String / gauge theory duality and ferromagnetic spin chains

M. Kruczenski

Princeton Univ.

In collaboration w/

Rob Myers, David Mateos, David Winters
Arkady Tseytlin, Anton Ryzhov

Summary

- Introduction

AdS/CFT

$$
\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow \| \mathrm{B} \text { on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}
$$

$$
\begin{gathered}
S^{5}: X_{1}^{2}+X_{2}^{2}+\ldots X_{6}{ }^{2}=R^{2} \\
A d S_{5}: Y_{1}^{2}+Y_{2}^{2}+\ldots-Y_{5}^{2}{ }^{2}-Y_{6}^{2}=-R^{2}
\end{gathered}
$$

Strings?

- Add quarks

We get models where the spectrum of $q \bar{q}$ bound states can be computed in the strong coupling regime

- Strings from gauge theory

Problem: Compute scaling dimension (or energy) of states of a large number of particles in $\mathfrak{N}=4$ SYM

Equivalent to solving Heisenberg spin chain (Minahan and Zarembo).
Use effective action for spin waves: is the same as the string action AdS/CFT predicts!.

Introduction

String theory

-) Quantum field theory:
Relativistic theory of point particles
-) String theory:
Relativistic theory of extended objects: Strings

Why?

Original motivation:
Phenomenological model for hadrons
(proton, neutron,pions, rho, etc.)

Regge trajectories

Simple model of rotating strings gives $E \approx \sqrt{J}$

Strings thought as fundamental

Theoretical problems

Tachyons

Taking care by supersymmetry

Quantum mechanically consistent only in 10 dim.

Unified models? Including gravity

5 types of strings

What about hadrons?

Instead: bound states of quarks. mesons: q̄ baryons: qqq
Interactions: $\underset{\text { quarks }}{\mathrm{SU}(3) ;} \mathrm{q}=\left[\begin{array}{l}- \\ - \\ -\end{array}\right] ; \quad \mathrm{A}_{\mu}=\left[\begin{array}{l}--- \\ \text { gluons } \\ --- \\ ---\end{array}\right]$
Coupling constant small at large energies (100 GeV) but large at small energies. No expansion parameter.

Confinement
 (color) electric flux=string?

Idea ('t Hooft)

$N \rightarrow \infty, \quad g_{Y M}^{2} N=\lambda$ fixed ('t Hooft coupling)
1/N: perturbative parameter.
Planar diagrams dominate (sphere)
Next: $1 / \mathrm{N}^{2}$ corrections (torus) $+1 / \mathrm{N}^{4}$ (2-handles) $+\ldots$
Looks like a string theory
Can be a way to derive a string descriptions of mesons

AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between strings and gauge theory.

Gauge theory

$\mathfrak{N}=4 \operatorname{SYM} \operatorname{SU}(\mathrm{~N})$ on R^{4}

$$
\mathrm{A}_{\mu}, \Phi^{\mathrm{i}}, \Psi^{\mathrm{a}}
$$

Operators w/ conf. dim. Δ

String theory

IIB on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ radius R
String states w/ $E=\frac{\Delta}{R}$

$$
g_{s}=g_{Y M}^{2} ; \quad R / l_{s}=\left(g_{Y M}^{2} N\right)^{1 / 4}
$$

$N \rightarrow \infty, \lambda=g_{Y M}^{2} N$ fixed \Rightarrow
λ large \rightarrow string th. λ small \rightarrow field th.

Mesons (w/ D. Mateos, R. Myers, D. Winters)

We need quarks (following Karch and Katz)

So, in AdS/CFT, a meson is a string rotating in 5 dim.!

Meson spectrum

($\mathcal{N}=4$ is conformal \rightarrow Coulomb force)

The cases $J=0,1 / 2,1$ are special, very light , namely "tightly bound". ($\mathrm{E}_{\mathrm{b}} \sim 2 \mathrm{~m}_{\mathrm{q}}$)

For $J=0,1 / 2,1$ we can compute the exact spectrum (in 't Hooft limit and at strong coupling)

2 scalars

$$
\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0
$$

1 scalar $\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 1$
1 scalar
1 scalar $\left(M / M_{0}\right)^{2}=(n+m+2)(n+m+3) \quad, m \geq 1$ $\left(M / M_{0}\right)^{2}=(n+m)(n+m+1) \quad, m \geq 1$
1 vector $\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0$
1 fermion
$\left(M / M_{0}\right)^{2}=(n+m+1)(n+m+2) \quad, m \geq 0$
1 fermion
$\left(M / M_{0}\right)^{2}=(n+m+2)(n+m+3)$
, $\mathrm{m} \geq 0$
$\mathrm{n} \geq 0$; there is a mass gap of order M_{0} for $\mathrm{m}_{\mathrm{q}} \neq 0$

$$
M_{0}=\frac{L}{R}=\frac{m_{q}}{\sqrt{g_{Y M}^{2} N}} \ll m_{q} \quad \text { for } \quad \sqrt{g_{Y M}^{2} N} \gg 1
$$

Confining case (w/ D. Mateos, R. Myers, D. Winters)

Add quarks to Witten's confining bkg.

- Spectrum is numerical
- For $\mathrm{m}_{\mathrm{q}}=0$ there is a massless meson $\Phi .\left(\mathrm{M}_{\Phi}=0\right)$

Goldstone boson of chiral symmetry breaking

- For $m_{q} \neq 0 \quad M_{\phi}^{2}=-\frac{m_{q}}{f_{\phi}^{2}}\langle\bar{\psi} \psi\rangle \quad$ GMOR- relation
- Rot. String (w/ Vaman, Pando-Zayas, Sonnenschein)
reproduces "improved model":

We can compute meson spectrum at strong coupling. In the confining case results are similar to QCD.

How close are we to QCD?

Can we derive the string picture from the field theory? (PRL 93 (2004) M.K.)

Study known case: $\mathcal{N}=4$ SYM
Take two scalars $\mathrm{X}=\Phi_{1}+i \Phi_{2} ; \mathrm{Y}=\Phi_{3}+i \Phi_{4}$
$O=\operatorname{Tr}(X X \ldots Y . . Y \ldots X), J_{1} X ' s, J_{2} Y ' s, J_{1}+J_{2}$ large
Compute 1-loop conformal dimension of O, or equiv. compute energy of a bound state of J_{1} particles of type X and J_{2} of type Y (but on a three sphere)

Large number of ops. (or states). All permutations of Xs and Ys mix so we have to diag. a huge matrix.

Nice idea (Minahan-Zarembo). Relate to a phys. system

$$
\left.\begin{array}{rl}
\operatorname{Tr}(X X \ldots Y X X Y) & \longleftrightarrow \\
\text { operator } \\
\text { mixing matrix }
\end{array} ~ \longleftrightarrow \uparrow \uparrow \ldots \downarrow \uparrow \uparrow \downarrow\right\rangle, ~ \begin{gathered}
\text { conf. of spin chain } \\
\text { op. on spin chain }
\end{gathered}
$$

Ferromagnetic Heisenberg model!

Ground state (s)

$$
\begin{aligned}
& |\uparrow \uparrow \ldots \uparrow \uparrow \uparrow \uparrow\rangle \longleftrightarrow \operatorname{Tr}(X X \ldots X X X X) \\
& |\downarrow \downarrow \ldots \downarrow \downarrow \downarrow \downarrow\rangle \longleftrightarrow \operatorname{Tr}(Y Y \ldots Y Y Y Y)
\end{aligned}
$$

First excited states

$$
\begin{aligned}
& |k\rangle=\sum e^{i k l|\uparrow \uparrow \ldots \downarrow \ldots \uparrow \uparrow\rangle, \quad k=\frac{2 \pi n}{J} ;\left(J=J_{1}+J_{2}\right)} \\
& \varepsilon(k)=\frac{\lambda}{J^{2}}(-1+\cos k) \xrightarrow[k \rightarrow 0]{ } \frac{\lambda n^{2}}{2 J^{2}} \quad(\mathrm{BMN})
\end{aligned}
$$

More generic (low energy) states: Spin waves

Other states, e.g. with $J_{1}=J_{2}$

Spin waves of long wave-length have low energy and are described by an effective action in terms of two angles θ, φ : direction in which the spin points.
$S_{\text {eff. }}=J\left\{-\frac{1}{2} \int d \sigma d \tau \cos \theta \partial_{\tau} \phi^{-}\right.$

$$
\left.-\frac{\lambda}{32 \pi J^{2}} \int d \sigma d \tau\left[\left(\partial_{\sigma} \theta\right)^{2}+\sin ^{2} \theta\left(\partial_{\sigma} \phi\right)^{2}\right]\right\}
$$

Taking J large with λ / J^{2} fixed: classical solutions

According to AdS/CFT there is a string description
particle: $\mathrm{X}(\mathrm{t})$ string: $\mathrm{X}(\sigma, \mathrm{t})$
We need $S^{3}: \frac{X_{1}{ }^{2}+X_{2}^{2}}{J_{1}}+\frac{X_{3}{ }^{2}+X_{4}{ }^{2}}{J_{2}}=R^{2}$

CM: J_{1} Rot: J_{2}

Action: $\mathrm{S}[\theta(\sigma, t), \varphi(\sigma, t)]$, which, for large J is: (agrees w/f.t.)

$$
S_{\text {eff. }}=J\left\{-\frac{1}{2} \int d \sigma d \tau\left[\cos \theta \partial_{\tau} \phi-\frac{\lambda}{32 \pi J^{2}}\left[\left(\partial_{\sigma} \theta\right)^{2}+\sin ^{2} \theta\left(\partial_{\sigma} \phi\right)^{2}\right]\right]\right\}
$$

Suggests that $(\theta, \varphi)=(\theta, \varphi)$ namely that $\langle\vec{S}\rangle \quad$ is the position of the string

Examples

Strings as bound states

Fields create particles:

$$
\begin{aligned}
& \mathrm{X} \rightarrow|\mathbf{x}\rangle, \quad \mathrm{Y} \rightarrow|\mathbf{y}\rangle \\
& \text { Q.M. : }|\psi\rangle=\cos (\theta / 2) \exp (\mathrm{i} \phi / 2)|\mathbf{x}\rangle \\
&+\sin (\theta / 2) \exp (-\mathrm{i} \phi / 2)|\mathbf{y}\rangle
\end{aligned}
$$

We consider a state with a large number of particles
$\mathrm{i}=1 \ldots \mathrm{~J}$ each in a state $\mathrm{v}_{\mathrm{i}}=\left|\psi\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}}\right)\right\rangle$. (Coherent state)
Can be thought as created by $O=\operatorname{Tr}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{n}}\right)$

Strings are useful to describe states of a large number of particles (in the large-N limit)

Extension to higher orders in the field theory: $O\left(\lambda^{2}\right)$

We need H (Beisert et al.)

$$
\begin{aligned}
H & =\frac{\lambda}{4 \pi} \sum_{j=1}^{J}\left(\frac{1}{4}-\vec{S}_{j} \cdot \vec{S}_{j+1}\right)+ \\
& +\frac{\lambda^{2}}{128 \pi^{2}}\left[-\frac{3}{2} J+8 \sum_{j=1}^{J} \vec{S}_{j} \cdot \vec{S}_{j+1}-2 \sum_{j=1}^{J} \vec{S}_{j} \cdot \vec{S}_{j+2}\right]
\end{aligned}
$$

At next order we get second neighbors interactions

We have to define the effective action more precisely

Look for states $|\psi\rangle$ such that $\langle\psi| \vec{S}_{j}|\psi\rangle / / n_{j} ; \quad n_{j}^{2}=1$
From those, find $|\psi\rangle$ such that $\langle\psi| H|\psi\rangle=E\left(n_{j}\right)=$ minimum

$$
S=\int p \dot{q}-H(p, q)=-\frac{1}{2} \sum_{i} \int \cos \theta_{i} \partial_{t} \phi_{i}-E\left(n_{i}\right)
$$

$n_{i}=\left(\sin \theta_{i} \cos \varphi_{i}, \sin \theta_{i} \sin \varphi_{i}, \cos \theta_{i}\right)$

After doing the calculation we get: (Ryzhov, Tseytlin, M.K.)

$$
\begin{aligned}
S_{\text {eff. }} & =-\frac{J}{2} \int d \sigma d \tau \cos \theta \partial_{\tau} \phi-J \int d \sigma d \tau\left\{\frac{\lambda}{8 J^{2}}\left(\partial_{\sigma} n\right)^{2}\right. \\
& \left.-\frac{\lambda^{2}}{32 J^{4}}\left[\left(\partial_{\sigma}^{2} n\right)^{2}-\frac{3}{4}\left(\partial_{\sigma} n\right)^{4}\right]\right\}
\end{aligned}
$$

Agrees with string theory!

Rotation in AdS $_{5} \underline{\underline{?}}$ (Gubser, Klebanov, Polyakov)

$$
\begin{gathered}
\frac{Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}}{-Y_{5}^{2}-Y_{6}^{2}}=-R^{2} \\
\sinh ^{2} \rho ; \Omega_{[3]} \quad \cosh ^{2} \rho ; t
\end{gathered}
$$

$d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{[3]}^{2}$

$$
E \cong S+\frac{\sqrt{\lambda}}{2 \pi} \ln S, \quad(S \rightarrow \infty)
$$

$$
\theta=\omega t
$$

$$
O=\operatorname{Tr}\left(\Phi \nabla_{+}^{S} \Phi\right), \quad x_{+}=z+t
$$

Verification using Wilson loops (MK, Makeenko)

The anomalous dimensions of twist two operators can also be computed by using the cusp anomaly of light-like Wilson loops (Korchemsky and Marchesini).

In AdS/CFT Wilson loops can be computed using surfaces of minimal area in AdS_{5} (Maldacena, Rey, Yee)

The result agrees with the rotating string calculation.

Generalization to higher twist operators (MK)

$E \cong S+\left(\frac{n}{2}\right) \frac{\sqrt{\lambda}}{2 \pi} \ln S, \quad(S \rightarrow \infty)$
$O=\operatorname{Tr}\left(\nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \nabla_{+}^{S / n} \Phi \ldots \nabla_{+}^{S / n} \Phi\right)$
$S=\frac{\sqrt{\lambda}}{2 \pi} \int d t \sum_{j}\left(\cosh 2 \rho_{1}-1\right) \dot{\theta}_{j}-\frac{\sqrt{\lambda}}{8 \pi} \int d t \sum_{j}\left\{4 \rho_{1}+\ln \left(\sin ^{2}\left(\frac{\theta_{j+1}-\theta_{j}}{2}\right)\right)\right\}$

Conclusions

AdS/CFT provides a unique possibility of analytically understanding the low energy limit of non-abelian gauge theories (confinement)

Two results:

- Computed the masses of quark / anti-quark bound states at strong coupling.
- Showed a way in which strings directly emerge from the gauge theory.

