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Mathematics played a major role in Gilles Deleuze’s thought, beginning
with his engagement with calculus and Gottfried Leibniz, who was also
a major philosophical influence on Deleuze. Bernhard Riemann may,
however, be the most significant mathematical influence on Deleuze,
especially in his later works, such as the Cinema books, and in his
collaborations with Félix Guattari. The conjunction of Riemann’s
mathematics and Deleuze’s philosophy is a remarkable event in the
history of twentieth-century philosophy, and it has major implica-
~ tions for our understanding of the relationships between mathematics
and Deleuze’s thought, and between mathematics and philosophy in
general. Riemann’s thought, however, is also part of the philosophi-
cal, and not simply mathematical, lineage of Deleuze’s thought. Born
from philosophy with the pre-Socratics, mathematics has a great philo-
sophical potential, even though this potential is not always utilised in
the disciplinary practice of mathematics. Riemann’s work represents
one of the greatest cases of exploring this potential and creating it, to
begin with, in part by fusing philosophical ideas, such as those extend-
ing from post-Kantian philosophy, with his mathematical thinking.
Deleuze, I would argue, takes advantage of both Riemann’s math-
ematical and philosophical concepts in building his own philosophical
concepts. Thus, the relationship between Riemann and Deleuze not
only represents a remarkable conjunction of mathematics and phi-
losophy but also establishes a philosophical friendship, as Deleuze and
Guattari see it in What is Philosophy? (WP 4-5, 9-10).

MATHEMATICS AND PHILOSOPHY IN RIEMANN

Bernhard Riemann (1826-66) was one of the greatest mathemati-
cians of the nineteenth century and one of the greatest mathemati-
cians who ever lived. His work rivals and sometimes outshines even
that of such legendary figures as Sir Isaac Newton, Karl Friedrich
Gauss (Riemann’s teacher) and Evariste Galois, before him, and
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Henri Poincaré and David Hilbert after him (often listed, along
with Riemann, as the greatest mathematicians of the modern era).
Riemann’s ideas, moreover, had arguably the greatest impact (even
compared to those of Poincaré and Hilbert, his main competitors
in this respect) on mathematics in the twentieth and twenty-first
centuries. Riemann also made a significant philosophical contribu-
tion, perhaps comparable to that of other mathematicians such as
Pythagoras and Euclid, whose ideas have had, and continue to exert,
a powerful philosophical impact. In particular, we can see the import
of Riemann’s non-Euclideanism on Deleuze. This claim concerning
Riemann’s philosophical contribution is somewhat unorthodox and
requires qualification.

Although his extraordinary mathematical capabilities became
apparent early on, Riemann, who was born to a Lutheran pastor’s
family, was initially trained in philology and theology. Later in his
life he became well versed in post-Kantian German philosophy. These
theological and philosophical (and earlier philological) interests had
their impact on his mathematical ideas. Riemann, however, was not
a philosopher, unlike, say, Descartes and Leibniz who, by and large,
practised philosophy and mathematics as separate fields of inquiry,
although their thought was shaped by a complex traffic between both
fields. Riemann’s philosophical concepts were developed primarily
through his mathematical concepts. This may of course also be said of
Descartes” and Leibniz’s mathematical concepts, or of those of other
mathematicians such as those listed above. But Riemann’s capacity
for developing and utilising this philosophical potential of mathemat-
ics is especially remarkable and his significance for Deleuze in this
respect is unmatched — although Leibniz, Galois, Niels Henrik Abel,
and Karl Weierstrass make similar contributions to Deleuze’s work.

In his short mathematical career (he died of tuberculosis at the age
of forty), Riemann made fundamental contributions to most areas
of modern mathematics — algebra, analysis, geometry, topology and
number theory. It would be impossible to do justice to these contri-
butions even from the more limited philosophical perspective of this
essay. One might argue, however, that from this perspective and as
concerns his significance for Deleuze’s philosophy Riemann’s greatest
contributions are, first, his concept of spatiality, and, secondly, his
capacity of combining different fields in approaching problems appar-
ently belonging to a single field. What I call non-Euclideanism, math-
ematical or philosophical, is conceived on the model of Riemann’s
thought and practice, as defined by these two phenomena.
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Riemann’s concept of spatiality as manifoldness allows one to
define certain spaces as patchwork-like assemblages of local spaces,
without, in general, the overall space possessing the same type of
structure as these local subspaces do, while the latter may differ from
each other as well. These qualities give a Riemannian space hetero-
geneity, which is, however, interconnected by virtue of the overlap-
ping between local spaces. In particular, these local spaces can be
considered as infinitesimally Euclidean, while the overall space is,
in general, not a Euclidean space. The overall space may be given a
global determination. In particular, it may be given an overall metri-
cal structure, determined by the formula for measuring the distance
between points that varies locally and that, infinitesimally (thart is,
when the two points in question are close to each other), converts
itself into the formula for measuring distances in the Euclidean space.
Such a space may have a constant curvature, as for example in the
case of a two-dimensional sphere, which is a Riemannian manifold,
or it can be a space as variable curvature, similar to a rolling-hill
landscape. The Euclidean space of a given dimension, such as the two-
dimensional plane or three-dimensional space as we ordinarily per-
ceive them, would be trivial cases of manifoldness in which both the
local spaces involved and the overall spaces are Euclidean. Modern
mathematics considers spaces, whether Euclidean or Riemannian, of
any number of dimensions, including the infinite-dimensional spaces,
and Riemann considered such spaces as well.

The second main component of non-Euclideanism is defined by the
theoretical practice — mathematical or philosophical — of combining
different fields in approaching objects defined or problems formu-
lated within, and apparently belonging to, a single field. Riemann’s
concept of a manifold was developed by bringing together algebra,
analysis and geometry, and thus by means of a multiple or manifold
— heterogeneous yet interactive — theoretical practice that he deployed
and expanded throughout his work. Riemann’s multi-field approach
to mathematical problems exemplifies the rise of a new type of
mathematical practice, defined by the multiply interactive and yet
heterogeneous workings of different mathematical fields — geometry,
topology, algebra, analysis, and so forth — in dealing with a single
concept or problem, without there necessarily being a wholeness
or oneness governing this multiplicity. One can thus easily perceive
shared features in the ‘space’ of practice and in Riemann’s concept of
spatiality as manifoldness, and certain aspects of Riemann’s think-
ing are manifest in both. While it would be difficult to simply map
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Riemann’s concept of spatiality onto his practice, this type of spatial
thinking and this type of practice often go hand in hand and variously
overlap, and hence can partially map each other, in non-Euclidean
thinking, whether mathematical, such as that of Riemann, or philo-
sophical, such as that of Deleuze.

Thus understood, mathematical non-Euclideanism extends far
beyond the ideas that led to the alternative geometries with which
the term ‘non-Euclidean’ originated, important as their discovery
in early 1800s was in this context. Riemann discovered one type of
such geometries — those of positive curvature. There are also those
of negative curvature, and Euclidean geometry itself has zero curva-
ture, that is, is flat. Riemann’s concept of the manifold allowed him
to encompass both Euclidean and non-Euclidean geometry within
a single more general concept, which also enabled it to serve as the
mathemartical basis for Einstein’s non-Newtonian theory of gravity,
known as general relativity. One finds certain ingredients of non-
Euclideanian plural practice in ancient Greek mathematics, specifi-
cally in the relationships between arithmetic and geometry. Indeed,
the unresolved complexity of these relationships has continued to
haunt mathematics ever since, with algebra having eventually sup-
planted arithmetic, and Riemann’s thought and his concept of mani-
folds reflect this complexity. Nevertheless, the eruptive emergence
of plural mathematics on a large scale in the early 1800s, roughly at
the time of Gauss (Riemann’s teacher and precursor in this respect
as well), was one of the most significant developments in the history
of mathematics. One finds this mathematics at work throughout the
nineteenth century and then, with ever increasing effectiveness, in the
twentieth and twenty-first centuries.!

Riemann’s thought is among the greatest early manifestations of
non-Euclideanism not only in mathematics but also in philosophy,
using the term philosophy in Deleuze and Guartari’s sense of the
invention of new concepts, or even concepts ‘that are always new’
(WP 5). This sense is also defined by a different concept of the philo-
sophical concept itself. A philosophical concept is not an entity estab-
lished by a generalisation from particulars or ‘any general or abstract
idea’ (WP 11-12, 24) but a multi-layered conglomerate entity: ‘there
are no simple concepts. Every concept has components and is defined
by them. It therefore has a combination [chiffre]. It is a multiplicity
[manifold(ness)?] . . . There is no concept with only one component’
(WP 16). Each concept is a multi-component conglomeration of con-
cepts (in their conventional senses), figures, metaphors, and so forth,
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which form a unity or have, as Deleuze’s own concepts often do, a
more heterogeneous, if interactive, architecture that is not unifiable.
The architecture of Deleuze and Guattari’s concept of the concept
is itself defined in part by Riemannian spatiality as manifoldness by
linking the very invention of philosophical concepts to a spatial and,
in part, Riemannian concept — the plane of immanence — thus making
the space of functioning of a given concept a Riemannian space. This
concept of a concept is traceable to Deleuze’s earlier texts, and the
activity of creating concepts may be seen as defining Deleuze’s work.
Equally significantly, each concept is also seen as a problem, another
hallmark of Deleuze’s philosophy. From Difference and Repetition
to What is Philosophy?, philosophical thinking is seen, on a math-
ematical model, as problematic (thinking defined by posing problems)
rather than theorematic (thinking proceeding by deriving proposi-
tions from axioms according to proscribed rules, in the manner of
Euclid’s Elements, rather than by posing problems). Difference and
Repetition appeals to Abel’s and Galois’ mathematical or, again,
mathematical-philosophical practice as paradigmatic examples, and
states that ‘Ideas are essentially “problematic™’, while ‘conversely,
problems are ideas’ (DR 168).

Certain forms of mathematical thought, such as that of Riemann,
may be seen in Deleuze and Guattari’s philosophical terms. That is,
one can extend to mathematical thinking, as Deleuze and Guattari in
effect do, their definition of philosophical thinking and of philosophi-
cal concepts themselves, even though, as I shall discuss presently, they
are also right to stress the disciplinary difference between mathemat-
ics and philosophy (WP 117-18). According to Deleuze:

There are two sorts of scientific concepts. Even though they get mixed
up in particular cases. There are concepts that are exact in nature,
quantitative, defined by equations, and whose very meaning lies in
their exactness: a philosopher or writer can use these only metaphori-
cally, and that’s quite wrong, because they belong to exact science.
Bur there are also essentially inexact yet completely rigorous concepts
that scientists can’t do without, which belong equally to scientists,
philosophers, and artists. They have to be made rigorous in a way
that’s not directly scientific, so that when a scientist manages to do
this he becomes a philosopher, an artist, too. This sort of concept’s
not unspecific because something’s missing bur because of its nature
and content. (N 29, translation modified)

Thus, a philosophical concept corresponding to a mathematical or
scientific object could also be discovered by mathematics and science,
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now working as philosophy on Deleuze and Guattari’s definition.
Thus, as they contend, ‘when an object — a geometrical space, for
example — is scientifically constructed by functions, its philosophical
concept, which is by no means given in the function, must still be
discovered’ (WP 117). On the other hand, it is a complex question
where and how, and in what order of invention, among mathematics,
physics and philosophy, a given philosophical concept of space, say,
Euclidean or Riemannian, has emerged. In particular, Riemann may
be seen as primarily responsible not only for many key mathemati-
cal (geometrical and topological) features of his conceprt of space as
manifold but also for many of its key philosophical aspects, even
though both Leibniz before him and Einstein after him contributed
significantly on both scores. Deleuze’s appeal to the numerical or
quantitative nature of scientific concepts may have been made with
the question of mathematical versus philosophical spatiality, and
Riemann as well as Bergson, in mind. Deleuze and Guattari juxtapose
the (qualitative) concept of distance and the (quantitative) concept of
magnitude, related to the juxtaposition (due to Pierre Boulez) of the
smooth and the striated spaces in A Thousand Plateaus (TP 483-4).
Similarly to Deleuze and Guattari’s use of Riemann’s concept of man-
ifoldness, Bergson’s duration may be seen as, in part, a distillation of
an inexact, qualitative concept from Riemann’s ‘metric manifoldness
or the manifoldness of magnitude’ (TP 483; translation modified).?

Hence, Deleuze is both cautious concerning the use of mathematics
and science in philosophy, and yet also defends its use. As he says in
Cinema 2 — which, like Cinema 1 (guided by Bergson’s philosophy),
uses the idea of Riemannian spaces, to which this statement also
refers:

We realize the danger of citing scientific propositions outside their
own sphere. It is the danger of arbitrary metaphor or of forced appli-
cation. But perhaps these dangers are averted if we restrict ourselves
to taking from scientific operators a particular conceptualizable
character which itself refers to non-scientific areas, and converge
with science without applying it or making it [simply] a metaphor.
(TI 129)

PHILOSOPHY AND MATHEMATICS IN DELEUZE AND GUATTARI

In What is Philosophy? Deleuze and Guattari define thought in terms
of its confrontation with chaos, a great enemy and a great friend of
thought and its indispensable ally in its yet greater struggle against
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opinion, doxa (WP 201-2). Mathematics or science, philosophy and
art, are particular forms of thought in this confrontation (WP 118,
201-18). Chaos itself is given a particular concept as well:

Chaos is defined not so much by its disorder as by the infinite speed with
which every form taking shape in it vanishes. It is a void that is not a
nothingness but a virtual, containing all possible particles and drawing
out all possible forms, which spring up only to disappear immediately,
without consistency or reference, without consequence. (WP 118)

The difference between philosophical and scientific, including math-
ematical, thinking, as confrontation with chaos, is defined by their
determination in terms of, respectively, concepts and functions.
(Mathematically, functions rigorously relate numbers or other enti-
ties to each other according to specified rules.) According to Deleuze
and Guattari:

The object of science is not concepts but rather functions that are
presented as propositions in discursive systems. The elements of func-
tions are called functives. A scientific notion is defined not by concepts
but by functions or propositions. This is a very complex idea with
many aspects, as can be seen already from the use to which it is put
by mathematics and biology respectively. Nevertheless, it is this idea
of the function that enables the sciences to reflect and communicate.
Science does not need philosophy for these tasks. On the other hand,
when an object — a geometrical space, for example — is scientifically
constructed by functions, its philosophical concept, which is by no
means given in the function, must still be discovered. Furthermore,
a concept may take as its components the functives of any possible
function without thereby having the least scientific value, but with the
aim marking the differences in kind between concepts and functions.
. . . Philosophy wants to know how to retain the infinite speed while
gaining consistency, by giving the virtual a consistency specific to it.
The philosophical sieve, as a plane of immanence that cuts though
chaos, selects infinite movements of thought and is filled with con-
cepts formed like consistent particles going as fast as thought. Science
approaches chaos in a completely different, almost opposite way: it
relinquishes the infinite, infinite speed, in order to gain a reference
able to actualize the virtual. By retaining the infinite, philosophy
gives consistency to the virtual through concepts; by relinquishing
the infinite, science gives a reference to the virtual, which actualizes
it through functions. Philosophy proceeds with a plane of immanence
and consistency; science with a plane of reference. In the case of
science it is like a freeze-frame. It is a fantastic slowing down. (WP
117-18; translation slightly modified)
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Philosophy’s thought, thus, tries to hold to a concept that traverses
a plane of immanence with the infinite speed of thought and to give
this plane consistency. The plane of immanence is itself a complex
multi-component philosophical concept (WP 35-61). The main
point here is that, in contrast to philosophy, science ‘freezes’ chaos
in slow motion or freeze-frames — sometimes, especially in physics,
literally photographs the physical processes considered. By so doing
science creates a plane of reference or co-ordination that it requires
as science.

While, however, the differences between philosophy and science,
or between either and art, appear to be irreducible, the interac-
tion between them appears to be unavoidable as well. Thus, phi-
losophy’s thought may sometimes hold to a virtual concept by
slowing-down or freeze-framing it. Conversely, science sometimes
proceeds with the philosophical infinite speed on (and by creating)
the plane of immanence, in order to create a philosophical concept
corresponding to a mathematical or scientific object or in order
to create this object. Philosophy and science appear to need each
other, as Deleuze and Guattari say in closing their discussion of the
difference between philosophy and science in What is Philosophy?
According to them:

If philosophy has a fundamental need for the science that is con-
temporary with it, this is because science constantly intersects with
the possibility of concepts and because concepts necessarily involve
allusions to science that are neither examples nor applications, nor
even reflections. Conversely, are there functions — properly scientific
functions — of concepts? This amounts to asking whether science is,
as we believe, equally and intensely in need of philosophy. But only
scientists can answer that question. (WP 162)

The answer, I would argue, would be positive, at least if one asks
good scientists. Deleuze and Guattari suggest as much in closing
their book, by noting that science at least ‘tries’ to create ‘functions
of concepts, as Lautman demonstrates for mathematics insofar as the
latter actualizes virtual concepts’ (WP 217).

MANIFOLDS IN RIEMANN AND DELEUZE AND GUATTARI

According to Riemann, in his habilitation lecture ‘On the Hypotheses
which Lie at the Bases of Geometry’, which introduced the ideas of
manifold and Riemannian geometry:
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The concepts of magnitude are only possible where there is an ante-
cedent general concept which admits of different specializations.
According as there exists among these specializations a continuous
path from one to another or not, they form a continuous or discrete
manifoldness [Mannigfaltigkeit]; the individual specializations are
called in the first case points, in the second case elements, of the
manifoldness. Concepts whose specializations form a discrete mani-
foldness are so common that at least in the cultivated languages any
things being given it is always possible to find a concept in which
they are included. . . . On the other hand, so few and far between are
the occasions for forming concepts whose specializations make up a
continuous manifoldness, that the only simple concepts whose spe-
cializations form a multiply extended manifoldness are the positions
of perceived objects and colours. More frequent occasions for the
creation and development of these concepts occur first in the higher
mathematics.?

Riemann thus defines manifolds not in terms of ontologically pre-
given assemblies, ‘sets’, of points and relations between them, but in
terms of concepts. Each concept has a particular mode of determina-
tion, such as a discrete versus a continuous manifold, whose elements,
such as points, are related through this determination. Thus, beyond
giving an essential priority to thinking and specifically to thinking in
concepts over calculational or algorithmic approaches - to the point
of, in this case, containing only one (!) formula in the whole lecture
— Riemann’s mathematical thinking is structurally conceptual, which
brings it close to philosophical thinking in Deleuze and Guattari’s
sense. It is based on specifically determined concepts, as against the
set-theoretical mathematics that followed him or the mathematics of
formulas that preceded him.* Continuous and discrete manifolds are
given different conceptual determinations, and thus become, in effect,
different concepts, the point noted by Deleuze and Guattari (TP 32).
It is significant, and adds to the conceptual difference between two
types of manifoldness, that Riemann speaks of ‘points’ only in the
case of continuous manifolds, and in the case of discrete manifolds
uses the term ‘elements’, for the simplest constitutive entities compris-
ing manifolds. This is astute, since, phenomenally, points qua points
only appear as such in relation to some continuous space, ambient or
background, present or implied, such as a line or a plane. Riemann
primarily pursues the conception of space as a continuous manifold,
for which the modern mathematical usage of the term is primarily
reserved as well.® A manifold is, as I said, defined as a conglomerate
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of local spaces, which can be infinitesimally mapped by a (flat)
Euclidean or Cartesian map without allowing for a global Euclidean
map or a single co-ordinate system for the whole, except in the case
of the Euclidean space itself. In other words, every point has a small
neighbourhood that can be treated as Euclidean, while the manifold
as a whole in general cannot.

As noted above, one of the starting points of Riemann’s reflection
on space was the possibility of non-Euclidean geometry, which also
led him to a particular new type of non-Euclidean geometry, that of
positive curvature. This also means that there are no parallel shortest
or, as they are called, geodesic lines crossing any point external to a
given geodesic. In Euclidean geometry, where geodesics are straight
lines, there is only one such parallel line, but in non-Euclidean geome-
try of negative curvature or the hyperbolic geometry of Gauss, Johann
Bolyai and Nikolai I. Lobachevsky — the first non-Euclidean geometry
discovered — there are infinitely many such lines. Riemannian geom-
etry encompasses all of these as special cases. Significant as the dis-
covery of non-Euclidean geometry was for the history of mathematics
and intellectual history, it was also in retrospect, as Hermann Weyl
argued, ‘a somewhat accidental point of departure’ for Riemann’s
radical rethinking of the nature of spatiality.® Riemannian geometry
is that of (continuous) manifoldness, an approach that makes both
Euclidean and non-Euclidean spaces only particular cases of this
more general understanding of space. Weyl speaks of Riemannian
geometry as ‘a true geometry’: “This theory . . . is a true geometry, a
doctrine of space itself and not merely like Euclid, and almost every-
thing else that has been done under the name of geometry, a doctrine
of the configurations that are possible in space.’” Deleuze and Guattari
agree and take the point further by also crediting Riemann with the
creation of a new philosophical conceptuality: ‘It was a decisive event
when the mathematician Riemann uprooted the multiple [manifold]
from its predicate state and made in to a noun, ‘manifold’ [multiplic-
ité]’ (TP 482-3; translation modified). They also acknowledge the
role of discrete manifolds in Riemann, and the significance of still
other spaces, such as porous spaces, in mathematics and elsewhere.
Citing Lautman, they describe, Riemannian or Riemann spaces as
(continuous) manifolds as follows:

‘Riemann spaces are devoid of any kind of homogeneity. Each is char-
acterized by the form of the expression that defines the square of the
distance between two infinitely proximate points. . . . It follows that
two neighboring observers in a Riemann space can locate the points
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in their immediate neighborhood but cannot locate their spaces in
relation to each other without a new convention. Each vicinity is
therefore like a shred of Euclidean space, but the linkage between one
vicinity and the next is not defined and can be effected in an infinite
number of ways. Riemann space at its most general thus presents
itself as an amorphous collection of pieces that are juxtaposed but
not attached to each other.” It is possible to define this multiplicity
without any reference to a metrical system, in terms of the conditions
of frequency, or rather accumulation, of a set of neighborhoods;
these conditions are entirely different from those determining metric
spaces and their breaks (even though a relation between the two kinds
of space necessarily results). In short, if we follow Lautman’s fine
description, Riemannian space is pure patchwork. It has connections,
or tactile relations. It has rhythmic values not found elsewhere, even
though they can be translated into a metric space. Heterogeneous,
in continuous variation, it is a smooth space, insofar as smooth
space is amorphous and not homogeneous. We can thus define two
positive characteristics of smooth space in general: when there are
determinations that are part of one another and pertain to enveloped
distances or ordered differences, independent of magnitude; when,
independent of metrics, determinations arise that cannot be part of
one another but are connected by processes of frequency or accumu-
lation. These are the two aspects of the nomos of smooth space. (TP
485; translation modified)

The cartographical terminology and conceptuality, crucial to Deleuze
(and Foucault, whom Deleuze discusses from this perspective in
Foucault), are not accidental and have their own history. Gauss
arrived at his ideas, extended by Riemann, through his work in land
surveying. The spatial architecture here outlined can be generalised
to spaces that are not manifolds, that is, to spaces that are defined
as patchworks of local spaces that are not infinitesimally Euclidean.
These local spaces could be, in the language of Cinema 1, ‘any spaces
whatever’. This architecture is, however, inherent in Riemannian
manifolds, from which it was in part developed historically, since
manifolds are in the first place topological (non-metrical), rather
than only geometrical (metrical) spaces. The function of Riemannian
spaces as smooth spaces (in Deleuze and Guattari’s sense) is defined
by their topology, by their (in Boulez’s and Deleuze and Guattari’s
language) ‘rhythmic’ properties, rather than by their geometry or their
‘metric’ (this language is also mathematical) properties (TP 485). In
contrast to geometry (geo-metry), which has to do with measurement,
topology disregards measurement and scale, and deals only with the
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structure of space qua space and with the essential shapes of figures.
Insofar as one deforms a given figure continuously (that is, insofar as
one does not separate points previously connected and, conversely,
does not connect points previously separated) the resulting figure is
considered the same. Thus, all spheres, of whatever size and however
deformed (say, into pear-like shapes), are topologically equivalent.
They are, however, topologically distinct from tori. Spheres and
tori cannot be converted into each other without disjoining their
connected points or joining the disconnected ones. The holes in tori
make this impossible. Such qualitative topological properties can be
related to certain algebraic and numerical properties associated with
these spaces, which topology indeed must do as a mathematical dis-
cipline, unlike philosophy, where this is not necessary, as Bergson’s
or Deleuze’s qualitative use of Riemann’s ideas shows. Anticipated
by Leibniz, these ideas were gradually developed in the nineteenth
century by — in addition to Riemann — Gauss, Poincaré and others,
establishing topology as a mathematical discipline by the twentieth
century.

Topological spaces need not have any metric structure or striation,
either global or local. Global Euclidean/Cartesian striations are not
found in Riemannian spaces (apart, again, from special cases, such
as those of Euclidean spaces), while local ones are allowed but not
required. This is why Deleuze and Guattari say above that Riemannian
space ‘has rhythmic values not found elsewhere, even though they can
be translated into a metric space” and hence that ‘a relation between
the two kinds of space necessarily results’ in Riemannian space (TP
485). When we consider the discussion of space in A Thousand
Plateaus, we can see that, smooth (nomadic) spaces almost inevitably
give rise to local striations (reterritorialisation), even as they simul-
taneously arise from them (deterritorialisation) — in other words,
they again lead to Riemannian spaces as both smooth and (locally)
striated. The nomos of the smooth space (as against the logos of the
striated space) is defined by the rhythmic interplay of connectivities
between neighbourhoods, which defines topological spaces in general
rather than Riemannian spaces, defined by local Euclidean striations.
Accordingly, it appears that the underlying mathematical model of
‘Riemann space at its most general’ and, by extension, of smooth
space in Deleuze and Guattari, is a general topological space, which,
however, underlies any Riemannian space.

Deleuze takes advantage of these ideas throughout his work. The
Cinema books are built in part upon Riemannian spatiality, via
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Bergson, whose ideas were indebted to Riemann. Cinerma 2 offers
spectacular examples of this ‘Riemannianism’ as against Euclideanism:
‘Riemannian spaces in Bresson, . . . topological spaces of Resnais’ (T1
129). It also explores the far-reaching implications — aesthetic, philo-
sophical and cultural, including political — of Riemannianism.

MANIFOLDNESS AND MATERIALISM IN RIEMANN AND IN DELEUZE AND
GUATTARI

Riemann’s radical rethinking of spatiality offers an extension of
Gauss’s ideas concerning the internal geometry of curved surfaces,
that is, a geometry independent of the ambient (three-dimensional)
Euclidean space where such curved spaces could be placed. This
view of space also allows one to extend Leibniz’s ideas concerning
the relational nature of all spatiality. The actual space is now no
longer seen as a given, ambient (flat) Euclidean space or, in Weyl’s
words, a ‘residential flat’ (flat is a fitting pun here), where, phenom-
enally, geometrical figures or, physically, material things are placed.®
Instead it emerges as a (continuous) manifold, whose structure, such
as curvature, would be determined internally, mathemartically or
materially (for example, by gravity, as in Einstein’s general relativity
theory, based on Riemannian mathematics), rather than in relation
to an ambient space, Euclidean or not. From this point of view, the
concept of empty space might be entertained mathematically or phe-
nomenally, but, as Leibniz grasped, it is difficult to apply this concept
to the physical world. According to Leibniz, space cannot be seen as
a primordial ambient given, as a container of material bodies and the
background arena of physical processes, along the lines of Newton’s
concept of absolute space in his Principia — the most influential and,
in many respects, defining form of Euclideanism in all of modernity.
Einstein gave a rigorous physical meaning to these ideas and extended
them by arguing that space, or time, are not given but arise, are the
effects of our instruments, such as rods and clocks, and, one might
add, of our perceptual and conceptual interactions with those instru-
ments. Space is thus possible as a phenomenon (or a concept) by
virtue of two factors. The first is the presence of matter and technol-
ogy, such as rods and clocks (or natural objects that function in this
role). The second is the role of our perceptual phenomenal machinery,
a role that one might argue to be the primary condition of the pos-
sibility of space, along with time, which machinery is still due to the
materiality of our bodies.
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Riemann offers extraordinary intimations of Einstein’s theory,
based on his ideas discussed here. According to Weyl:

Riemann rejects the opinion that has prevailed up to his own time,
namely, than the metrical structure of space is fixed and [is] inher-
ently independent of the physical phenomena for which it serves as
a background, and that the real content takes possession of it as of
residential flats. He asserts, on the contrary, that space in itself is
nothing more than a three-dimensional manifold devoid of any form;
it acquires a definite form only through the advent of the material
content filling it and determining its metric relations.’

It would be more accurate (and closer to Riemann) to say that space
may be given phenomenally at most as a three-dimensional manifold,
as a kind of free smooth space with possible striations. Physically,
it may be and, in Riemann’s and Einstein’s or Leibniz’s view, could
only be, co-extensive with matter. Weyl adds: ‘Looking back from
the stage to which Einstein brought us, we now recognize that these
ideas can give rise to a valid [physical] theory only after time has
been added as a fourth dimension to the three-space dimensions.’?
The gravitational field determines the manifold in question and its
in general variable curvature. The reverse fact, that the gravitational
field shapes space and shapes it as a Riemannian manifold, remains
crucial, however. Different spaces become subject to investigation
in their own terms, on equal footing, rather than in relation to an
ambient or otherwise uniquely primary space. This view radically
transforms our philosophy of space and matter, and of their relation-
ships, by leading to a horizontal rather than vertical (hierarchical)
science of space as ‘a typology and topology of manifolds’, which
Deleuze and Guartari associate with the end of dialectic and extend
to spaces that are philosophical, aesthetic, cultural, or political (TP
483; translation modified).

Deleuze and Guattari’s ‘physical model’ of the smooth and the
striated converts this transformation into a grand conceptual and
historical conjunction of physics and political economy, and of
both with geometry (TP 490). The technological model — specifi-
cally that of textile technology, a ‘weaving’ model (from Plato on)
— is seen in these terms as well, in part given that the origins of the
capitalist economy and labour can be especially traced to textile
manufacturing in Florence, to the ‘space’, smooth and striated, of
the Renaissance. The Renaissance (if one can still speak of one) was
also a Renaissance of geometry in mathematics, science, philosophy
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and art; and ‘perspective’, a great Renaissance striation, is only one
of its aspects. The overall situation can be traced back to Galileo
or to the ancient Greek mathematicians, specifically Archimedes,
and to the role of geometry and physics as state, major sciences of
(and in) striated spaces and as nomad, minor sciences of (and in)
smooth spaces, and their interactions (TP 362). Both Galileo and
Archimedes were military engineers (as was Leonardo), and Newton
became a powerful state figure, the president of the Mint, thus
moving from mathematics to money. From ancient Greece onwards,
‘Geometry lies at the crossroads of a physics problem and an affair
of the State’ (TP 489). The terms of this sentence are transposable:
‘Physics lies at the crossroads of a geometry problem and an affair
of the State.’

Gaspar Monge, a key representative of state mathematics in A
Thousand Plateaus, was instrumental in setting up, in the late eight-
eenth century, the famous Ecole Politechnique as a state Institution
(in either sense), where the most rigorous training in pure mathemat-
ics was combined with equally rigorous training in applied sciences
and engineering. A major role in this programme was given to the
new discipline of differential geometry, which combined geom-
etry and calculus. Calculus, especially in the work of Newton and
Leibniz, can, as both a major and a minor science, be considered
from this perspective. Differential geometry, however, became a
minor science in Gauss’s work, eventually leading to Riemann’s
geometry and then to Einstein’s physics. The nineteenth century
brought physics and geometry into a new conjunction, under equally
revolutionary developments of both the politico-economic history
of capitalism and of the social and economic sciences, from Adam
Smith onward.

The same type of matrix, interactively Riemannian and mate-
rialist, defines a vertiginous landscape, from brain to politics, that
emerges in Cinema 2 and towards the end of What is Philosophy?
The Riemannianism of What is Philosophy? is more implicit, and yet
equally powerful. The philosophised concept of Riemannian spaces
appears by name at a crucial juncture, that of the interference of
mathematics and philosophy (WP 217). The space of such interfer-
ence is defined by and manifest in the ultimate dynamics of thought
as a confrontation with chaos and, through that confrontation,
‘extracted from chaos’, the shadow of a political world yet to come,
in which even philosophy, art and science may dissolve, while still
leaving space for thought itself as a confrontation with chaos (WP
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216—-18). ‘In this submersion [of brain into chaos] it seems that there
is extracted from chaos the shadow of the “people to come™ in the
form that art, but also philosophy and science, summon forth: mass-
people, world-people, brain-people, chaos-people’ (WP 218). The
same type of intersection of the brain, thought, chaos and a ‘people
to come’ defines the closing chapters of Cinema 2, especially Chapter
8, ‘Cinema, Body and Brain, Thought’ (T1 189-224).

I can only briefly sketch here the Riemannian dimensions of these
extraordinary pages of both books. Roughly, at stake here are the
complex — heterogeneously interactive and interactively heterogene-
ous — relationships not only between neighbourhoods in a Riemannian
space, but also between such spaces themselves. Our mathematics and
physics on the one hand, and our neuroscience on the other, tell us
that, to the degree that the processes that define nature and life, and
our brains (neural networks), can be mapped, they are likely to be
mapped in terms of Riemannian spaces, and of the interplay of the
smooth and the striated within them. The same mapping needs to be
deployed when we approach our politics and culture. It is not only a
matter of mirroring such Riemannian manifoldness from inanimate
nature to life to bodies to brains to thought to culture to politics,
but also and primarily that of contiguous relations that manifoldly
connect these manifolds. This is a new kind of ‘landscape architec-
ture’, the architecture of many landscapes, in which these spaces co-
exist and horizontally interact, without necessarily mirroring each
other.

Leibniz’s monadology could be viewed from this perspective as
well, and Deleuze and Guattari juxtapose ‘monads’ to ‘the unitary
Subject of Euclidean space’ (TP 574, n. 27). This monadology
must, however, become nomadology in the new, post-Riemannian
Baroque, as against the old, Leibnizian Baroque. Leibniz’s monads
ultimately interact with each other only through their interaction
with the world, whose overall interactive architecture is, in the
Leibnizian Baroque, containable in and converging upon a harmony,
fully available to, or calculable by, only God (see FLB 26). The diver-
gent harmonies of the new Baroque retain the fold, made manifold,
but convert monadology into nomadology, which contains but is
not reducible to monadology (FLB 137). The chapter in A Thousand
Plateaus, “The Smooth and the Striated’, may also be read in terms
of this link between ‘Riemannology’ and nomadology in various
models of the smooth and the striated — especially dramatically in
the musical and the aesthetic models. The first is exemplified by the
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work of Boulez, who introduced the language of ‘the smooth and the
striated’ and who is also a key figure of the new Baroque in The Fold;
the second by the work of Cézanne and the painters who came after
him (TP 477-8, 493-4). This conversion of Leibniz’s monadology
into Riemann’s nomadology is expressly linked to Riemannian space,
against Euclidean space:

All of these points already relate to Riemannian space, with its
essential relation to ‘monads’ (as opposed to the unitary Subject of
Euclidean space). . . . Although the ‘monads’ are no longer thought
to be closed upon themselves, and are postulated to entertain direct
step-by-step local [Riemannian] relations, the purely monadologi-
cal point of view proves inadequate and should be superseded by a
‘nomadology’ (the identity of striated spaces versus the realism of
smooth space). (TP 573-4)

We can now readily perceive why Deleuze and Guattari see Riemann’s
mathematics of manifolds as implying a kind of horizontal rather than
vertical, hierarchical science of space as ‘a [nondialectical] typology
and topology of manifolds’ (TP 483; translation modified). This view
suggests a new — horizontal — space of science itself, or a new space of
thought and different ways to think, either within a given discipline,
such as mathematics or philosophy, or (but this is now the same)
between and among disciplines. We can think of spaces or landscapes
of thought and culture in an interactively heterogeneous way — in terms
of distinct and varied but actually and potentially interactive maps,
arranged and related horizontally rather than vertically or hierarchi-
cally. Anticipated by Riemann’s practice of mathematics through the
interactions of different fields — topology, geometry, algebra, analysis,
and so forth — this practise defines non-Euclideanism, mathematical
and philosophical, such as that of Deleuze.

Itis difficult to avoid the conclusion that the passage on Riemannian
space cited above also describes the chapter ‘The Smooth and the
Striated’, with its different but, again, interactive models — the tech-
nological, the musical, the maritime, the mathematical, the physical,
the aesthetic (nomad-art), etc. —and A Thousand Plateaus as a whole.
I list only those expressly named by Deleuze and Guattari, whose
analysis implies many other possible models, a thousand models. In
part these different models are necessary to establish certain general
or shared aspects of (more) abstract concepts of the smooth and the
striated (TP 475). Most crucial, however, is that these models enable
an exploration of various aspects of each type of space and of the
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relationships between them, and of spaces, heterogeneously interac-
tive assemblages, of such spaces, manifolds of manifolds (TP 475).
Remarkably, this type of concept was introduced by Riemann in
considering the families of the so-called Riemannian surfaces (such
as tori). This type of object, known as ‘moduli spaces’, is one of the
most extraordinary conceptions in modern mathematics; it was, for
example, instrumental in proving Fermat’s last theorem, by Andrew
Wiles, one of the greatest achievements of contemporary mathemat-
ics. This concept, however, cannot be only mathematical, or only
mathematical and philosophical. It is something more than either
or both. Mathematics proves itself to be more like thought and life
(which is more complex than thought) than thought and life prove to
be like mathematics — that is, mathematics understood, as it has been
all to often, as an abstraction from the richness, the manifoldness, of
life. The idea of a manifold of manifolds is a product of thought as
a confrontation with chaos and part of a shadow of the future — of
things, thoughts, and the people to come.
Purdue University

Notes

1. I have considered the subject in more detail in The Knowable and the
Unknowable: Modern Science, Nonclassical Thought, and the ‘Two
Cultures’ (Ann Arbor: University of Michigan Press, 2002), pp. 126-36,
266-8, and nn. 24-6).

2. The English translation by Brian Massumi uses ‘multiplicity’ to render
the French ‘multiciplité’. The English mathematical term is manifold,
which also preserves the ‘fold’ of Riemann’s Mannigfaltigkeit.

3. Bernhardt Riemann, ‘On the Hypotheses which lie at the Bases of
Geometry’, trans. W. K. Clifford, Nature 8 (1873), section #1; transla-
tion modified. The lecture, given in 1854, was published posthumously
in 1868. The English translation I cite is available at http://www.maths.
ted.ie/pub/HistMath/People/Riemann/Geom/WKCGeom.html.

4. Cf. D. Laugwitz, Bernhard Riemann: Turning Points in the Conception
of Mathematics, trans. A. Shenitzer (Boston: Birkhiuser, 1999), pp.
303-7, which, however, takes a more conventional view of Riemann’s
conceprual mathematics.

5. Technically, Riemann considered the so-called differential manifolds,
meaning that one can define differential calculus on them.

6. H. Weyl, Space Time Matter, trans. Henry L. Brose (New York: Dover,
1952 [1918]), p. 92.

7. Weyl, Space Time Matter, p. 102.

8. Weyl, Space Time Matter, p. 98.
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9. Weyl, Space Time Matter, p. 98.
10. Weyl, Space Time Matter, p. 101. The resulting spaces are significant in
the context of the question of temporality in Bergson and in Deleuze,

especially in The Logic of Sense.
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