}
& E=\sqrt{2\left(n_{L} k_{L}+n_{R} k_{R}\right)}=2 A(n-1) \\
& S=n_{L}+n_{R}=A^{2} n(n-1)
\end{aligned}
$$



## Operators with large spin SL(2) sector

## Spin chain representation

$$
\operatorname{Tr}\left[\nabla_{+}^{s_{1}} X \nabla_{+}^{s_{2}} X \nabla_{+}^{s_{3}} X \ldots \nabla_{+}^{s_{L}} X\right] \quad \rightarrow \quad\left|s_{1} s_{2} s_{3} \ldots s_{L}\right\rangle
$$

$s_{i}$ non-negative integers.

Spin
Conformal dimension
$\mathrm{S}=\mathrm{S}_{1}+\ldots+\mathrm{S}_{\mathrm{L}}$
$\mathrm{E}=\mathrm{L}+\mathrm{S}+$ anomalous dim.

## Bethe Ansatz

S particles with various momenta moving in a periodic chain with L sites. At one-loop:

$$
\left(\frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}\right)^{L}=\prod_{\substack{j=1 \\ j \neq k}}^{S} \frac{u_{k}-u_{j}-i}{u_{k}-u_{j}+i}, \quad k=1 \ldots S
$$

$$
\prod_{k=1}^{S} \frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}=1 \quad E_{1}=\frac{\lambda}{8 \pi^{2}} \sum_{k=1}^{S} \frac{1}{u_{k}^{2}+\frac{1}{4}}
$$

We need to find the $u_{k}$ (real numbers)

For large spin, namely large number of roots, we can define a continuous distribution of roots with a certain density.

It can be generalized to all loops
(Beisert, Eden, Staudacher $\rightarrow E=S+(n / 2) f(\lambda) \ln S$
Belitsky, Korchemsky, Pasechnik described in detail L=3 case using Bethe Ansatz.

Large spin means large quantum numbers so one can use a semiclassical approach (coherent states).

## Spiky strings in Bethe Ansatz

$$
f d u \frac{\rho_{0}(u)}{u^{\prime}-u}=\pi n_{w}\left(u^{\prime}\right)
$$

BA equations

$$
\begin{aligned}
\int d u \rho_{0}(u) & =S \\
f d u \frac{\rho_{0}(u)}{u} & =0
\end{aligned}
$$

Roots are distributed on the real axis between $\mathrm{d}<0$ and $a>0$. Each root has an associated wave number $\mathrm{n}_{\mathrm{w}}$. We choose $n_{w}=-1$ for $u<0$ and $n_{w}=n-1$ for $u>0$. Solution?

Define $F(w)=\sqrt{w-a} \sqrt{w-d}$

and $\quad G(w)=\frac{1}{\pi} \int_{d}^{a} \frac{F(w)}{F\left(u+i 0^{+}\right)} \frac{n_{w}(u)}{u-w} d u$
We get on the cut:

$$
G\left(x \pm i 0^{+}\right)= \pm \frac{1}{\pi} f_{d}^{a}\left|\frac{F(x)}{F(u)}\right| \frac{n_{w}(u)}{u-x} d u+i n_{w}(u)= \pm \rho(x)+i n_{w}(x)
$$

Consider


$$
\frac{G(w)}{w-z}
$$

We get
$f_{d}^{a} \frac{\rho(u) d u}{u^{\prime}-u}=\pi n_{w}\left(u^{\prime}\right)-i \pi \operatorname{Res}\left(\frac{G(w)}{w-x^{\prime}}, w=\infty\right)$
Also:

$$
\begin{aligned}
\int_{d}^{a} \rho(u) d u & =\frac{1}{2} \oint_{\mathcal{C}} G(w) d w
\end{aligned}=-i \pi \operatorname{Res}[G(w), w=\infty] \quad \begin{aligned}
& f_{d}^{a} \frac{\rho(u)}{u} d u=\frac{1}{2} \oint_{\mathcal{C}} \frac{G(w)}{w} d w=-i \pi \operatorname{Res}\left[\frac{G(w)}{w}, w=\infty\right]
\end{aligned}
$$

Since $G \simeq G_{0}+\frac{G_{1}}{w}+\ldots, \quad w \rightarrow \infty \quad$ we get
$G_{0}=0 \Rightarrow-\frac{a}{d}=\tan ^{2} \frac{\pi}{2 n}, \quad S=i \pi G_{1}=n \sqrt{-a d}$

We also have:

$$
\frac{1}{2 g^{2}}(E-S)=\int_{d}^{a} \frac{\rho(u) d u}{u^{2}+\frac{1}{4}}=\pi G\left(\frac{i}{2}\right)-\pi G\left(-\frac{i}{2}\right) \simeq n \ln \left(-\frac{8 a d}{a-d}\right)
$$

Finally, we obtain:

$$
\begin{aligned}
a & =\frac{S}{n} \tan \frac{\pi}{2 n} \\
d & =-\frac{S}{n} \cot \frac{\pi}{2 n} \\
\frac{E-S}{2 g^{2}} & =2 n \ln \left(\frac{S}{4 n} \sin \frac{\pi}{n}\right)
\end{aligned}
$$

## Root density




We can extend the results to strong coupling using the all-loop BA (BES).

We obtain (see Alin's talk)

$$
\begin{aligned}
E-S & =\frac{n \sqrt{\lambda}}{2 \pi}\left(\ln \frac{4 \pi S}{\sqrt{\lambda}}+\ln \left(\frac{4}{n} \sin \frac{\pi}{n}\right)-1\right) \\
& +\frac{n}{2}\left(1+\frac{6 \ln 2}{\pi}-\frac{3 \ln 2}{\pi} \ln \left(\frac{4}{n} \sin \frac{\pi}{n}\right)-\frac{3 \ln 2}{\pi} \ln \frac{4 \pi S}{\sqrt{\lambda}}\right)+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}, \frac{\ln S}{S}\right)
\end{aligned}
$$

In perfect agreement with the classical string result. We also get a prediction for the one-loop correction.

## Conclusions

We found the field theory description of the spiky strings in terms of solutions of the BA ansatz equations. At strong coupling the results agrees with the classical string result providing a check of our proposal and of the all-loop BA.

## Future work

Relation to more generic solutions by Jevicki-Jin found using the sinh-Gordon model.
Relation to elliptic curves description found by
Dorey and Losi and Dorey.
Semiclassical methods?

