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Abstract:

This essay explores the power and fertility of mathematical imagi- -
nation, as they are manifest in the thought of a nineteenth-century
German mathematician Bernhard Riemann (1826-1866), one of the
greatest and most imaginative mathematicians who ever lived. Rie-
mann introduced radically new ideas in every main field of modern
mathematics: algebra, analysis, geometry, and topology. These ideas
transformed each of these fields and played major roles in making
mathematics into what it is now. The essay considers in particular
two interrelated aspects of Riemann’s work: the first is his concept of
“manifold(ness),” which transformed our mathematical, physical, and
philosophical understanding of spatiality; and the second is the con-
ceptual character of Riemann’s mathematical thinking as responsible
for the radical nature of his ideas, such as those concerning spatiality
and/as manifoldness. The essay also addresses, in closing, some of the
implications of Riemann’s ideas for modern physics, most especially
for Albert Einstein’s general relativity—his non-Newtonian theory of
gravitation.

Introduction

Richard Feynman once said that “a new idea is extremely difficult
to think of. It takes a fantastic imagination.”' It is, accordingly, all

1. Richard Feynman, The Character of Physical Law (Cambridge, MA: MIT Press, 1995),
p. 172.
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the more remarkable that Bernhard Riemann (1826-1866), a nine-
teenth-century German mathematician—and one of the greatest
and most imaginative mathematicians who ever lived—thought of
radically new ideas in every main field of modern mathematics: al-
gebra, analysis, geometry, and topology. His ideas transformed each
of these fields and, in part through establishing new connections
among them (one of the hallmarks of Riemann’s thought), played
major roles in making each field and mathematics as a whole into
what they are now. As Detlef Laugwitz observes in his biography
of Riemann, Bernhard Riemann: Turnings Points in the Conception of
Mathematics: “It is an amazing fact that fundamental parts of modern
mathematics have their origins in Riemann’s analysis.”? Laugwitz’s
subtitle is worth noting for its plural of “turning points,” and for its
suggestion that these were the points at which not only mathemat-
ics itself, but also our conception of it changed. Given my limits
here, I shall focus primarily on two interrelated aspects of Riemann'’s
work. The first is the power and fertility of his thought and imagina-
tion as manifest in his concept of “manifold,” or “manifoldness,”
one of his great inventions, which transformed our mathematical,
physical, and philosophical understanding of spatiality. The second
is the conceptual character of Riemann’s mathematical thinking in
general as responsible for the radical nature of his ideas, especially
those concerning spatiality and manifoldness.

Following Gilles Deleuze and Félix Guattari’s What Is Philosophy?,
I'understand by “thought” a confrontation of the human mind with
chaos, and in particular, the way this confrontation takes place in
art, philosophy, and science, including mathematics.* These modes
of thought are, for Deleuze and Guattari, the primary ways in which
the mind confronts chaos. This confrontation itself, they argue,
is necessary for thought to be true thought—the dynamic engage-
ment of mental activity, especially against the static dogmatism of
opinion. Deleuze and Guattari see chaos as a grand enemy, but also
as the greatest friend of thought and its best ally in its yet greater
struggle—that against opinion, doxa, always an enemy, “like a sort
of ‘umbrella’ that protects us from chaos.” They argue that

2. Detlef Laugwitz, Bernhard Riemann: Turning Points in the Conception of Mathematics,
trans. Abe Shenitzer (Boston: Birkhéuser, 1999), p. 130. Although Laugwitz specifically
invokes analysis, where Riemann made most of his contributions, his ideas in geome-
try and topology were just as revolutionary and significant, and Riemann combines
different fields even while working (overtly) in a particular field.

3. Gilles Deleuze and Félix Guattari, What Is Philosophy? trans. Hugh Tomlinson and
Graham Burchell (New York: Columbia University Press, 1994).
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the struggle against chaos does not take place without an affinity with the en-
emy, because another struggle develops and takes on more importance: the

struggle against opinion, which claims to protect us from chaos itself. . . . [T]
he struggle with chaos is only the instrument in a more profound struggle
against opinion, for the misfortune of people comes from opinion. . . . And

what would thinking be if it did not confront chaos? (202, 208)

Imagination, then, may be understood as the capacity of thought
to invent new forms of this confrontation, including new forms of
combining old forms, assuming that any other new “forms” are
even possible (since no thought starts from nothing). To the degree
that they are, as might be in Riemann’s case, they are indeed excep-
tionally rare and require a truly fantastic imagination, as Feynman
asserted.

Riemann's mathematics, I also argue, is conceptual mathematics,
a form of mathematics that gives primacy to thinking in mathe-
matical concepts and their properties and structure, rather than to
thinking primarily in terms of (by manipulating) formulas, which
dominated mathematics before Riemann, or in terms of sets, as is
most common in present-day mathematics. I shall suspend the well-
known difficulties and paradoxes of the concept of “set” (which are
not germane to my argument here), and shall use what is called in
mathematics a “naive definition” of set, which is sufficient for my
purposes. In Pierre Cartier’s formulation, via Bourbaki, “a set is com-
posed of elements capable of having certain properties and certain
relations among themselves or with elements of other sets.”* Thus
natural numbers (1, 2, 3, . . .) form a set, or a sphere is a set, with
each point as an element of this set. A two-dimensional sphere (in
the three-dimensional Euclidean space), with center (x,, y, 2z, and
radius r is defined in analytic geometry as a locus of all points (x, y,
z) satisfying the equation (x — x)* + (¥ — ¥,)? + (z — z,)? = r*, a formula
that was de facto used even before Descartes, the inventor of analytic
geometry. This is, however, not the way in which Riemann would
have primarily viewed either object; instead, he considered natu-
ral numbers or the sphere first as a certain specifically determined
concept—in the case of the sphere, that of (continuous) manifold.

4. Pierre Cartier, “A Mad Day's Work: From Grothendieck to Connes and Kontsevitch,
the Evolution of Concepts of Space and Symmetry,” Bulletin of American Mathematical
Society 38:4 (2001): 393. Nicolas Bourbaki is the pseudonym of a group of mostly
French mathematicians, formed during the 1930s and still in existence. One of the
group's aims was to formulate and present in a series of books, with the maximal pos-
sible rigor, all of mathematics as founded on set theory—a program never fulfilled and
currently more or less suspended.
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The above formula for the sphere remains important and plays its
role, but it is secondary to the manifoldness of the sphere, which, as
I'shall explain, tells us more about it as a mathematical object.

Riemann’s concept of manifold or manifoldness (Mannigfaltigkeit)
is a product of this way of thinking, coupled with the extraordinary
power of his mathematical and philosophical imagination. Riemann
radically reimagines the nature of spatiality: phenomenal, philo-
sophical, mathematical, and, as shall be seen, physical. Riemann
defines a space, such as a plane or a sphere, as a conglomerate of
local spaces and networks of relationships among them, rather than
as merely a conglomerate (set) of points, as it would be from the
set-theoretical perspective. More specifically, a space as a manifold
is a conglomerate of (local) spaces, each of which can be mapped by
a (flat) Euclidean, or Cartesian, coordinate map and treated accord-
ingly (and thus also given geometry), without allowing for a global
Euclidean structure for the whole, except in the limited case of a
Euclidean homogeneous (flat) space itself. Every point has a small
neighborhood that can be treated as Euclidean, while the manifold
as a whole, in general, cannot. In the case of the sphere, one can
imagine small circles on the surface around each point, and project
each such circle onto the tangent plane to this point to a regular
circle on this plane. If the first circle is very small, the difference be-
tween two circles becomes very small as well and can be neglected,
allowing one to treat both circles as Euclidean. What is most crucial,
however, is not how a given space is composed of points, but how it
is composed of other spaces, some of which are considered as local
subspaces, specifically those, called “neighborhoods,” that surround
each point of this space, as the small circles just described do in the
case of the sphere.

The concept suggests a kind of “sociological” definition of space,
as Yuri Manin called it in the context of the category and topos the-
ories, which arguably extend Riemann’s idea to its ultimate limits,
at least for now.® The significance of Riemann’s concept, however,
extends not only to other areas of mathematics and physics, but
also to philosophy. Indeed, I shall first consider the relationships be-
tween mathematical and philosophical thinking, which are central
for my discussion here, since it is philosophical rather than (techni-
cally) mathematical and explores primarily the philosophical con-
tent of Riemann’s concept of manifold. Riemann’s concept is, I shall
argue, best understood by viewing it as having a conglomerative,

5. Yuri I. Manin, “Georg Cantor and His Heritage.” 2002. http://arxiv1.library.cornell
.edu/abs/math/0209244.
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multi-component architecture (mathematical, philosophical, and
other), rather than by segregating its components into separate con-
cepts or clusters among or within each field.® It is true that, insofar
as this kind of philosophical discussion bypasses technical aspects
of mathematics, certain aspects of mathematical thinking may be
lost. Perhaps, however, these losses are not as severe as they might
appear, and something in our understanding of the mathematical
aspects of Riemann’s concept is gained as well.

Mathematics, Philosophy, and Conceptual Thinking

The relationships between mathematical and philosophical
thought, and between both and ordinary thought, beginning with
our general phenomenal intuition (defined here simply as what ap-
pears to our consciousness immediately rather than through philo-
sophical mediation), is a delicate and difficult matter, and my re-
flections on it are unavoidably limited. I begin with an observation
made by Hermann Weyl, a follower of Riemann and a great twen-
tieth-century mathematician in his own right, who also made ma-
jor contributions to physics—specifically, to relativity and quantum
theory. In his 1917 book The Continuurn, Weyl says:

The conceptual world of mathematics is so foreign to what the intuitive con-
tinuum presents to us that the demand for coincidence between the two must
be dismissed as absurd. Nevertheless, those abstract schemata supplied us by

6. This concept of concept corresponds more to Deleuze and Guattari’s view of philo-
sophical thought, defined by them as an invention of new concepts in this multi-
component sense (What Is Philosophy? [above, n. 3], pp. 1-23). They view mathemati-
cal or scientific thinking as proceeding (confronting chaos) by means of functions,
propositions, and frames of reference. In this respect, the present argument, or Rie-
mann’s thinking, challenges, or rather complements, Deleuze and Guattari’s argument
in What Is Philosophy? The latter distinguishes between mathematical or scientific and
philosophical thought, and sees only the latter as primarily conceptual in this sense.
Ultimately, however, they suggest the interactive, if still heterogeneous (this qualifica-
tion also applies to the present argument), relationships between mathematical and
philosophical thinking, or between both and artistic thinking. I have to put art aside
here, even though it can be linked to Riemann’s thinking via the question of composi-
tion, which defines creative activity in art in Deleuze and Guattari. Riemann defined a
given space as composed by other spaces, rather than merely by points (one could
think of Jackson Pollack’s paintings as suitable images here). Not coincidentally, Rie-
mann, primarily via his concept of manifold, was one of the inspirations for Deleuze’s
and Deleuze and Guattari’s philosophy. I suspect that they would have agreed that Ri-
emann's concept of manifold conforms to their view of philosophical concepts, and
they say nearly as much in their appeal to Riemann’s idea on manifold in their works.
1 have discussed the relationships between Riemann and Deleuze, along the lines of the
present analysis, in “Manifolds: On the Concept of Space in Riemann and Deleuze,” in
Virtual Mathematics, ed. Simon Duffy (Manchester, UK: Clinamen Press, 2005).
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mathematics must underlie the exact sciences [e.g., physics] of domains of
objects in which continua play a role.”

As Weyl was undoubtedly aware, this assessment could be extended
to other conceptual junctures between mathematics and our phe-
nomenal intuition. The question of continuity, however, appears to
pose particularly thorny problems in this respect. It is also especially
pertinent to Riemann’s work, including to his thinking concerning
space, although Georg Cantor’s set-theoretical problematic, against
which Weyl positions his own concept of the continuum, is Weyl's
primary context here. Riemann’s thought was a major inspiration
for Weyl in The Continuum and to the critique of Cantor that Weyl
undertook there. Weyl expressly addressed Riemann'’s ideas in his
classic Space-Time-Matter, to which I shall return below, and else-
where in his works, particularly in The Idea of Riemannian Surface
(1913).

Weyl’s assessment of the problem of the continuum requires
qualification, as Weyl himself must have been aware. The coincidence
between the conceptual world of mathematics and our phenomenal
intuition may be dismissed, but the interactions between them are
unavoidable. The significance of these interactions may be obscured
if one assumes that mathematics comes to us from some mathemat-
ical reality existent independently of human thought (a view often
defined as “Platonist,” without always a due regard for Plato’s own
thinking). It becomes more transparent if, instead, one sees math-
ematics as, in Niels Bohr’s words, a “refinement” of our ordinary
thought, “supplement[ed] . . . with appropriate tools to represent
relations for which ordinary verbal expression is imprecise and cum-
bersome.”® This refinement does sometimes reach the point, pon-
dered by Weyl, of divorcing our mathematical thinking from our
ordinary phenomenal intuition nearly altogether, which could, it is
true, make the Platonist’s view especially tempting—as it was, for
example, to Cantor (Weyl’s and Riemann'’s positions on the subject
are more complex). Nearly, but, I would contend, not completely!

In addition, mathematical intuition and thought are further cou-
pled to the philosophical modes of intuition and thought, which

7. Hermann Weyl, The Continuum: A Critical Examination of the Foundation of Analysis,
trans. Stephen Pollard and Thomas Bole (1918; reprint, New York: Dover, 1994), p. 108.

8. Niels Bohr, The Philosophical Writing of Niels Bohr, 3 vols. (Woodbridge, CT: Ox Bow
Press, 1987), p. 2:68. The point is given further subtlety by Edmund Husserl in “The
Origins of Geometry,” in Husserl, The Crisis in European Sciences and Transcendental
Phenomenology, trans. David Carr (Evanston, IL: Northwestern Uniwversity Press, 1970),
pp. 375-377.




Plotnitsky / Riemann’s Conceptual Mathematics 111

cannot (any more than mathematical ones) be fully dissociated
from our general phenomenal intuition and thought. One finds the
relationships among all three even within each one; that is, there
is some philosophical and general thinking in mathematics, some
mathematical and ordinary thinking in philosophy, and some phi-
losophy and mathematics in our ordinary thinking. In making his
point concerning the difference between the conceptual world of
mathematics and our general phenomenal intuition, such as that
of spatiality or continuity (which are interrelated), Weyl refers to
Bergson'’s Creative Evolution. He says that “[i]t is to the credit of Berg-
son’s philosophy to have pointed out forcefully this deep division
between the world of mathematical concepts and the immediate ex-
perience of continuity of phenomenal time (la durée).”® The point
itself concerning the division in question is philosophical, rather
than mathematical, and, accordingly, its affinity with or origin in
Bergson’s philosophy does not complicate Weyl’s point (or Bergson’s
own point) concerning the split between the conceptual world of
mathematical and our general phenomenal intuition, or between
either or both and philosophical thinking. The point is, however,
complicated by the fact that Bergson’s philosophical ideas concern-
ing continuity and spatiality have a Riemannian genealogy, in part
via Einstein’s work, itself based in Riemann’s geometry and his con-
cept of manifold. Bergson thinks of space or time in terms of mani-
foldness in the sense derived from, even if not identical to, that of
Riemann. I add “time,” because Bergson’s concept of the continuum
of time is phenomenally spatial and manifold-like as well. Weyl did
not need Bergson (though he sometimes needed Einstein) to medi-
ate Riemann'’s ideas, which Weyl knew much better than Bergson as
concerns their technical mathematical aspects. On the other hand,
Bergson’s philosophy, along with that of Franz Brentano, Edmund
Husserl, Immanuel Kant, Johann Gottlib Fichte, and others, might
well have helped Weyl to appreciate more deeply the philosophical
dimensions and underpinning of Riemann’s mathematics.

The case is, however, merely one especially telling instance of
the fact that our thinking and concepts traffic among different do-
mains, here between Riemann’s mathematics and Bergson’s philoso-
phy or the philosophical thinking of others such as Deleuze, who were
influenced by Riemann. In other words, if mathematics provides a
powerful source for the ideas that can be developed in other domains
of thought by virtue of its conceptual richness, the reverse is equally
true, even though mathematicians tend to shun philosophical

9. Weyl, Continuum (above, n. 7), p. 90.
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aspects or genealogies for their concepts. Weyl notes both of these
tendencies in The Continuum, as he traces the philosophical geneal-
ogy of the idea of continuum in the phenomenology of Brentano,
Bergson, and Husserl, as well as in the thought of such earlier figures
as Fichte. This Kantian philosophical tradition is especially signifi-
cant to intuitionist mathematics, with which Weyl’s argument has
certain affinities and that he came to embrace a bit later (albeit only
temporarily).'” Weyl’s philosophical acumen was extraordinary and
is perhaps unmatched in twentieth-century mathematics or science,
and he makes use of this tradition throughout his work, including
in his discussion of Riemann in Space-Time-Matter. On the other
hand, as he observes:

We cannot set out here in search of a definitive elucidation of what is to be a
state of affairs, a judgment, an object, or a property. This task leads into meta-
physical depths. And concerning it one must consult men, such as Fichte,
whose names may not be mentioned among mathematicians without eliciting
an indulgent smile.!!

The concepts themselves, however, of “state of affairs,” “judgment,”
“object,” or “property” are unavoidable in mathematics.

These are general philosophical concepts, shared by mathematics
and other scientific fields and, of course, by our everyday thinking.
Philosophical genealogies for specific mathematical concepts, how-
ever, such as that of continuum, are hardly less important for math-
ematical thinking, as Riemann’s work makes particularly evident.
Riemann was significantly influenced by philosophy, which shaped
his mathematics and his concepts, above all his concept of manifold
or manifoldness as Mannigfaltigkeit—that is, as certain multi-folded-
ness within a unity (the German Falt means “fold”) in the case of
space, defining a given space as composed by other (local) spaces
and the relationships among them. The standard English math-
ematical term is “manifold,” used as a noun. Riemann'’s concept
may owe a debt to Kant, who appears to be the first to consistently
use the term in philosophy, and possibly also to certain theological

10. Briefly, “intuitionism,” founded by the Dutch mathematician Lucius E. J: Brouwer,
is defined by the following argument. To claim that an object with certain properties
exists means that a mathematician can construct this object as available to our phe-
nomenal intuition, rather than merely deduce this existence through the set of axioms
and propositions free of contradiction. It is, accordingly, not surprising that Cantor's
work (essentially dealing with objects that are beyond the grasp of our phenomenal
intuition) was unacceptable to intuitionists.

11. Weyl, Continuum (above, n. 7), p. 7.
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ideas; Riemann was originally trained in theology and the German
for “trinity” is Dreifaltigkeit (“three folded into one,” as it were).'?

Riemann’s concept thus results from a complex superposition of
mathematical, philosophical, and theological thinking. The disci-
plinary specificity of mathematics remains important and should be
rigorously respected, since otherwise it would be difficult to under-
stand or even to speak of mathematics without a disregard for both
its history and the way it actually works as mathematics—as against,
for example, philosophy. In particular, mathematics and all mathe-
matical natural sciences, such as physics, are defined by their capac-
ity to give its objects, such as spaces, mathematically exact and spe-
cifically numerical features, which capacity became a defining part
of the disciplinary practice of mathematics. This need not be the
case in philosophy, which, when it adopts mathematical concepts
and makes them into philosophical ones, tends to leave this numer-
ical component of mathematics behind. The disciplinary specificity
of mathematics or that of philosophy (however difficult to establish)
does not, however, prevent the interactions between philosophical
and mathematical thinking, or between each and other forms of
thinking: it inevitably inflects these interactions, especially socially
and institutionally. What is at stake, in other words, is an inevitably
and irreducibly complex—heterogeneous yet interactive—field of
determinations, both phenomenal and cultural.

As noted at the outset, Riemann’s conceptual mathematics is dif-
ferent from set-theoretical mathematics, which is foundationally
the dominant form of mathematics since Cantor, defining math-
ematical objects in terms of sets. I am not saying that they are sim-
ply opposed: although not without some losses in translation, they
could be mathematically translated into each other, as was most of
Riemann’s mathematics, including his concept of manifold. Besides,
set-theoretical mathematics inevitably involves mathematical (or
philosophical) concepts, beginning with that of set (which is both
mathematical and philosophical). The special position of this con-
cept, however, as the primary, all-comprehending concept, defines -
the main difference between set-theoretical mathematics and Ri-
emann’s conceptual mathematics. The latter proceeds by working
with specific concepts, such as “space,” “manifold,” “function,” “se-
ries,” and so on, and with their respective architectures in their re-
lationships with one another without pre-comprehending them by
a single concept, such as that of set. Each concept has a particular

12. According to Laugwitz, the ideas of Johann F. Herbart appear to be especially sig-
nificant for Riemann; see Bernhard Riemann (above, n. 2), pp. 277-292.
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mode of determination, such as discrete versus continuous mani-
fold, and the constitutive elements or aspects of these concepts,
such as points, are related through this determination, rather than
considered in terms of formulas on the one hand and sets on the
other.

Both the general ideology just described (Derrida would speak
here of a “transcendental signified,” which is also a “transcendental
concept”) and the set-theoretical specificity are important in estab-
lishing the difference between Riemann’s and set-theoretical math-
ematics.'® It is true that Riemann’s work precedes set theory, which
was, accordingly, not available to him, and it is difficult to guess how
he would respond to it if he lived to see it (as he could have, given
that he died at age 40, just a few years before Cantor introduced
his set theory). My point at the moment is, however, philosophical
rather than historical. It is difficult, although not impossible, to fol-
low now Riemann’s way of doing mathematics. It was nearly unique
even in his time, and has been seen as controversial on account of
its perceived (not always accurately) lack of rigor, especially if rigor
is understood (as it often is) in set-theoretical terms—that is, as de-
fined by proper manipulations of sets and their elements, and the
relationships among these elements or among different sets. It is
possible, however, to practice set-theoretical or so-called categori-
cal mathematics along the lines of Riemann’s general philosophy
of working with multiple concepts, whereby the concept of set no
longer occupies a unique transcendental position and does not gov-
ern, even in principle, all of the concepts involved. One could see
these interactive relationships among concepts and different fields
of research without an underlying transcendental, all-pre-compre-
hending master concept or set of concepts as non-Euclidean math-
ematics (which is not the same as non-Euclidean geometry, which
merely deals with the mathematics of spaces different from Euclid-
ean ones). This heterogeneity appears to shape most mathematics
(apart, perhaps, from Euclidean two-dimensional geometry), even
though many practitioners of mathematics, especially those of the
Platonist persuasion, believe otherwise.'* This understanding of the
multiple interactive relationships among concepts that are no lon-

13. The term “transcendental” is taken here in the Kantian sense of the condition of
the possibility of, in this case, all other signifiers and concepts, pre-comprehended by
such a transcendental signified or concept, even though it may be hidden or never ap-
pear as such.

14. 1 have discussed the idea of non-Euclidean mathematics in The Knowable and the
Unknowable: Modern Science, Nonclassical Thought, and the “Twe Cultures” (Ann Arbor:
University of Michigan Press, 2002), pp. 126-132.
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ger governed by a single concept has appeared in philosophy at least
since Friedrich Nietzsche; more recently, it has been made promi-
nent by Derrida’s work, especially his early work (which is closer to
Nietzsche).'S According to Derrida, there could be no single concept
uniquely defining thought, and hence no single form of thought.
Riemann’s work offers a powerful example of the practice of this plu-
rality in mathematics, which, it follows, is never only mathematics.

Geometry, Topology, and the “Sociology” of Space

‘While both geometry and topology are concerned with the math-
ematics of space, each is distinguished by its different provenance:
geomelry (geo-metry) has to do with measurement (initially that of
the earth), while topology disregards measurement or scale and only
deals with the structure of space qua space and with the essential
shapes of figures. Topological figures are themselves generally seen
as continuous spaces (possibly emmbedded in other spaces), although
one can sometimes give a kind of (mathematical) continuity even
to (phenomenally) discrete objects. Insofar as one deforms a given
figure continuously (i.e., insofar as one does not separate points
previously connected and, conversely, does not connect points pre-
viously separated), the resulting figure is considered the same; this
sameness is difficult and perhaps impossible to think of by means of
our general phenomenal intuition and, therefore, is mathematical.
Indeed, the proper mathematical term is “topological equivalence.”
Thus all spheres, of whatever size and however deformed, are topo-
logically equivalent, despite the fact that some of the resulting ob-
jects are no longer spheres, geometrically speaking. Such figures are,
however, topologically distinct from tori, since spheres and tori can-
not be converted into each other without disjoining their connected
points or joining the disconnected ones, the holes in tori making
this impossible. Such topological properties can be related to certain
algebraic and numerical properties, most especially through the so-
called cohomology and homotopy theories, which are among the
great achievements of modern mathematics, extending in part from
Riemann’s work.

Discovering these relationships between topological (rather than
only geometrical) properties and algebraic and numerical properties
was crucial for making topology a mathematical discipline, since, as
noted above, mathematics is disciplinarily defined by its capacity

15. See, in particular, Derrida’s discussion, first via Nietzsche and then via Leibniz, in
Of Grammatology, trans. Gayatri C. Spivak (Baltimore: Johns Hopkins University Press,
1974), pp. 19-20, 50, 75-80.
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to give its objects mathematically exact and specifically numerical
features. One might argue that the ancient Greeks had philosophi-
cal topology, as is suggested by Plato’s concept of khora in Timaeus,
which may even be seen as already questioning the very concept
of spatiality. But they did not have a mathematical discipline of to-
pology; their only mathematical (exact and quantifiable) science of
space was geometry. Anticipated by Leibniz’s conception of “analy-
sis situs” (the term used by Riemann and for a while after him),
topological ideas were gradually developed by Riemann and others,
especially Henri Poincaré, whose work was uniquely responsible for
establishing topology as a mathematical discipline.'®

The concept of set—understood, again, as a multiplicity com-
posed of elements having certain properties and certain relations
among themselves or with elements of other sets—was introduced
by Cantor shortly after Riemann’s death in 1866. The concept has
shaped foundational thinking in mathematics, including topology,
and the very understanding, mathematical and philosophical, of
what defined foundational thinking in mathematics from then on.
As concerns space, perhaps the most crucial question is whether, in
approaching space, one considers space itself as a primary, ground-
ing concept or whether, with Cantor and most subsequent math-
ematics, one considers it as derived from the concept of set by, say,
considering a given space as a particular set of points. I am referring
to the mathematics of spatiality rather than mathematics in general
(hence my emphasis), since, as explained earlier, there is no gen-
eral, all-pre-comprehending transcendental concept governing all of
mathematics in Riemann.

More recently, roughly from the 1950s onward, the so-called cat-
egory theory offered an approach to mathematics that is closer to
that of Riemann, especially through its connections to topology and
algebraic geometry, a field developed in part following Riemann’s
work.'” In this approach, spatiality—or at least a certain concep-
tion of a spatial type called “topos,” developed in the so-called to-
pos theory of Alexandre Grothendieck—replaces set as the primary
concept, or forms the ultimate transcendental concept as it did for
Grothendieck himself, whose philosophical orientation was argu-
ably Platonist. One need not, however, see topos (or indeed set) as

16. The term “topology” was introduced by Johannes B. Listing, a contemporary of
Riemann and, like Riemann, a student of Gauss.

17. One could also see category theory or especially (given its Platonist orientation)
Grothendieck’s work as an extension of, rather than in juxtaposition to, Cantor’s math-
ematics, as Manin suggests; see “Georg Cantor” (above, n. 5), p. 8.
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the grounding concept of all mathematics, and one can use the con-
cept of topos even more effectively than that of set to question the
very possibility of a transcendental mathematical concept. Topos
theory also allows one to avoid the well-known paradoxes of set
theory, such as that of the concept of the set of all sets. This concept,
according to traditional set theory, cannot be consistently defined,
since such a set can be immediately shown to be a member of itself
if and only if it is not a member of itself. Topos theory allows for
esoteric constructions such as spaces consisting of a single point and
vet having an architecture that defines them, rather than structure-
less entities (classical points) or spaces without points, sometimes
slyly referred to by mathematicians as “pointless topology.” These con-
structions are far from pointless, however, insofar as each suggests that
“space,” or something space-like in character, is a more primary con-
cept than that of “point” or “set of points” (as Kant already suggested
at the phenomenal level). Below, I shall return to topos theory as an
extension of Riemann’s “sociological” understanding of space. Before 1
do so, however, and in order to make these connections clearer, I shall
first discuss Riemann'’s understanding of space in more detail.

According to Riemann in his habilitation lecture, “On the Hy-
potheses Which Lie at the Bases of Geometry,” which introduced
the idea of manifold and Riemannian geometry,

[t]he concepts of magnitude are only possible where there is an antecedent
general concept which admits of different specialisations. According as there
exists among these specialisations a continuous path from one to another or
not, they form a continuous or discrete manifoldness [Mannigfaltigkeit]; the in-
dividual specialisations are called in the first case points, in the second case
elements, of the manifoldness. Concepts whose specialisations form a discrete
manifoldness are so common that at least in the cultivated languages any
things being given it is always possible to find a concept in which they are
included. (Hence mathematicians might unhesitatingly found the theory of
discrete magnitudes upon the postulate that certain given things are to be re-
garded as equivalent.) On the other hand, so few and far between are the oc-
casions for forming concepts whose specialisations make up a continuous man-
ifoldness, that the only simple concepts whose specialisations form a multiply
extended manifoldness are the positions of perceived objects and colours.
More frequent occasions for the creation and development of these concepts
occur first in the higher mathematics.'®

18. Bernhard Riemann, “On the Hypotheses Which Lie at the Bases of Geometry,”
trans. William Kingdon Clifford, Nature, 8:183-84 (1873): 14-17, 36, 37 (hereafter
HBG), available at http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/
WKCGeom.html, which I cite throughout this article. The passage just cited occurs in
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As this description suggests and as Riemann’s overall discussion
in the lecture makes clear, he defines mathematical objects, both as
a class (e.g., manifolds, or continuous and discrete manifolds) and
each specifically (e.g., a given manifold), not in terms of ontologi-
cally pre-given assemblies (“sets”) of points, which have or are then
endowed with a certain set of relations between them; instead, he
defines them in terms of concepts—specifically, in the case of con-
tinuous manifolds (most crucial here), as that of a space defined by
a conglomerate of local spaces and the interactions between them.
Hence, he speaks here of both general concepts and specializations
(and subconcepts corresponding to such specializations) through
which magnitudes could be defined. Each concept has a particular
mode of determination, such as discrete versus continuous mani-
folds or those modes that further specify a given subclass of mani-
folds or even a single manifold, whose properties are defined by this
determination rather than only or primarily by formulas. Continu-
ous and discrete manifolds are thus different concepts, subspecies of
the concept of manifold.

This view implies a redefinition of the very concept of “concept”
in mathematics and beyond—specifically, according to Deleuze and
Guattari, in philosophy (keeping in mind the disciplinary speci-
ficity of each field). Like a philosophical concept, a mathematical
concept, even when it is a general one, is never merely a general-
ization from particulars or an abstract idea, but is always defined
by a specific architecture, which has multiple components. Such a
concept may and usually does include concepts in the conventional
sense (of generalizing from particulars), but only as components,
as part of this more complex architecture. Thus Riemann’s concep-
tual mathematics goes beyond merely giving an essential priority to
thinking in terms of mathematical objects as concepts rather than
to calculational approaches, defined as thinking by manipulating
formulas or equations; while his habilitation lecture contains only
one formula(!), his argument is nevertheless unlikely to be acces-
sible to a lay reader, certainly not without a major effort.'?

section 1. Riemann presented his habilitation lecture in order to obtain his position as
Privatdozent at Géttingen (the rough equivalent of a tenured associate professor). Habilita-
tion, which is still necessary in Germany and other countries to gain a permanent univer-
sity position, requires a second dissertation, which must be defended before an academic
committee (chaired by Gauss in Riemann's case) (translation modified by author).

19. Laugwitz's discussion of Riemann’s conceptual mathematics takes a more conven-
tional view of mathematical concepts and, in part as a result, appears to me to miss the
radical aspects of Riemann's thought discussed here; see Bernhard Riemann (above, n.
2), pp. 303-307.
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Riemann’s conceptual approach allows him to get hold of the
properties of mathematical objects and of relationships that would
be difficult and perhaps impossible to handle or establish otherwise
than by means of the concepts involved. No conglomerate of formu-
las as such may allow us to say as much about, say, a sphere (which
can, of course, be defined analytically by an equation), as seeing it
as a manifold and by exploring its properties as those of a manifold,
even if in conjunction with formulas and equations. For example,
the topological difference between spheres and tori is a rich source
of information concerning these objects, and Riemann was the first
to realize and to take advantage of this fact. The flow of a liquid
on a sphere, for instance, where turbulence is unavoidable, is very
different from flow on a torus, where it can be free of turbulence.
This fact has major mathematical as well as physical significance
and implications. Riemann also pursues (as effectively as anyone)
an analysis of and work with formulas, but he does so primarily as
auxiliary to establishing and analyzing conceptual determinations,
which, he shows, tell us more about mathematical objects than for-
mulas. Riemann uses the same approach in his analysis of functions
of complex variables, or his work on the so-called C-function and
the distribution of prime numbers. The {-function can be given by
a formula, but Riemann derived his remarkable results by considering
certain deeper properties reflected in this formula—in other words, by
treating it as a mathematical concept in the sense I am describing.

It is worth noting that Riemann speaks of “points” only in the
case of continuous manifolds, and uses the term “elements” for the
simplest constitutive entities comprising discrete manifolds. This
is astute, since points gua points only appear in relation to some
continuous space, such as a line or a plane, although the situation
involves considerable mathematical complexities, especially when
considered set-theoretically. Riemann appears to have sensed these
complexities, although he allows for the possibility that discrete
manifolds may function mathematically as spaces, or that space in
nature may be a discrete manifold. Mathematics has subsequently
developed ways to speak of discrete spaces, or even spaces with a fi-
nite number of points or, again, single-point spaces. Riemann, how-
ever, primarily pursues a conception of space as a continuous (three-
dimensional) manifold.

The key conceptual component of his approach is to define a to-
pologically and geometrically complex space, particularly a curved
space such as a sphere, not as a constitution of points, but as a space
that could be covered by maps whereby it can be treated as locally Eu-
clidean, even though globally the space itself may not be Euclidean.
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The idea of mapping a given space with local spaces is significant
for our understanding of Euclidean spaces as well, in contrast to the
set-theoretical view. Topology describes a space not so much by its
points, but by the class of its so-called open sets—the concept that
underlies Riemann’s concept of manifold, but that allows for a more
general mathematical definition of topological spaces, which need
not be locally Euclidean and hence need not be manifolds. One can
conceive of such sets on the model of open intervals of the line: say,
all points between 1/4 and 3/4, except for these two points them-
selves, which are its boundaries. The standard mathematical nota-
tion is ]1/4, 3/4[. A closed interval, usually designated as [1/4, 3/4],
includes its boundaries. Open or closed intervals can be thought of
alternatively as spaces or sets, or both. The problem of the contin-
uum is to determine how a given continuum is constituted (as a
set) by its points, and whether we can exhaust the straight line by a
set of real numbers, the problem correlative to Cantor’s continuum
hypothesis.?¢

Brouwer questioned, on intuitionist grounds, the legitimacy of
the set-theoretical concept of the continuum of the straight line as
constituted by real numbers or even by points, which in principle
he regarded as inaccessible to human intuition, general or math-
ematical (which he was more reluctant to dissociate than Weyl). A
continuous space such as a straight line (or what appears to us in-
tuitively as such) may, however, be described or defined differently
(which was acceptable to Brouwer): not by the set of its points, but
by a class of its open subspaces covering it. Such subspaces may over-
lap, as, for example, |1/4, 3/4[ and |1/2, 1|, generating new open sub-
spaces (in this case, ]1/2, 3/4[) in the overall covering atlas. Any open
interval containing a given point is called a “neighborhood” of this
point. Thus both ]1/4, 3/4[ and ]1/4, 1/2[ would be neighborhoods of

20. The statement of the hypothesis admits a number of different formulations, and
the mathematical or philosophical equivalence of these formulations is, in turn, a
complex matter. For the present purposes, the hypothesis concerns the set of real num-
bers as an infinite cardinal (a concept of number introduced by Cantor to compare the
number of elements of different sets, especially different infinite sets). The question is
whether there exists a set whose power (a number of elements) is less than that of the
set of real numbers, but larger than the power of the set of natural numbers. The an-
swer is, again, complex, although the problem is generally considered to be solved in
mathematics. Cantor’s statement is viewed as “undecidable”—that is, unprovable to be
either true or false within certain systems of axioms. Kurt Gédel, who introduced the
idea of undecidable propositions, also contributed to the solution of the continuum
problem, finally reached by Paul J. Cohen in 1963. Cohen, however, argued later that
Cantor's statement could be seen as false, even “obviously false”; see Cohen, Set Theory
and the Contimuum Hypothesis (1966; reprint, New York: Dover, 2008), p. 151.
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1/3, and the first of these neighborhoods will contain the second,
or will overlap with a neighborhood such as ]1/6, 2/5[. Topologi-
cally, all such intervals are equivalent, and ]O, 1[ represents any of
them.?!

It is true that if one appeals to open intervals as sets, as is usual,
the concept of the line sketched here retains the concept of set as
a primitive concept. The approach itself, however, offers a more
general definition of space as comprised or, again, covered by other
spaces, which allows for using this structure as a primitive one by re-
placing the concept of covering a space by “open sets” with the con-
cept of covering it by “open spaces.” A topological space is defined
as (covered by) a collection of such open spaces as subspaces of the
initial spaces by providing certain (algebraic) rules for the relation-
ships among these subsets.

These ideas arguably find their most radical incarnation in Groth-
endieck’s topos theory. The theory is prohibitively difficult in view of
its mathematical abstractness and rigor; however, the essential phil-
osophical ideas involved may be sketched here. In this approach, a
given space, X, may, at least initially, be left unspecified as concerns
its internal constitution. What would be specified instead are the
relationships between this space and other spaces of the same type,
which are seen as “mapping” or “covering” X. The internal con-
stitution of X is then defined through these external relationships
among spaces. We could call the structure defining these relation-
ships the “arrow structure”: Y—X, where the arrow designates the
relationship in question, also known as a “morphism,” between two
spaces. (The notation Y—X is used in mathematics.) An especially
important example of the arrow structure is what is called a “fiber
bundle” or “sheaf” (the latter is, technically, a somewhat different
concept, but this difference is not essential here): Y is “fibered” into
a conglomerate of subspaces F (fibers), each of which is “projected”
onto (“covers”) each point of X. Grothendieck’s “topos” is a still
more complex object, defined as a conglomerate (“topos”) of sheafs
over a given space.

21. The procedure sketched above can also be used to define the topology of curves or
higher-dimensional spaces, flat or curved. It enabled Riemann to define manifolds of
any dimensions, even infinite-dimensional ones, as collections of covering maps. As
will be seen in the next section, the approach also allows one to define a curved surface
or a manifold of dimension three and higher in terms of its inner properties, rather
than in terms of its relation to its ambient Euclidean space, where such a manifold
might be placed. The infinitesimal flatness of such spaces does not prevent them from
having a curvature at any point.
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The procedure just outlined thus enables one to specify and give
a space-like structure to a given object of a spatial, or even, conven-
tionally, not spatial, type not in terms of its intrinsic structure (e.g.,
a set of points with relations among them), but, to return to Ma-
nin’s language, “sociologically,” through its external relationships
with other objects of the same type—or, in mathematically rigor-
ous terms, of the same “category,” such as the category of Rieman-
nian spaces as manifolds.?? Space, accordingly, is always defined by a
multiplicity (“society”) of other spaces, rather than by a multiplicity
of its points. A space may be without points, but it cannot be with-
out (other) spaces to which it must relate. One does not have to give
a uniquely privileged position to a Euclidean space, whether seen
in terms of sets of points or otherwise; instead, a Euclidean space is
just one specifiable object of a large categorical multiplicity—say the
category of Riemannian spaces—and is merely marked by a particu-
larly simple way by which we can measure the distance between any
two points. Again, the most crucial feature of his approach is that
any given space (it may be a point, for example, which gives a point
a conceptual complexity and specificity) is defined in terms of its
relations to other spaces. These spaces may be, but need not neces-
sarily be, subspaces of a given space, or, as in the case of Riemann'’s
manifolds, spaces mapping subspaces of a given space. One can also
generalize the notion of neighborhood in a similar fashion by defin-
ing it as a relation between a given point and the spaces associated
with it in this way—for example, via fiber bundles or sheafs, as just
explained.

One of the starting points of Riemann'’s reflection on space was
the possibility of non-Euclidean geometry, which led him to a new
type of the non-Euclidean geometry, that of positive curvature. Posi-
tive curvature means that there are no parallel shortest or geodesic
lines crossing any point external to a given geodesic. In Euclidean

22. Manin, “Georg Cantor” (above, n. 5), p. 7.” “Categories” are defined by category
theory as multiplicities of mathematical objects endowed with given structures and the
relationships among them—in particularmorphisms or arrows, which are, as just ex-
plained, the mappings between these objects that preserve this structure. Studying
such morphisms allows us to learn about the individual objects involved, often to learn
more than we would by considering them only or primarily individually. Categories
themselves may be viewed as such objects, and in this case, one speaks of “functors”
rather than “morphisms.” Because topology relates topological or geometrical objects,
such as manifolds, to algebraic ones, especially the so-called groups (multiplicities de-
fined by a single algebraic operation, such as multiplication, and certain properties of
this operation), by its very nature it deals with functors between categories of topo-
logical or geometrical objects, such as manifolds, and categories of algebraic objects,
such as groups.
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geometry, where geodesics are straight lines, there is only one such
parallel line, and in non-Euclidean geometry of negative curvature or
the hyperbolic geometry of Johann Bolyai and Nikolai Lobachevsky
(the first non-Euclidean geometry discovered), there are infinitely
many such lines. Riemannian geometry encompasses all of these as
special cases. Significant as the discovery of non-Euclidean geom-
etry was for the history of mathematics and intellectual history, it
was only a small part and, as Weyl says, in retrospect “a somewhat
accidental point of departure” for Riemann’s radical rethinking of
the nature of spatiality and related developments.?® Eventually, this
rethinking had a nearly equal impact on the history of mathematics
and, more indirectly, on intellectual history.

Riemann’s concept of manifold is the most crucial part of this
rethinking, and Riemannian geometry would most properly refer to
the study and the very definition of space in terms of manifolds, es-
pecially continuous manifolds. Riemann also considers manifolds of
higher dimensions and even of infinite dimensions; as noted above,
he also considers discrete manifolds (which mathematically have
the dimension zero), formed by isolated rather than continuously
connected elements. (The concept of discrete manifold becomes im-
portant for Riemann’s view of space in physics.) In modern usage,
the term “manifold” is reserved primarily for continuous manifolds,
Riemann’s most significant contribution to modern geometry, and
to our understanding of space in general.?* A manifold is a conglom-
erate of (local) spaces, each of which can be mapped by a (flat) Eu-
clidean, or Cartesian, coordinate map, without allowing for a global
Euclidean structure of the whole, except in the limited case of a Eu-
clidean space itself. Weyl speaks of Riemann’s mathematics of mani-
folds as “a true geometry, . . . a doctrine of space itself and not merely
like Euclid, and almost everything else that has been done under the
name of geometry, a doctrine of the configurations that are possible
in space.”*

I shall now discuss in more detail the key geometrical principles
behind the concept of manifold, beginning with Riemann’s exten-
sion of Gauss’s ideas concerning the internal geometry of curved
surfaces—that is, the geometry independent of the ambient (three-
dimensional) Euclidean space where curved spaces could be placed.

23. Hermann Weyl, Space-Time-Matter, trans. Henry L. Brose (1918; reprint, New York:
Dover, 1952), p. 92.

24. Riemann mainly considered the so-called differential manifolds, which means that
one can define differential calculus on such objects.

25. Weyl, Space-Time-Matter (above, n. 23), p. 102.
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Riemann’s main contribution in this respect was his discovery that
Gauss’s concept of (internal) curvature could be extended, via the
so-called tensor calculus, to measurement in curved spaces of di-
mension three and higher, which Einstein used in his theory of gen-
eral relativity (his non-Newtonian theory of gravitation). It is worth
stressing that Riemann is concerned not with curves in a flat space,
but with the curvature of space itself, which is why Riemann’s con-
cept is so important, given that the space in which we live is of three
or possibly even higher dimensions. One can also treat spaces of
lower dimensions as independent rather than embedded. The cur-
vature of space could also be assumed to vary from point to point,
from a neighborhood to a neighborhood. One of Riemann’s con-
tributions (again, crucial to Einstein’s work) was his understanding
that the concept of manifold is general enough to allow for such
variations. Earlier non-Euclidean geometries retained some Euclid-
eanism by conceiving of the corresponding spaces as globally ho-
mogenous curved spaces with the same constant curvature, positive
or negative. In Riemann’s geometry, spaces of variable curvature are
allowed as well.

A related though separate feature of this new spatiality, again cru-
cial to Riemann and to Einstein, extends Leibniz’s view concerning
the relational nature of all spatiality. In this view, actual space is no
longer seen as a given, ambient (flat) Euclidean or as Newtonian ab-
solute space or, in Weyl’s words, as an (infinite) “residential flat” (flat
is a fitting pun here) where geometrical figures or material things are
put;* instead, it emerges as a (continuous) manifold whose structure,
such as curvature, would, again, be determined internally, mathemat-
ically or physically (for example, by gravity, as in Einstein’s general
relativity), rather than in relation to an ambient space, Euclidean or
not. From this point of view, the notion of empty space might be
entertained mathematically or philosophically, and perhaps expe-
rienced phenomenally, but, as Leibniz grasped, it is difficult to ap-
ply to the physical world. In any event, all spaces, mathematical or
physical, become subject to investigation in their own terms and on
equal footing and in multiple sociological relations to other spaces,
rather than in relation to an ambient or otherwise uniquely primary
space. The internal, constant or variable structure of a given space
may again be determined sociologically by the relations among this
space and other spaces, whatever such spaces may be. As indicated
earlier, in the case of Riemann’s manifolds, this relation is defined

26. Ibid., p. 98. The concept of absolute space, or that of absolute time, introduced in
his Principia, ultimately troubled Newton as well.
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by the locally Euclidean structure of neighborhoods, by Euclidean
maps locally covering a given manifold, without a global Euclidean
map or even, in general, a single global non-Euclidean map, except
in special cases of spaces of constant curvature (zero, positive, or
negative).

Riemann’s approach clearly required a very different way of
thinking about and indeed imagining space from the one that de-
fined mathematical and philosophical thinking concerning spatial-
ity, which still defines most of our common Euclidean thinking con-
cerning space. I would like in closing to consider the significance
and implications of Riemann’s ideas concerning space in physics,
where, in particular, they were crucial for Einstein’s general relativ-
ity theory, which, along with quantum mechanics, defines our pres-
ent understanding of the ultimate constitution of nature.

Spatiality, Phenomenality, and Materiality from Riemann
to Einstein

Thinking along the lines of Leibniz and against Newton, Einstein
gave a rigorous physical meaning to the ideas concerning spatiality
considered here and extended them by arguing that space and time
are not given, but arise as the effects of our instruments, such as rods
and clocks, and, one might add, of our perceptual and conceptual
interactions with those instruments. Space is thus possible as a phe-
nomenon (or as a concept) by virtue of two factors, which form, in
Kant’s language, the condition of the possibility of spatiality as well
as of temporality: the first is the presence of matter and technology,
such as instruments (or natural objects that assume their roles); and
the second is our perceptual phenomenal machinery, whose role
might be primary, as Kant argued, but whose very existence may
only be possible by virtue of the materiality of our bodies. Einstein’s
theory itself concerns the role of materiality (gravity) in defining
physical space. While the theory does tell us something about how
nature works, rigorously speaking, it still only describes certain phe-
nomena rather than nature itself, as Weyl argues, via Brentano and
Husserl (Space-Time-Matter 1-10). As Weyl also argues, however, no
theory can do more.

Riemann offers remarkable intimations of Einstein’s theory. In
the final section of his lecture “Application to Space,” where he re-
fers to Archimedes, Galileo, and Newton, Riemann proceeds from
the contrast between discrete and continuous manifolds, saying:

The question of the validity of the hypotheses of geometry in the infinitely
small is bound up with the question of the ground of the metric relations of




126 Configurations

space. In this last question, which we may still regard as belonging to the
doctrine of space, is found the application of the remark made above; that in
a discrete manifoldness, the ground of its metric relations is given in the con-
cept of it, while in a continuous manifoldness, this ground must come from
outside. Either therefore the reality which underlies space must form a discrete
manifoldness, or we must seek the ground of its metric relations outside it, in
binding forces which act upon it.?”

Riemann, however, goes on to say:

The answer to these questions can only be found by starting from the concep-
tion of phenomena which has hitherto been justified by experience, and
which Newton assumed as a foundation, and by making in this conception
the successive changes required by facts which it cannot explain. Researches
starting from general concepts, like the investigation we have just made, can
only be useful in preventing this work from being hampered by too narrow
views, and progress in knowledge of the interdependence of things from being
checked by traditional prejudices.?®

Riemann thus allows for the possibility that spatial reality may cor-
respond to a discrete manifold and, in this case, its nature or structure
could be established from within—that is, given by a (specific) math-
ematical concept that defines such a space. This may ultimately prove
to be the case, although in most physical theories thus far—quantum
theories included—space has been viewed as a continuous manifold
in Riemann’s sense. There have been exceptions, and more recently,
the idea of the underlying discreteness of physical space acquired new
prominence and gained new conceptual grounds in the context of
quantum gravity, which would bring together general relativity and
quantum theory. While equally essential for our understanding of na-
ture, these two theories are thus far are irreconcilable, and no work-
able theory that would resolve this difficulty exists as yet. The main
argument in question, however, concerns continuous manifolds and
space as continuous phenomena, especially in the context of Leib-
niz, who anticipated Riemann’s view, or Einstein, who gave this view
a rigorous physical content. Einstein was able to do so by replacing
Newton'’s assumption about the instantaneous action of gravity with
the idea of curved space, where the speed of all processes is finite (i.e.,
below the speed of light in a vacuum).

According to Weyl, “Riemann rejects the opinion that has pre-
vailed up to his own time, namely, that the metrical structure of
space is fixed and [is] inherently independent of the physical phe-

27. HBG (above, n. 18), section 3, no. 4 (translation modified by author).
28. Ibid.
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nomena for which it serves as a background, and that the real con-
tent takes possession of it as of residential flats” (98). It is usually
a flat (Euclidean) residential flat, although flatness is less crucial
here than the fact that the flatness or curvature of a given space
is determined by matter. The space of our universe may prove to
be flat on average, as recent cosmological theories seem to suggest,
although (and this is crucial here) it is curved, and variably so in
smaller regions, such as a solar system or a galaxy. Weyl then says,
“[Riemann] asserts, on the contrary, that space in itself is nothing more
than a three-dimensional manifold devoid of any form; it acquires a defi-
nite form only through the advent of the material content filling it and
determining its metric relations” (emphasis in original).?” It would per-
haps be more accurate to say that space may be given phenomenally
at most as a three-dimensional manifold. Physically, a space may
be (in Riemann'’s view, as well as that of Einstein and Leibniz, could
only be) co-extensive with matter: actual bodies (as in Leibniz) or
propagating fields such as electromagnetism or gravity, or both (as
in Riemann and Einstein). But the phenomenal component remains
irreducible. Weyl adds that “[lJooking back from the stage to which
Einstein brought us, we now recognize that these ideas can give
rise to a valid [physical] theory only after time had been added as a
fourth dimension to the three-space dimensions.”*® He concludes:

[W]e see that “the inner ground of metric relations” [of the continuous mani-
fold that forms the reality that underlies physical space] must indeed be
sought elsewhere. Einstein affirms that it is to be found in the “binding forces”
of Gravitation. . . . The laws according to which space-filling matter determines
the metrical structure are laws of gravitation. The gravitational field affects
light rays and “rigid” bodies used as measuring rods in such a way that when
we use these rods and rays in the usual manner to take measurements of ob-
jects, a geometry of measurement is found to hold which deviates very little
from that of Euclid in the regions accessible to observation. These metric rela-
tions are not the outcome of space being a form of phenomena, but of the
physical behavior of measuring rods and light rays as determined by the grav-
itational field.*!

In sum, the gravitational field determines the manifold in ques-
tion (and to some degree our phenomenal perception of it) and its
curvature: the gravitational field shapes space and, moreover, shapes

29. Weyl, Space-Time-Matter (above, n. 23), p. 98.
30. Ibid., p. 101.
31. Ibid., pp. 101-102.
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it as a Riemannian manifold. This fact radically transforms our phi-
losophy of space and matter and of their relationships, first and
most obviously in mathematics and physics, or in the philosophy
of mathematics and physics, but also elsewhere. For instance, Ein-
stein’s techno-material efficacy of space and time, and of space-time,
is not unlike the efficacy of Derrida’s différance, which produces, as
effects, multiple differences, proximities, and interactions between
and among entities that in an un-deconstructed regime would be
seen as unconditionally separate or opposite. Derrida sees différance
as the material efficacy of both spatiality and temporality, of the
spatiality of space and the temporality of time, or of the spatiality of
time and the temporality of space.*? Materiality is conceived by him
so as to include the materiality of writing, using the term “writing”
in Derrida’s extended sense, reciprocal with a certain radical idea
of materiality, coupled to the idea of technology via différance and
other Derridean “neither terms nor concepts,” such as trace, supple-
ment, dissemination, and so forth. This broader view of materiality
allows one to extend Einstein’s technological argument concerning
space and time to all our cultural production: all cultural artifacts,
scientific theories included, become effects or products of this mate-
rial “différantial” dynamics and thus are written in Derrida’s sense
by means of technologies of culture (beginning with pens and pen-
cils, but hardly ending with them).?** An analogous type of argument
was developed in the constructivist social studies of science, where,
more recently, an uncritical view of social constructivism as a single
determining “technology” of such productions has been reexam-
ined, bringing the resulting constructivist argument closer to the
position offered in this essay.*

It also follows that the Riemannian or any other phenomenality
of space is only possible by virtue of materiality.?® This materiality is
that of the material constitution of the bodies we possess and their
material history, as well as that of technology. This technology is still

32. Jacques Derrida, Margins of Philosophy, trans. Alan Bass (Chicago: University of
Chicago Press, 1980), p. 13.

33. Given my limits here, for a proper argument, I must refer to my previous discussion
of this aspect of Derrida’s thought in The Knowable and the Unknowable (above, n. 14),
pp. 184-199.

34. See, in particular, Bruno Latour, Pandora’s Hope: Essays on the Reality of Science Stud-
ies (Cambridge, MA: Harvard University Press, 2002).

35. I borrow this language from Paul de Man’s discussion of Kant in his “Phenomenal-
ity and Materiality in Kant,” in Aesthetic Ideology (Minneapolis: University of Minnesota
Press, 1986), pp. 70-90,
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enabled by our bodies and the universe that gives rise to our bod-
ies and the perception, cognition, and thinking they enable (often
helped by technology). One can here take advantage of the diverse
concepts designated by the term “body,” from the ultimate (quan-
tum) constituents of nature, to human bodies, to bodies of stars and
galaxies, to the body of the universe itself, or to political, cultural,
and textual bodies (which have their own forms of materiality). The
ultimate nature of this materiality may be unavailable not only in
practice, but more crucially in principle to our phenomenality or
conceptual capacities, to our thinking and imagination. Indeed, it
may well be unavailable to us even beyond the way that Kantian
things-in-themselves are unavailable, with the implication that terms
such as materiality and matter are finally inapplicable. This unavail-
ability is, however, quite different from an unavailability in practice,
or even the unavailability in principle defined by theological or quasi-
theological arguments, in which the ultimate constitution and archi-
tecture of the world is only available to God. The existence of such
unavailable entities could, however, only be established by virtue of
their capacity to affect what is available to us and produce available
effects. The material objects considered by quantum theory are a
good example, since here our thinking, our imagination, and our
bodies are capable of arriving at a new conception of unavailability,
and (with the help of the universe) to build technologies that estab-
lish the existence of unavailable material objects.*®

Quantum theory—physically, an essentially discrete theory—
takes us beyond Riemann’s concept of continuous manifold, al-
though Riemann’s ideas concerning discrete manifolds may yet
prove their significance for quantum theory. There have been some
investigations along these lines since the early days of quantum
theory, and quite a few physicists think that, given the ultimately
quantum nature of physics, the ultimate constitution of space (or
time) is unlikely to be continuous and would need to be quantized
and considered as discrete in turn. On the other hand, even though
quantum theory is discrete insofar as it deals with irreducibly dis-
crete phenomena, most of its mathematics is continuous. Some of
Riemann'’s ideas in continuous mathematics, and the developments
that owe to them, are as significant for quantum theory as they are
for relativity.

As I stressed at the outset, Riemann’s revolutionary contributions
are many and diverse, all the more so because there are also connec-

36. 1 discussed quantum mechanics in this context in Reading Bohr: Physics and Philoso-
phy (Berlin: Springer-Verlag, 2006).
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tions among them, and some of these connections are still not fully
understood. One such contribution is to number theory: it con-
cerns the distribution of prime numbers among natural numbers.
Riemann was led to this contribution by his investigation of the
C-function, known as the “Riemann {-function” (or “Riemann-Euler
C-function”), and his famous hypothesis concerning the distribu-
tion of the zeros of this function, often considered the greatest un-
solved problem of modern mathematics (after the Fermat theorem
was proven by Andrew Wiles a few years ago). At first glance, this
number-theoretical problematic appears to have nothing to do with
physics and seems particularly remote from quantum theory; as has
become apparent during the last decade or so, however, these ideas
may in fact have deep connections with the highest and most com-
plex developments of quantum theory. It is not possible to address
here these developments (since new ideas and findings continue to
proliferate), except to note that it is the product of extraordinary
thought and imagination, approaching even those of Riemann, who
is difficult to match and perhaps impossible to surpass.*”

Perhaps the greatest achievement of Riemann’s thought is this
continuous impact of his ideas, both separately and in their inter-
actions, through which they have shaped modern mathematical
thought and imagination and will undoubtedly continue to do so.
If there could be a single name for this mathematics, “Riemannian”
might well be the best candidate, although, as explained earlier,
there are also good reasons to call it “non-Euclidean” or “non-Can-
torian.” That no such single name is possible is, however, entirely in
the spirit of Riemann’s mathematics and the spirit of his thought,
which, as I have argued here, cannot—nobody’s thought can!—be
only mathematical either

37. See Cartier, “A Mad Day’s Work” (above, n. 4), pp. 406-407.
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