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Abstract

This paper re-examines the key aspects of Dirac’s derivation of his relativistic equation for the
electron in order advance our understanding of the nature of quantum field theory. Dirac’s
derivation, the paper argues, follows the key principles behind Heisenberg’s discovery of
quantum mechanics, which, the paper also argues, transformed the nature of both theoretical
and experimental physics vis-a-vis classical physics and relativity. However, the limit theory
(a crucial consideration for both Dirac and Heisenberg) in the case of Dirac’s theory was
quantum mechanics, specifically, Schrodinger’s equation, while in the case of quantum
mechanics, in Heisenberg’s version, the limit theory was classical mechanics. Dirac had to
find a new equation, Dirac’s equation, along with a new type of quantum variables, while
Heisenberg, to find new theory, was able to use the equations of classical physics, applied to
different, quantum-mechanical variables. In this respect, Dirac’s task was more similar to that
of Schrodinger in his work on his version of quantum mechanics. Dirac’s equation reflects a
more complex character of quantum electrodynamics or quantum field theory in general and
of the corresponding (high-energy) experimental quantum physics vis-a-vis that of quantum
mechanics and the (low-energy) experimental quantum physics. The final section examines
this greater complexity and its implications for fundamental physics.

PACS numbers: 01.65.+g, 01.70.+w, 03.65.—w, 03.65.Ud, 03.65.TA, 03.70.+k

paper, and specifically the three key points in question, exerted
a profound influence on Dirac’s work on his equation. These
points are as follows:

1. The mathematical correspondence principle,
quantum variables and probability

Heisenberg’s thinking leading him to his discovery of
quantum mechanics was defined by three key elements,
clearly apparent in his paper announcing his discovery
(Heisenberg 1925). The same elements, I argue here, also
defined Dirac’s work on quantum electrodynamics, most
especially his discovery of his relativistic equation for
the electron, my primary concern in this paper. Dirac’s
derivation of the equation was significantly influenced by
Heisenberg’s paper. As is well known, Dirac read the paper
very carefully in 1925, and it inspired his 1925-6 work
on quantum mechanics and quantum electrodynamics, from
which, especially his transformation theory (independently
discovered by Jordan), his work on his equation grew. It is true
that Dirac’s work on his equation was significantly indebted
to other developments in quantum mechanics, most especially
Schrddinger’s equation, the transformation theory, and Pauli’s
spin theory. Nevertheless, Heisenberg’s thinking in his 1925
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(1) The mathematical correspondence principle. Stemming
from Bohr’s correspondence principle, this principle
states that one should maintain the consistency,
‘correspondence,” between quantum mechanics and
classical physics. More specifically, in the region, such
as for large quantum numbers for electrons in atoms
(when electrons are far away from the nucleus), where
one could use classical physics in dealing with quantum
processes, the predictions of classical and quantum theory
should coincide. The correspondence principle, used
more heuristically and ad hoc by Bohr and others before
quantum mechanics, was also given a more rigorous,
mathematical form by Heisenberg. The mathematical
correspondence principle (here extended to quantum
electrodynamics and other forms of quantum field theory)
requires recovering the equations and variables of the
old theory, classical mechanics in the case of quantum

© 2012 The Royal Swedish Academy of Sciences Printed in the UK
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mechanics and quantum mechanics in the case of
quantum field theory, in the limit region where the
old theory could be used. Dirac was aware of this
version of the correspondence principle from his first
paper on quantum mechanics on. As he said there:
‘The correspondence between the quantum and classical
theories lies not so much in the limiting agreement when
h = 0 as in the fact that the mathematical operations on
the two theories obey in many cases the same [formal]
laws’ (Dirac 1925, p 315). Rather than becoming obsolete
after quantum mechanics, as has been sometimes argued,
the principle, in this mathematical form, has continued to
play a major role in the development of quantum theory.
It still does, for example, in string and brane theories,
where the corresponding limit theory is quantum field
theory.

(2) The introduction of the new type variables. Arguably
most centrally, both discoveries, that of Heisenberg and
that of Dirac, were characterized by the introduction of
the new types of variables.

(OM) In the case of quantum mechanics, these were matrix
variables with complex coefficients, essentially
operators in Hilbert spaces over complex numbers
(apparently, unavoidable in quantum mechanics)
versus classical physical variables, which are
differential functions of real variables. Heisenberg
formally retained the equations of classical physics.

(QED) In the case of quantum electrodynamics, these
were Dirac’s spinors and multi-component
wave functions, which, jointly, entail more
complex operator variables, and a more complex
structure of the corresponding Hilbert spaces,
again, over complex numbers (apparently equally
unavoidable in quantum field theory). In contrast
to Heisenberg, Dirac also introduced a new
equation, Dirac’s equation, formally different from
Schrédinger’s equation, which, in accordance with
the mathematical correspondence principle, is a
far non-relativistic limit of Dirac’s theory, via
Pauli’s theory, the immediate non-relativistic limit
of Dirac’s theory.

(3) A probabilistically predictive character of the theory.
This change in mathematical variables was accompanied
by a fundamental change in physics: the variables
and equations of quantum mechanics and quantum
electrodynamics no longer described, even by way of
idealization, the properties and behavior of quantum
objects themselves, in the way classical physics or
relativity do for classical objects. Instead, the formalism
only predicts the outcomes of events, in general
probabilistically (even in the case of individual events),
and of statistical correlations between some of these
events, thus establishing the new type of relationships
between mathematics and physics.

This last feature is, arguably, the most controversial feature
of quantum theory, from quantum mechanics to quantum
field theory, a feature famously unacceptable to Einstein.
Nevertheless, the probabilistic character of quantum theory
is in accordance with the observable experimental data.

For, identically prepared quantum experiments (in terms
of the condition of the apparatuses involved), in general
lead to different recordings of their outcomes, which
makes predicting these outcomes, unavoidably probabilistic,
although, again, certain multiplicities of quantum events also
exhibit statistical correlations (not found in classical physics).
In some respects, quantum phenomena are more remarkable
for these correlations than for the irreducible randomness
of individual quantum events. Perhaps the greatest of many
enigmas of quantum physics is how random individual
events combine into (statistically) ordered multiplicities under
certain conditions, such as, most famously, those of the EPR
(Einstein—Podolsky—Rosen) type experiments, considered in
Bell’s theorem.

Heisenberg’s revolutionary thinking established a new
way of doing theoretical physics, and, as a consequence,
it redefined experimental physics as well. The practice of
experimental physics no longer consists, as in classical
experiments, in tracking the independent behavior of
the systems considered, but in wunavoidably creating
configurations of experimental technology that reflect
the fact that what happens is unavoidably defined by what
kinds of experiments we perform, how we affect quantum
objects, rather than only by their independent behavior. My
emphasis on ‘unavoidably’ reflects the fact that, while the
behavior of classical physical objects is sometimes affected
by experimental technology, in general we can observe
classical physical objects, such as, planets moving around
the sun, without appreciably affecting their behavior. This
does not appear to be possible in quantum experiments.
That identically prepared quantum experiments lead to
different outcomes, thus making our predictions unavoidably
probabilistic, appears to be correlative to the irreducible
role of measuring instruments in quantum experiments (e.g.,
Bohr 1987, vol 1, p 93). The practice of theoretical physics
no longer consists, as in classical physics or relativity, in
offering an idealized mathematical description of quantum
objects and their behavior. Instead it consists in developing
mathematical machinery that is able to predict, in general
(again, in accordance with what obtains in experiments)
probabilistically, the outcomes of quantum events and of
correlations between some of these events.

The situation takes a more radical form in quantum field
theory and the experimental physics in the corresponding
(high) energy regimes. Although I shall, in this paper,
primarily discuss Dirac’s theory, my argument could be
extended to all forms of quantum field theory. While retaining,
at least in the present view, Heisenberg’s non-realist and
non-causal epistemology of quantum mechanics, quantum
field theory is characterized by, correlatively:

1. more complex configurations of phenomena observed
and hence measuring apparatuses involved, and thus
more complex configurations of effects of the interactions
between quantum objects and measuring instruments;

2. a more complex nature of the mathematical formalism
of theory, in part reflected in the necessity of
renormalization (although renormalization will not be
considered here);



Phys. Scr. T151 (2012) 014010

A Plotnitsky

3. a more complex character of the quantum-field-
theoretical predictions and, hence, of the relationships
between the mathematical formalism and the measuring
instruments involved.

Before I proceed to a discussion of how this situation played
itself out in and in part emerged from Dirac’s relativistic
theory of the electron, I would like to make a few brief
qualifications concerning my assumptions in this paper.
I assume, first, that quantum theory—quantum mechanics and
quantum field theory (culminating in the standard model
of particle physics)—is our best theory of the ultimate
constitution of nature, considered apart from gravity. We do
not thus far have workable quantum theories that incorporate
gravity and, hence, establish proper connections between
quantum theory and general relativity. All of the theories
that we have thus far, such as string and brane theories, that
aim to achieve this goal remain hypothetical. I see quantum
theory as a probabilistically predictive and not descriptive
and, also, indeed as a consequence, not causal, theory of
quantum objects and their behavior. There are alternative
interpretations of quantum mechanics and quantum field
theory, which are thought by their proponents to be more
acceptable, especially on the account of realism and causality.
There are also alternative theories of quantum phenomena that
are deemed preferable on the same grounds, such as Bohmian
mechanics, which contains the Dirac-type equation for the
electron. These alternatives and the seemingly interminable
debates concerning the epistemology of quantum theory, will
not, however, be considered here. I will only be concerned
with the standard versions of quantum mechanics and
quantum field theory, and of the non-realist and non-causal
interpretations of these theories, given that both Heisenberg
and Dirac adopted this type of interpretation. Finally, although
Heisenberg’s first paper on quantum mechanics was essential
to Dirac’s thinking and thus considering this paper would be
helpful to my argument, I shall, given my space limit, bypass
it, and move directly to Dirac’s derivation of his relativistic
equation for the electron.

2. The symmetry of space and time, and the calculus
of spinors

The three key elements were, in Dirac’s view, especially
required for a relativistic quantum equation for a free electron,
that is, an equation dealing with the higher levels of energy
of the electron at which the effect of special relativity
theory cannot be neglected in the way they can be in
quantum mechanics. The first, relativistic, element is that time
and space must enter symmetrically, which is required by
relativity but which is not the case in Schrédinger’s equation,
which contains the first derivative of time and the second
derivatives of coordinates. The second, quantum-theoretical,
element is the first order derivative in time, an element
required by quantum-theoretical considerations, captured
by the quantum-mechanics formalism, specifically by
Schrodinger’s equation, and related to several other key
features of the formalism. Among these features are the
non-commutativity of certain quantum variables, linear
superposition, and the conservation of the probability current
(which entails positive definite probability density) and,

correlatively, the probabilistic character of the predictions
enabled by the formalism. The third key element was that, by
the mathematical correspondence principle (as applied in
quantum electrodynamics) the non-relativistic limit of a rela-
tivistic equation for the electron needed to be Schrédinger’s
equation. It follows, then, that to be both relativistic and
quantum, a relativistic equation for the electron must be
the first order differential equation in both space and time,
since quantum theory requires the first order derivative in
time, and relativity requires that space and time must enter
symmetrically, and indeed that space and time must be
interchangeable.

Although this seems simple enough, at least in retrospect,
it appears that at the time only Dirac thought of the
situation in this way. This thinking was greatly helped by the
transformation theory (his ‘darling,” as he called it), especially
as concerned linearity in d/9d¢, and the positive definite
probability density, both central to the transformation theory
(Dirac 1962a). His famous conversation on the subject with
Bohr at the time is revealing: ‘Bohr: What are you working
on? Dirac: I am trying to get a relativistic theory of the
electron. Bohr: But Klein already solved that problem’ (Dirac
1962b) Dirac, naturally, disagreed, and, for the reasons just
explained, it is clear why he did, and why Bohr should have
known better. The Klein—Gordon equation is relativistic and
symmetrical in space and time, but it is not first-order in either,
since both enter via the second derivative g—:z One can derive
the continuity equation from it, but the probability density is
not positive definite. By the same token, the Klein—-Gordon
equation does not give us the correct equation, Schrodinger’s
equation

d R
ih—W¥ =HWY
Jat

in the non-relativistic limit. Schrédinger, who appears to be
the first to have written down the Klein—Gordon equation
in the process of his discovery of wave quantum mechanics,
abandoned it in view of the incorrect predictions it gave in
the non-relativistic limit. The roles of the first order derivative
in time and of the probability-density considerations were not
apparent to Schrodinger (who resisted the probabilistic view
of his equation later on); they came into play in with Born’s
probabilistic interpretation of the wave function. Dirac’s
equation, on the other hand, does convert into Schrédinger’s
equation in the non-relativistic limit, which was, again,
a crucial part of Dirac’s thinking, following Heisenberg’s
approach in quantum mechanics. Technically, as its immediate
non-relativistic limit, Dirac’s theory converts into Pauli’s
spin-matrix theory, while Schrédinger’s equation (which does
not contain spin) was the limit of Pauli’s theory, if one neglects
spin. To summarize the conditions Dirac’s equation had to
fulfill:

(1) relativistic requirements, in particular the symmetry of
space and time;

(2) to be the first-order linear differential equation in time,
which means the first-order in both space and time
by (1);

(3) the probability density must be positive definite and the
probability current must be conserved;

(4) Schrodinger’s equation should be the non-relativistic
limit of the theory.
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The conditions (2), (3) and (4) are correlative. None of
these conditions is satisfied by the Klein—-Gordon equation.
This is not to say that the task of deriving the equation
itself becomes simple once these requirements are in place;
quite the contrary, this derivation involved highly original
and non-trivial moves. Most of these moves were, I argue,
parallel to those of Heisenberg in his paper introducing
quantum mechanics. However, Dirac’s mathematical task
was more difficult because conditions (1), (2), (3) and (4),
require both new variables, as in Heisenberg’s scheme, and, in
contrast to Heisenberg’s scheme (which used the equations of
classical mechanics), a new equation, in this respect similarly
to Schrodinger’s approach. In a way, Dirac’s derivation
of his equation combined Heisenberg’s and Schrodinger’s
approaches, in the spirit of Dirac’s transformation theory. As
in Heisenberg, Dirac’s new variables proved to be matrix-type
variables, but of a more complex character, involving the
so-called spinors and the multi-component wave function. The
latter was a crucial concept, already discovered by Pauli in
his non-relativistic theory of spin. As Heisenberg’s matrices,
Dirac’s spinors had never been used in physics previously,
although they were introduced in mathematics by Clifford
about 50 years earlier (following the work of Hermann
Grassmann on the so-called exterior algebras). But, just as
Heisenberg in the case of matrices, Dirac was unaware of their
existence and reinvented them in deriving his equation.

In spite of the elegance of its famous compact form,
iy - 8% = myr, reproduced on the plate in the Westminster
Abbey commemorating Dirac, Dirac’s equation encodes
an extremely complex multi-component Hilbert-space
machinery. It may also be noted that, unlike that of the
Klein—Gordon equation, the Lorentz invariance of Dirac’s
equation is non-trivial, and it was surprising at the time,
given the nature of the equation. Mathematically, the problem
confronting Dirac may be seen as in terms of taking a square
root of the Klein—Cordon equation (the solutions of which
are, again, complex quantities, a mathematically crucial
fact here), which also implies that every solution of Dirac’s
equation is a solution of the Klein—-Gordon equation while
the opposite is not true. Dirac used this fact in his derivation.
I shall follow Dirac’s paper because it reflects the key aspects
of quantum-theoretical thinking that I want to address. First,
however, I shall give a general summary. The equation, as
introduced by Dirac, is

3 3 ’
(ﬂmcz+k2=1:akpkc> v(x,t)= ih%.

The new mathematical elements here, which never previously
occurred in physics (quantum mechanics included), are the
4 x4 matrices «; and B and the four component wave
function . The Dirac matrices are all Hermitian,

(14 is the identity matrix), and mutually anticommute:

o;B+pa; =0,
oo tojo; = 0.

The above single symbolic equation unfolds into four
coupled linear first-order partial differential equations for

the four quantities that make up the wave function. The
matrices form a basis of the corresponding Clifford algebra.
Indeed, following Dirac’s work and subsequent developments
of quantum theory, one can think of Clifford algebras
as quantizations of Grassmann’s exterior algebras, in the
same way that the Weyl algebra is a quantization of
the symmetric algebra. p is the momentum operator in
Schrodinger’s sense, but in a more complicated Hilbert
space than in the standard quantum mechanics. The wave
function v (¢, x) takes value in a Hilbert space X = c*
(Dirac’s spinors are elements of X). For each ¢, ¥ (¢, x) is
anelementof H = L?(R3; X) = L>(R*)® X = L*(R3) ®C*.
I shall comment on the significance of this mathematical
architecture below, merely noting now that it allows one
to properly predict the probabilities of quantum-electro-
dynamical (high-energy) events, which have a greater
complexity than quantum-mechanical (low-energy) events.

Dirac begins his paper by commenting on previous
relativistic treatments of the electron, specifically the
Klein—Gordon equation and its insufficiencies. He says in
particular:

[The Gordon—Klein approach] appears to be
satisfactory as far as emission and absorption of
radiation are concerned, but is not so general as
the interpretation of the non-relativi[stic] quantum
mechanics, which has been developed [specifically
in Dirac’s and Jordan’s transformation theory]
sufficiently to enable one to answer the question:
What is the probability of any dynamical variables
at any specified time having a value laying between
any specified limits, when the system is represented
by a given wave function ¥,,? The Gordon—Klein
interpretation can answer such questions if they
refer to the position of the electron ... but not if they
refer to its momentum, or angular momentum, or
any other dynamic variable. We would expect the
interpretation of the relativi[stic] theory to be just as
general as that the non-relativi[stic] theory. (Dirac
1928, pp 611-612)

The term ‘interpretation’ means here a mathematical
representation of the physical situation (quantum-mechanical
or quantum-electrodynamical), rather than, as is more
common, a physical or philosophical interpretation of a
given quantum formalism cum the phenomena it relates to.
Dirac’s statement does not mean that a physical description
of quantum processes in space and time is provided, as
against only predictions, in general, probabilistic, of the
outcomes of quantum experiments. Dirac, as is clear from
this passage, thought the capacity of a given theory to enable
such predictions sufficient, and sufficiently general if such
predictions are possible for any dynamic variable. Dirac
then argues for the first order derivative in time, missing
in the Klein—-Gordon equation, as a proper starting point
for the relativis[tic] theory of the electron. He says: “The
general interpretation of non-relativi[stic] quantum mechanics
is based of the transformation theory, and is made possible by
the wave equation being of the form

(H—-W)y =0, ey
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i.e. being linear in W or % so that the wave function at any
time determines the wave function at any later time. The wave
function of the relativi[stic] theory must also be linear in W
if the general interpretation is to be possible’ (Dirac 1928,
p 612). Before Dirac proceed to his derivation of his equation,
he comments on ‘the second difficulty’ of the Klein—-Gordon’s
equation:

[The equation] refers equally well to an electron with
charge e as to one with charge —e. If one considers
for definitiveness the limiting case of large quantum
numbers one would find that some of the solutions
of the wave equation are wave packets moving in the
way a particle of —e would move on the classical
theory, while other are wave packets moving in the
way a particle with charge e would move classically.
For this second class of solutions W has a negative
value. One gets over the difficulty on the classical
theory by arbitrarily excluding those solutions that
have a negative W. One cannot do this on the
quantum theory, since in general a perturbation will
cause transitions from state with W positive to states
with W negative. Such a transition would appear
experimentally as the electron suddenly changes its
charge from —e to e, a phenomenon which has not
been observed. The true relativi[stic] wave equation
should thus be such than its solution split into two
non-combining sets, referring respectively to the
charge —e and the charge e. ...In the present paper,
we shall only be concerned with the removal of
the first of these difficulties. The resulting theory is
therefore still only an approximation, but it appears
to be good enough to account for all the duplexity
phenomena without arbitrary assumptions (p 612).

Dirac’s theory, thus, inherits this second problem of
the Klein—Gordon theory, because, as I said, mathematically
every solution of Dirac’s equation is a solution of the
Klein—-Gordon equation, of which Dirac’s equation is
essentially a squire root (the opposite is, again, not true).
The difficulty that does not appear in the low-energy quantum
regimes, and, one might add, it disappears at the low-energy
limit of Dirac’s theory, since his equation converts into
Schrodinger’s equations. This problem had ultimately proven
to be a good thing. Dirac did not know this at the moment,
but, as he will eventually have learned, the theory is much
better because of this difficulty. That ‘in general a perturbation
will cause transitions from state with W positive to states
with W negative,” and that ‘such a transition would appear
experimentally as the electron suddenly changes its charge
from —e to e’ is what actually happens, and it will have been
experimentally established in a year or so. Antimatter was
staring right into Dirac’s eyes, but it took a few years to realize
that it is antimatter and that this type of transitions (eventually
understood in terms of the creation and annihilation of
particles, and virtual particle formation) defines high-energy
regimes in quantum physics.

Dirac is now ready to present his derivation of his
equation, guided by the two key ideas in question: the
invariance under a Lorentz transformation and the equivalence
of whatever the new one finds to Schrodinger’s equation

(H-W) ¥ =0 (equation (1) above) in the limit of large
quantum numbers (p 613). In the case of the absence of
the external field, which Dirac considers first and to which
I shall restrict myself here, since it is sufficient for my main
argument, equation the Klein—Gordon equation ‘reduces to

(—pg+p>+m*cH)y =0, 3)

if one puts

po = w = ihi (p613)'.
c cot
Next Dirac uses the symmetry between time, pg, and space,
p1, p2 and ps3, required by relativity, which implies that
because the Hamiltonian one needs is linear in pg, ‘it must
also be linear in pj, p», and p3.” He then says:

[the necessary] wave equation is therefore in the
form

(po+aipr+arpr+azps+ Py =0, 4

where for the present all that is known about the
dynamical variables or operators o, o, 3, and 8
is that they are independent of pg, p;, p, and ps, i.e.
that they commute with ¢, x;, x, and x3. Since we are
considering the case of a particle moving in empty
space, so that all points in space are equivalent,
we should expect the Hamiltonian not to involve ¢,
X1, X and x3. This means that oy, o, o3 and B
are independent of ¢, x;, x, and x3, i.e. that they
commute with of py, p1, p» and p3;. We are therefore
obliged to have other dynamical variables besides the
co-ordinates and momenta of the electron, in order
that o, oz, 3 and B may be functions of them. The
wave function i must then involve more variables
that merely x;, x», x3 and ¢.

Equation (4) leads to
0= (=po+oaipi+arpr+azps+B)(poaip1+oaps

toazp3+ By = [-P% + Z alpt+ X(ajay

ra)pim+ S @B+ | v )
where X refers to cyclic permutation of the suffixes
1,2,3.(p613)

Let us pose here to observe and admire Dirac’s way
of thinking, manifest in this passage and throughout
his derivation of his equation. This is ‘very Dirac’—
mathematically elegant and physically profound, for example,
in the remarkable and far reaching conclusion that ‘the
wave function i must then involve more variables than
merely x;, x», x3, .” Taking advantage of non-commutativity
in (5), one of Dirac’s fortes, is worth a special notice.
Equation (4), a square root of (3), the Klein—-Gordon equation
(a form of ‘consistency’ Dirac uses throughout the paper),
is already Dirac’s equation in abstract algebraic terms.
One will now need to find «, and B, to find the actual
form of the equation. Physics as much follows mathematics
as mathematics physics. While, as I argue, inspired by
Heisenberg’s thinking, Dirac’s more formal approach is
different from Heisenberg’s calculations, equally profound
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physically but more straightforward and cumbersome, in his
paper; and unlike in Dirac, in Heisenberg’s mathematics
nearly always follows physics. This is not say that
mathematics is less important for Heisenberg, but only that
one does not find in Heisenberg the same kind of, to use
Dirac’s word, play with of abstract structures that one finds
in Dirac (Dirac 1962a, b). Dirac’s earlier work on g-numbers
quantum-mechanics formalism manifested the same use of
the power of mathematical formalization. Dirac proceeds as
follows:

[Equation (5)] agrees with (3) [the Klein—-Gordon

equation in the absence of the external field

(—pd +p* +m*cHy=0]if
o =1, 0,0, +a0, =0 (r#s) r,s =1,2,3
B> =m?c*>, a,B+pa, =0.

If we put B = aymc, these conditions become

ai =1, a0, +ay0, =0(1 #v),

n,v=1,2,3,4.

(6) (p613)

Thus, as I said, there is also a partial mathematical
correspondence with the Klein—Gordon equation (that
between a function of a complex variables and its square
root), which allows Dirac to derive certain necessary algebraic
conditions upon «, and B. Dirac will now state that ‘we
can suppose «,’s to be expressed in some matrix scheme,
the matrix elements of «,, being, say, o, (¢’ ¢”)’ (p 613).
This supposition is not surprising given both the formal
mathematical considerations (such anti-commuting relations
between them) and the preceding history of matrix mechanics,
including Dirac’s own previous work. We know or may safely
assume from Dirac’s account of his work on his equations
that matrix manipulation, ‘playing with equations,” as he
called it, was one of his starting points (Dirac 1962a, b).
In addition, Pauli’s theory, which is about to enter Dirac’s
argument, provided a handy example of a matrix scheme.!
It is clear that matrix algebra of some sort is a good
candidate for . Still, Dirac’s ways of thinking is worth
a further reflection. Dirac gets extraordinary mileage from
considering the formal properties of the variables involved,
even before considering what these variables actually are and
as a way to gauging what they should be, which is his next
step. He used the same approach—begin with the necessary
formal properties and then find the actually variables—earlier
in developing his g-number formalism. This is, as I said,
both analogous to Heisenberg’s approach and yet more
formally oriented. That Heisenberg had to find new variables
formally satisfying the classical equations may be seen as
a partially formal task. However, the primary guidance for
finding these variables was provided by certain experimentally
established physical conditions (Bohr’s energy rules and
the Rydberg—Ritz frequency rules). In Dirac, while physical
conditions of relativity and quantum mechanics do play a
role, the primary driving force is the formal properties of
variables and, especially, equations, in particular, the linearity
and non-commutativity of the formalism. These, along with

' On Dirac and Pauli’s theory, see (Kragh 1990 pp 55-56, 60).

the role of complex numbers, are the defining mathematical
properties of quantum theory. This approach was, again,
used by Dirac in most of his work on quantum theory,
especially his g-number formalism of quantum mechanics and
the transformation theory.

Another remarkable consequence of the necessity of the
particular matrix variables required by Dirac, appears next.
(We still do not know what these variables actually are!) For
if we indeed ‘suppose «,,’s to be expressed in some matrix
scheme, the matrix elements of «, being, say, o, (¢’ ¢”),” then
‘the wave function ¥ must be a function of ¢ as well as x, x»,
x3 and . The result of «;, multiplied into ¥ will be a function
(ay, ¥) of xy1, x2, x3, t, £ defined by

(o, ¥) (6, 1,8) = Zpau (68 ¥ (x,1,¢') (p 614).

Dirac is now ready ‘for finding four matrices o, to satisfy the
conditions (6), those de facto forming the Clifford algebra,
and for finding the actual form of variables that satisfy formal
equation (4) or (5). Dirac considers first the three Pauli
spin matrices, which satisfy the conditions (6), but not the
equations (4) or (5), which needs four matrices. He says:

‘We make use of the matrices

0 1 0 —i 1 0
01=|:1 O:|’ 62:|:i 0:|, 03=|:0 1:|,

which Pauli introduced to describe the three
components of the spin angular momentum. These
matrices have just the properties

2 _
o =1

0,0,+0,0, =0 (r#s), @)

that we require for our «’s. We cannot, however, just
take the o’s to be the thereof our «’s, because then
it would not be possible to find the fourth. We must
extend the o’s in a diagonal matter to bring in tow
more rows and columns, so that we can introduced
three more matrices p1, p2, o3 of the same form as o7,
03, 03, but referring to different rows and columns,

thus:
0 1 0 0 0 —i 0 0
1000 i 0 0 0
=10 0 0 1| 2T|o 0o o —il’
0 0 10 0 0 i 0
10 0 0
o -1 0 o0
P3=1o 0 1 0
0 0 0 -1
0 0 1 0 00 —i 0
00 0 1 oo o —i
PP=11 0 0 o> 2=|i o o ol
0100 0 i 0 0
10 0 0
o1 0 o
PP=10 0 -1 o0
00 0 -1

The p’s are obtained from o’s by interchanging the
second and the third row, and the second and the third
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columns. We now have, in addition to equations (7)

pE=1 peps+pspr =0(r #s),

andalso p,0; = 0;p,. (7)) (p6l15)

These matrices are Dirac’s great mathematical invention,
parallel to Heisenberg’s invention of his new matrix variables
for quantum mechanics. Dirac’s matrices form the basis of the
corresponding Clifford algebra and define the mathematical
architecture, mentioned above, where the multi-component
relativistic wave function for the electron must defined.
The entities they transformed are different from either
vectors or tensors and are called spinors, introduced, as
mathematical objects, by Cartan in 1913. Pauli, again,
introduced the two-component non-relativistic wave function,
which was necessary to incorporate spin, but he did so
phenomenologically, rather than from the first principles, as
was done by Dirac.

The rest of the derivation of Dirac’s equation is a
nearly routine exercise, with a few elegant but easy matrix
manipulations. Dirac still needs to prove the relativistic
invariance and the conservation of the probability current,
and to consider the case of the external field, none of which
is automatic, but is the standard textbook material at this
point. The most fundamental and profound aspects of Dirac’s
thinking are contained in the parts of his paper just discussed,
and I shall in the remainder of this paper considers the
implications of Dirac’s mathematical architecture for physics.
I close this section by summing up my discussion thus far.
Dirac uses the key elements of Heisenberg’s approach to
quantum mechanics:

(1) the mathematical correspondence principle, with Pauli’s
theory (the immediate limit) and Schrodinger’s equation
(the far limit) as the non-relativistic limits of his theory;

(2) the introduction of a new type of matrix variables, and
spinors on which these matrices act; while Dirac is,
again, helped here by Pauli’s theory, he displays a highly
original and non-trivial way of mathematical thinking;

(3) the assumption of the probabilistically predictive and not
descriptive character of the theory he aims to construct.

The main difference from Heisenberg’s discovery of
quantum mechanics is:

(4) the appearance of a new equation, and of a new type of
equation.

A few qualifications may be in order concerning Pauli’s theory
and Schrodinger’s equation as the quantum-mechanical limits
of Dirac’s theory. Given the preceding discussion, it is easy to
surmise that Pauli’s theory and, if one further neglects spin,
Schrodinger’s equation, as itself the limit of Pauli’s theory,
would appear as the non-relativistic limits (immediate and far)
of Dirac’s theory. Pauli’s matrices are contained in Dirac’s
matrices, and one can, accordingly, split Dirac’s matrices (or
the corresponding spinors) into small and large components.
One does need a few calculations to rigorously establish this
correspondence, but they are more or less straightforward.
What is important is that, while Pauli’s argument was
phenomenological, Dirac had a theoretical argument from
the first principles, which contained spin (also for positrons)

and which also suggested that spin might have been the
consequence of bringing together quantum mechanics to
relativity. Dirac’s theory also explained or at least more
rigorously justified, the irreducible role of complex numbers
and the necessity of a complex wave function in quantum
theory from the geometry of the relativistic space-time via
his spinor algebra. This role appeared phenomenologically,
almost mysteriously, in quantum mechanics. It is important,
however, that splitting the Dirac spinors and matrices into
large and small components only applies at a low-energy
approximation. Rigorously, one needs all of them. It is
the whole composition of Dirac’s scheme that reflects new
physical phenomena found in the high-energy relativistic
regime.

3. The architecture of mathematics and the
architecture of matter in quantum field theory

Dirac’s equation encodes a complex mathematical
architecture. The Hilbert space associated with a given
quantum systems in Dirac’s theory is a tensor product of the
infinite-dimensional Hilbert space (encoding the mathematics
of continuous variables) and a finite-dimensional Hilbert
space over complex numbers, which, in contrast to the
two-dimensional (2D) Hilbert space of in Pauli’s theory, C 2
is 4D in Dirac’s theory, C*. (Spin is contained by the theory
automatically.) Dirac’s wave function ¥ (¢, x) takes value in
a Hilbert space X = C* (Dirac’s spinors are elements of X).
For each ¢, i (¢, x) is an element of

H=L*RX)=L*R»®X=L*R)QC*

Other forms of quantum field theory give this type of
architecture an even greater complexity. It was, again, Dirac’s
move to 4D vectors and matrices that was especially crucial.
Dirac’s own recollection present this as merely an intuitive
(why not?) guess: ‘I suddenly realized that there was no
need to stick to quantities, which can be represented by
matrices with just two rows and columns. Why not go to
four rows and columns?’ (Dirac 1977, p 142). A flash of
brilliant mathematical intuition it might have been, and it
is difficult and perhaps ultimately impossible to account
for such guesses. Some factors, however, may be plausibly
conjectured to provide a meaningful insight into how some
developments of mathematics and physics might have (one
cannot be entirely certain here) shaped Dirac’s thinking here.
One can easily see several formal reasons for this move that
have to do with the structure of the Clifford algebra and
related abstract mathematical considerations, which would
make four-by-four matrices a necessary move mathematically.
Dirac appears not to have been aware of the Clifford algebras
at the time, or, as, say, Weyl was, of the group-representational
considerations (Lie groups and algebras). Dirac could have
also easily seen that 3 x 3 matrices would not do; and he might
have also been guided by the symmetry of his matrices as
extending Pauli’s matrices. 4 x 4 becomes quite natural, then.
Dirac, however, was also familiar with some developments in
abstract algebra that might have helped his guess. Thus, we
know that he was familiar, even if relatively superficially, with
non-commutative geometrical structures, which helped him,
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unlike say, initially Pauli, to accept the non-commutativity
found in Heisenberg’s theory and to realize its essential role
in quantum mechanics.?

It is difficult to overestimate the significance of this
mathematical architecture, which amounted to a very radical
view of matter, physically especially manifest in the existence
of antimatter. This architecture mathematically responds, and
in fact led a discovery of, the following physical situation
(again, keeping in mind that, just as that of quantum
mechanics, Dirac’s formalism only provides probabilities for
the outcomes of quantum events, experimentally registered in
the corresponding measuring technology).

Suppose that one arranges for an emission of an electron,
at a given high energy, from a source and then performs a
measurement at a certain distance from that source. Placing
a photographic plate at this point would do. The probability
of the outcome would be properly predicted by quantum
electrodynamics. But what will be the outcome? The answer
is not what our classical or even our quantum-mechanical
intuition would expect, and this unexpected answer was a
revolutionary discovery of quantum electrodynamics. Let us
consider, first, what happens if we deal with a classical and
then a quantum object in the same type of arrangement.

We can take as a model of the classical situation a
small ball that hits a metal plate, which can be considered
as either a position or a momentum measurement, or indeed
a simultaneous measurement of both, at time ¢. In classical
mechanics we can deal directly with the objects involved,
rather than with their effects upon measuring instruments.
The place of the collision could, at least in an idealized
representation of the situation, be predicted exactly by
classical mechanics, and we can repeat the experiment with
the same outcome on an identical or even the same object.
Most importantly, regardless of where we place the plate,
we always find the same object, at least in a well-defined
experimental situation, which is shielded from significant
outside interferences, such as, for example, those that can
deflect or even destroy the ball earlier.

By contrast, if we deal with an electron as a quantum
object in the quantum-mechanical regime we cannot predict
the place of collision exactly and, correlatively, exactly repeat
the experiment on the same electron. Also correlatively, we
cannot simultaneously predict, or measure, the position and
the momentum of an electron, which makes the situation
correlative to the uncertainty relations. Indeed, there is a
non-zero probability that we will not observe such a collision
at all, or that if we do, that a different electron (coming
from somewhere else) is involved. It is also not possible
to distinguish two observed traces as belonging to two
difference objects of the same type. Unlike in the classical
case, in dealing with quantum objects, there is no way to
improve the conditions or the precision of the experiment to
avoid this situation. Quantum mechanics, however, gives us
correct probabilities for such events. Mathematically, this is
accomplished by defining the corresponding Hilbert space,
H = L*(R*) ® C with the position and other operators as
observables, and writing down Schrodinger’s equation for the

2 On this points see (Mehra and Rechenberg 2001, vol 4 pp 131-147) and
(Plotnitsky 2009 pp 117-188).

state vector |¢) (in the case of pure state), and using Born’s or
similar rules to obtain the probabilities of possible outcomes.

Once the process occurs at a high energy and is
governed by quantum electrodynamics, the situation is still
different, even radically different. One might find, in the
corresponding region, not only an electron, as in classical
physics, or an electron or nothing, as in the quantum-
mechanical regime, but also other particles: a positron,
a photon, an electron—positron pair. Just as does quantum
mechanics, quantum-electrodynamics, beginning with Dirac’s
equation, rigorously predicts which among such events
can occur, and with what probability, and, in the present
view it can only predict such probabilities, or statistical
correlations between certain quantum events. In order to
do so, however, the corresponding Hilbert-space machinery
becomes much more complex, essentially making the wave
function v a four-component Hilbert-space vector, as opposed
to a one-component Hilbert-space vector, as in quantum
mechanics. This Hilbert space is, as noted, H = L*>(R3; X) =
L>*(R)® X =L*(R*) ® C* and the operators are defined
accordingly. This structure naturally allows for a more
complex structure of predictions (which are still probabilistic)
corresponding to the situation just explained, usually
considered in terms of virtual particle formation and
Feynman’s diagrams.

Once we move to still higher energies or different
domains governed by quantum field theory the panoply
of possible outcomes becomes much greater. The Hilbert
spaces involved would be given a yet more complex
structure, in relation to the appropriate Lie groups and
their representations, defining (when these representations
are irreducible) different elementary particles. In the case
of Dirac’s equation we only have electron, positron, and
photon. It follows that in quantum field theory an investigation
of a particular type of quantum object irreducibly involves
not only other particles of the same type but also other
types of particles. This qualification is important because the
identity of particles within each type is strictly maintained
in quantum field theory, as it is in quantum mechanics. In
either theory one cannot distinguish different particles of
the same type, such as electrons. One can never be certain
that one encounters the same electron in the experiment just
described even in the quantum-mechanical situation, although
the probability that it would in fact be a different electron is
low in the quantum-mechanical regime in comparison to that
in the regime of quantum electrodynamics. In quantum field
theory, it is as if instead of identifiable moving objects and
motions of the type studied in classical physics, we encounter
a continuous emergence and disappearance, creation and
annihilation, of particles from point to point, theoretically
governed by the concept of virtual particle formation. The
operators used to predict the probability of such events,
are the creation and annihilation operators. This view, thus,
clearly takes us beyond quantum mechanics. For, while the
latter questions the applicability of classical concepts, such as
objects (particles or waves) and motion, at the quantum level,
it still preserves the identity of quantum objects.

The introduction of this new mathematical formalism,
involving more complex Hilbert spaces and operator algebras,
was a momentous event in the history of quantum physics,
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comparable to that of Heisenberg’s introduction of his matrix
variables. To cite Bohr’s assessment of Dirac’s theory:
‘Dirac’s ingenious quantum theory of the electron offered
a most striking illustration of the power and fertility of
the general quantum-mechanical way of description. In the
phenomena of creation and annihilation of electron pairs we
have in fact to do with new fundamental features of atomicity,
which are intimately connected with the non-classical aspects
of quantum statistics expressed in the exclusion principle,
and which have demanded a still more far-reaching [than
in quantum mechanics] renunciation of explanation in terms
of a pictorial representation [of the type found in classical
physics]” (Bohr 1987, vol 2, p 63). Heisenberg was even
more emphatic. He saw Dirac’s theory as an even more
radical revolution than quantum mechanics was. In the early
1970s, Heisenberg, who made major contributions to quantum
field theory in the meantime, spoke of Dirac’s discovery
of antimatter as ‘perhaps the biggest change of all the big
changes in physics of our century ... because it changed our
whole picture of matter. . .. It was one of the most spectacular
consequence of Dirac’s discovery that the old concept of the
elementary particle [based on their stable identity] collapsed
completely’ (Heisenberg 1989, pp 31-33).

Quantum field theory made remarkable progress since
its introduction or since Heisenberg’s remark, a progress
resulting, for example, in the electroweak unification and the
quark model of nuclear forces, developments that commenced
around the time of these remarks. Many predictions of
the theory, from quarks to electroweak bosons and the
concept of confinement and asymptotic freedom, to name
just a few, were spectacular, and, since its introduction, the
field has garnered arguably the greatest number of Nobel
Prizes in physics. It was also quantum field theory that led
to string and then brane theories, the current stratosphere
of theoretical physics. However, the essential mathematical
and experimental architecture of the theory, as considered
here, have remained in place. Quantum mechanics and
then higher-level quantum theories continue classical physics
insofar as it is, just as classical physics, from Galileo on,
and then relativity have been, the experimental-mathematical
science of nature. On the other hand, quantum theory, at
least in the interpretations of the type discussed here, breaks
with both classical physics and relativity by establishing
radically new relationships between mathematics and physics,
or mathematics and nature. The mathematics of quantum
theory is able to predict correctly the experimental data
in question without offering a description of the physical
processes responsible for these data. This is of course
remarkable, and as a number of physicists, beginning with
Heisenberg (Heisenberg 1930, p 11), have noted, we have
been extraordinarily lucky that our mathematics works, that
nature responds to our mathematical physics, in the absence of
such a description, thus allowing us to bring mathematics and
physics together in a new way, vis-a-vis classical physics or
relativity. Many, beginning, again, with Einstein, have found
this epistemological situation deeply unsatisfactory and even

disturbing; and the debate beginning the debates concerning
the epistemology of quantum theory have never subsided or
lost any of their intensity. It is not my aim to enter these
debates here. It is conceivable that the future development
of fundamental physics will bring about a more classical
(realist and causal) alternatives, as Einstein hoped, although
a more radical departure from classical epistemology than
that enacted by quantum mechanics and quantum field theory
(in the interpretation discussed here) is not inconceivable
either. Instead, I would like to close by noting that the
‘miracles’ of quantum theory are far from being a matter of
luck alone. They are, just as all of the best physics, from
Galileo on, the products of extraordinary creative thinking
in theoretical physics, such as that of Heisenberg and Dirac,
or in experimental physics, from Geissler’s vacuum tube
and Riihmnikorff’s coil at the birth of particle physics in
the mid-nineteenth century to the Linear Hadron Collider,
designed to test the limits of quantum field theory and perhaps
give rise to new theoretical physics. Will it be some form
of quantum field theory, or of string or brane theory, or of
loop quantum gravity, to name some currently prominent
candidates, or will it be something else, perhaps something yet
unheard of? It is difficult to predict. One could be reasonably
certain, however, that discovering this physics and making
it work will require some equally extraordinary creative
thinking, and probably quite a bit of luck as well.
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