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a b s t r a c t

Eastern hemlock (Tsuga canadensis Carriére), an ecologically important foundation species in forests of
eastern North America, is currently threatened by the hemlock woolly adelgid (HWA, Adelges tsugae
Annand, Hemiptera: Adelgidae), an aggressive invasive insect herbivore. HWA colonization of eastern
hemlock results in rapid tree mortality. There is a pressing need to accurately determine eastern hemlock
distribution in the face of expanding HWA populations to preserve this important forest species. How-
ever, efficient modeling of large geographic extents of eastern hemlock habitats to facilitate state-wide
HWA management is lacking. We employ two modeling approaches, decision tree classification (based
on presence–absence data) and maximum entropy (MaxEnt, based on presence-only data) method, to
map eastern hemlock distribution in eastern Kentucky using a comprehensive suite of environmental
parameters as predictor variables. Results demonstrate moderate model accuracies around 70%, support-
ing the practicality of mapping hemlock distribution over extensive regions. Comparison of the two mod-
eling techniques suggests that decision tree classification has higher overall accuracies, while MaxEnt
method was more efficient in model construction. In comparison to the decision tree method, MaxEnt
suffered from possibly over-fitting as indicated by increased producer’s accuracies yet lower user’s accu-
racies. Our study provides useful references for selecting optimized approaches in accordance with study
region characteristics and end user’s preferences.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Eastern hemlock (Tsuga canadensis Carriére) has suffered wide-
spread mortality from an exotic invasive herbivore, the hemlock
woolly adelgid (HWA, Adelges tsugae Annand, Hemiptera: Adelgi-
dae) (McClure et al., 2001). HWA was first reported in the eastern
United States (US) in Virginia in the 1950s, and since the 1980s pop-
ulations have expanded northward and westward (Havill et al.,
2006), exploiting the large contiguous tracts of hemlock forest
common in the northeast. More recently, HWA has expanded its
geographic range southward along the southern Appalachian
Mountains (Ward et al., 2004). HWA was first discovered in
Kentucky in March 2006 (Kentucky Forest Health Task Force,
2006), and since then, infestations have been steadily expanding
in the state. The continued spread of HWA through the region’s
hemlock forests is imminent, but data concerning how that spread

will develop is lacking, due in part to a poor understanding of the
spatial distribution of the host tree species.

Eastern hemlock is an essential component of forests in eastern
North America. It plays a vital role maintaining stream quality by
regulating air and soil temperatures, soil moisture, hydrologic
discharge, and amplitude of stream flow (Ford and Vose, 2007).
Disruption of these processes can lead to loss of aquatic inverte-
brate and vertebrate biodiversity (Ross et al., 2003; Snyder et al.,
2002). Loss of eastern hemlock will also cause changes in vegeta-
tion composition and structure; increased light penetration after
hemlock death creates suitable habitat for less shade-tolerant tree
species such as red maple (Acer rubrum) and black birch (Betula
lenta) (Daley et al., 2007; Spaulding and Rieske, 2010; Yorks
et al., 2003).

In spite of the ecological importance of eastern hemlock,
resource managers have only limited information about the scope
of its spatial distribution. The lack of detailed hemlock-specific
maps is due in part to hemlock’s low economic importance, low
density and basal area, and confined distribution to the study area
(Little, 1971 and Fig. 1). Better mapping of eastern hemlock is
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critically needed to slow the spread of HWA by strategically
monitoring and treating certain areas that can serve as HWA
pathways or hotspots. To develop a detailed hemlock distribution
map at the regional level, ground-based mapping of hemlock is
impractical. Existing satellite image based maps such as the
National Land Cover Dataset (NLCD, http://www.mrlc.gov/)
provide general distribution information for evergreen forests,
but do not provide any spatial information at the species level.
The Kentucky Land Cover Dataset (KLCD, http://kygeonet.ky.gov/)
does include species specific information for eastern hemlock,
however their application to hemlock management is limited for
the following two reasons. First, KLCD is intended for land cover
and land type classification not for species classification, therefore,
its accuracy at species level is limited. Second, due to its low
density and sparse distribution, hemlock is often classified into
other types/groups that do not have a defined hemlock component.
Other products such as Forest Inventory and Analysis (FIA,
Bechtold and Patterson, 2005) data may provide rich ecological
information on sampled plots and unbiased statistical estimation
of the overall abundance of hemlock distribution, but FIA data
alone cannot produce continuous coverage that is necessary for
hemlock management spatial prioritization and strategic planning,
given their limited sampling density. Hence, we consider species
distribution modeling as an effective way to bridge this gap and
provide more physiologically coherent approximation of hemlock
distribution with continuous coverage.

Species distribution models are frequently used to predict
species distributions across landscapes or to gain insights into
species ecological traits. Two types of species distribution models,
presence–absence data based models and presence-only data
based models, are widely used in various ecosystems (Elith and
Leathwick, 2009). The decision tree classification method, a
presence–absence data based method, is popular in species
distribution prediction. Maingi and Luhn (2005) used decision tree
classification to map conifer tree distribution with Landsat TM
imagery and ancillary data in the Daniel Boone National Forest in
Kentucky. Koch et al. (2005) used a decision tree classification
aided with remotely sensed data to successfully map eastern
hemlock in other regions in response to HWA-induced eastern
hemlock decline. MaxEnt (Phillips et al., 2006), a presence-only
data based method, is also a commonly used method in species
distribution modeling and prediction. Elith et al. (2006, 2011)
found that MaxEnt provides relatively consistent and reliable
results compared to other presence-only data based methods.

In this study, both decision tree classification and MaxEnt were
employed to map the distribution of eastern hemlock in Kentucky.

The primary objective of our study was to explore effective ways to
map eastern hemlock on a regional scale to facilitate state level
management and conservation efforts. For comparison purposes,
classification accuracy, processing complexity, and time to comple-
tion for the two techniques were evaluated.

2. Material and methods

2.1. Study area

Our study area covered 27,006 km2 of eastern Kentucky (38.29–
36.58oN, 81.96–84.83oW) and was partitioned into two physio-
graphic regions: Upper Eastern Coal Field (hereafter, Coal Field)
and Pine Mountain (Fig. 1). All models were constrained to the
same geographic extent, shown as ‘‘Study Area’’ on the map. This
mountainous region is composed of sandstone, shale, and siltstone
and ranges in elevation from 154 to 1259 m (McDowell, 1986).
Monthly average temperature ranges from 1.1 �C in January to
23.9 �C in July and monthly average precipitation ranges from
8.1 cm in October to 13.1 cm in May (NOAA, 2002). The forest type
is mixed mesophytic, consisting primarily of pine-oak (Braun,
1950).

2.2. Modeling approach overview

We modeled eastern hemlock distribution using two modeling
techniques in each physiographic region, for a total of four models.
In the first approach we performed a decision tree analysis against
environmental variables. A decision tree approach requires at least
two classes of dependent variables, necessitating the collection of
both presence and absence points. In a large study area this can
be exceedingly time-consuming. For that reason, the second meth-
od we tested was maximum entropy species distribution modeling
(MaxEnt), which requires only presence data (Phillips et al., 2006).
Given the differences between the two physiographic regions with
respect to elevation, slope, and geologic substrate, modeling was
performed for each region separately.

2.3. Field data

Eastern hemlock presence and absence data were acquired from
a variety of sources (Table 1); the majority of these data are a result
of systematic sampling efforts. A total of 2624 points were used in
this study. All points were georeferenced using a GPS unit in the
field. Forest Inventory and Analysis data represent ground samples
collected systematically at a rate of one plot per 2428 ha
(6000 acre) hexagon. Actual FIA plot coordinates were used in this
study. A plot is designated as a hemlock presence plot if any
hemlock tree with >2.54 cm in diameter at breast height (d.b.h.)
is present. The second source of systematic sampling was derived
from an ongoing gypsy moth survey program. The traps for this
monitoring effort were placed on a 2 � 2 km grid. The individuals
setting and monitoring the traps were asked to record presence
or absence of eastern hemlock within 30 m of the trap site. The
remaining field data were derived from HWA monitoring by
individuals representing various agencies, including the Kentucky
Division of Forestry, the Kentucky Office of the State Entomologist,
and the Kentucky State Nature Preserves Commission. Hemlock
data from these sources were collected in an opportunistic manner.
These field data were compiled into a database representing
hemlock or non-hemlock categories; for all sampling efforts, any
survey location with at least one hemlock tree was classified as
hemlock. This liberal classification scheme reflects the overall goals
of this research, to map hemlocks which may serve as a corridor for
the spread of HWA. The data points were split by physiographic

Fig. 1. Study area in relation to the range of eastern hemlock (Little, 1971), with the
two physiographic regions, Coal Field and Pine Mountain, shown.
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region, and then one-fifth of the points were randomly selected and
set aside to be used as test data for accuracy assessments. The
remaining data were used in the modeling process.

2.4. Environmental data

In both modeling approaches, 11 environmental layers were
used as independent variables representing physiographic and cli-
matic characteristics. These environmental data were acquired or
derived from various sources as detailed in Table 2. To maintain
consistency across all models and for comparison to the NLCD
(Homer et al., 2004) and KLCD (Commonwealth Office of Technol-
ogy, 2004), each variable was converted to a raster layer with cell
size of 30 � 30 m using ArcGIS 9.3 (ESRI, Redlands, CA, US).

2.5. Classification tree

We chose a decision tree classification model because it is
non-parametric, robust to noisy or missing data, easy to interpret,
and can utilize both continuous and categorical data (Huang et al.,
2003; Koch et al., 2005; Nelson et al., 2003). Similar methods have
produced maps for eastern hemlock at a landscape scale (Koch
et al., 2005) and for other evergreen trees at regional scales
(Landenburger et al., 2008; McDermid and Smith, 2008). Using
PASW Statistics software (SPSS Inc., Chicago, IL, US), decision tree
analysis was performed to classify areas with presence or absence
of eastern hemlock.

For the decision tree in each physiographic region a Chi-squared
Automatic Interaction Detection (CHAID) growing method was
applied with a Pearson chi-square statistic, maximum tree depth
set to 10 levels, and a significance level of 0.1 for splitting nodes.
The CHAID method was used in order to take advantage of multiple
splitting pathways for each node, as opposed to binary splitting.
This multi-splitting at each node in the CHAID method allows
variables to be partitioned in a more biologically meaningful

way. All environmental variables were designated as continuous
variables except geologic formations and soil types, which were
specified as categorical. The significance level was set to 0.1 in
order to further divide nodes to minimize overestimation or under-
estimation. Node response was used as the threshold to assign the
area represented by that node to either the presence or absence
class; response values greater than 50% were designated as
hemlock presence.

2.6. MaxEnt modeling

We employed maximum entropy modeling using the MaxEnt
species distribution program, version 3.2.19 (Phillips et al., 2006).
The MaxEnt algorithm predicts the probability distribution of spe-
cies occurrence based on the environmental constraints estimated
from known locations.

All environmental variables were again designated as continu-
ous variables except geologic formations and soil types (categori-
cal) as for CHAID. Eighty percent of hemlock presence points
were used to build the model, leaving one-fifth that were randomly
selected by the program to be used in model validation procedures.
The model was executed for 10 iterations with refreshed random
partitions of training and validation data. We chose the best model
to use based on highest area under the curve value (Boubli and de
Lima, 2009; Pauchard and Alaback, 2004). The jackknife option was
used to evaluate the importance of each environmental variable in
the model. The raw model output was a continuous probability
map with values between 0 and 1; therefore, a threshold was
assigned in order to reclassify the output into dichotomous classes
representing either suitable or unsuitable areas for hemlock
habitat. The threshold was determined using a method based on
the maximum difference of cumulative frequency of probabilities
for observed hemlock locations and random points (Browning
et al., 2005; Fei et al., 2007; Thompson et al., 2006). The geographic
areas with probabilities above the threshold were designated as
hemlock and those areas below the threshold were designated as
non-hemlock.

2.7. Accuracy assessments

For both modeling methods, accuracy assessments were per-
formed for predicted eastern hemlock distribution using surveyed
reference points. A total of 419 ground truthing reference points
were used for Coal Field and 105 points for Pine Mountain. Overall
accuracies with user’s and producer’s accuracies were calculated
for each model.

Table 1
Sources of hemlock and non-hemlock data points used in model building and
accuracy assessments.

Source Hemlock Non-hemlock Total

Forest Inventory and Analysis Training 88 703 791
Test 22 207 229

Gypsy Moth Survey Training 7 349 356
Test 0 39 39

HWA Monitoring Training 749 204 953
Test 202 54 256

Total 1068 1556 2624

Table 2
Environmental variables used in models with respective data sources.

Environmental Layer Abbreviation Description Source

DEM DEM Elevation USGS
Slope Slope Slope derived from DEM Calculated using ArcGIS slope tool
Aspect Aspect Aspect derived from DEM Calculated using ArcGIS aspect tool
Soil type Soil Soil Survey Geographic (SSURGO) data USDA Geospatial Data Gateway
Moisture index TRMIM Topographic relative moisture index (modified) TRMIM.aml script downloaded from http://earth.gis.usu.edu/swgap/

landform.html
Stream distance Streams Euclidean distance from nearest stream Calculated using ArcGIS Euclidean distance tool
Topographic position TPI Topographic position index Calculated using TPI extension (Jenness, 2006) for ArcView (ESRI, Redlands,

CA, US)
Curvature Curvature Curvature of the terrain derived from DEM Calculated using ArcGIS curvature tool
Minimum

temperature
Min temp Average January minimum temperature (1971–

2000)
The Geospatial Data Gateway http://datagateway.nrcs.usda.gov/

Maximum
temperature

Max temp Average July maximum temperature (1971–
2000)

The Geospatial Data Gateway http://datagateway.nrcs.usda.gov/

Geologic formation Geo form Geologic formations of Kentucky Kentucky Geological Survey
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3. Results

Both types of models generated maps of eastern hemlock distri-
bution with moderate accuracies (Fig. 2, Table 3). Across models,
overall accuracies were fairly close, ranging from 65.7% to 74.7%,
but the total area classified as eastern hemlock differed between
models by up to thousands of square kilometers (Fig. 3). Decision
tree models appeared to yield slightly higher accuracies than the
MaxEnt models for both regions (74.7% and 72.4%, respectively,
for Coal Field and Pine Mountain). MaxEnt models had higher pro-
ducer’s accuracies than the decision tree models in both regions.

The combined area (Coal Field and Pine Mountain) predicted to
be eastern hemlock by decision tree models was 11.4% of the total
area, approximately 2300 km2 less than the MaxEnt models, which
predicted 19.9% of the total area as eastern hemlock (Fig. 3). The
environmental variable ranking (Table 4) for the decision trees
revealed proximity to nearest stream to be a prominent classifier.

The MaxEnt models, in particular, resulted in test AUC values
(>0.80) that indicated good model performance (Fig. 4). The thresh-
old values for an area to be designated as hemlock are 0.42 and
0.35 for Coal Field and Pine Mountain physiographic regions,
respectively (i.e., areas with probability value higher than the
threshold value will be classified as hemlock). The resulting binary
map has a fairly high overall classification accuracy (72.8%) in the
Coal Field region and slightly lower overall accuracy (65.7%) in the
Pine Mountain region (Table 3). The MaxEnt models were associ-
ated with relatively large commission errors (37.6% and 39.0% for
Coal Field and Pine Mountain, respectively) and small omission
errors (16.4% and 11.3%). The predictor variables with the highest
percent contributions were proximity to nearest stream, soil type,
and geologic formation, which together made over 85% contribu-
tions to the models. The rank of these three variables varied
between the two physiographic regions (Table 5).

We generated a synthesized intersection map (Fig. 2) which
shows areas predicted as eastern hemlock by both modeling
approaches. This intersection map was used to compare environ-
mental data with the background because it likely indicates areas
with a very high probability of finding hemlock. Hemlock coverage
predicted by both methods is about 2300 km2, approximately 56%
of the predicted hemlock area by the decision tree models and 32%
by MaxEnt models (Fig. 3). Considering that the study area lies on
the edge of the distribution range for eastern hemlock, the

intersection map reveals important environmental conditions that
better support hemlock growth within the state (Table 6). The

Fig. 2. Predicted distribution of eastern hemlock resulting from two modeling
approaches, decision tree and MaxEnt (see text for full explanation). Intersection
denotes the areas in which both models predict the presence of eastern hemlock.

Table 3
Accuracy assessment for two distribution models (decision tree and MaxEnt) by
respective physiographic regions (Coal Field and Pine Mountain).

Classification data Reference data

Hemlock Non-Hemlock Row total User’s

Coal Field Decision Tree overall accuracy – 74.7%
Map data Hemlock 115 50 165 69.7%

Non-Hemlock 56 198 254 78.0%
Column total 171 248 419
Producer’s 67.3% 79.8%

Coal Field MaxEnt overall accuracy – 72.8%
Map data Hemlock 143 86 229 62.4%

Non-Hemlock 28 162 190 85.3%
Column total 171 248 419
Producer’s 83.6% 65.3%

Pine Mountain Decision Tree overall accuracy – 72.4%
Map data Hemlock 40 16 56 71.4%

Non-Hemlock 13 36 49 73.5%
Column total 53 52 105
Producer’s 75.5% 69.2%

Pine Mountain MaxEnt overall accuracy – 65.7%
Map data Hemlock 47 30 77 61.0%

Non-Hemlock 6 22 28 78.6%
Column total 53 52 105
Producer’s 88.7% 42.3%

Fig. 3. Area (km2) predicted as eastern hemlock by each modeling technique.
Intersection denotes the areas in which all three models predict the presence of
eastern hemlock. ⁄Total forested area on which one or more hemlock trees occur
based on Forest Inventory and Analysis data. ⁄⁄National Land Cover Dataset (NLCD)
shows the total area classified as evergreen forest. ⁄⁄⁄Kentucky Anderson Level III
Land Cover Dataset (KLCD) shows the total area classified as hemlock forest and
hemlock-mixed deciduous forest.

Table 4
Results of decision tree analyses showing variable rankings and the frequencies of
each variable used as a splitting condition at each tree level. Decision trees were
generated for each physiographic region separately, then numbers of nodes and tree
level frequencies of the two regions were combined.

Rank Variable* # of nodes Level of tree

1 2 3 4 5 6 7

1 Streams 5 2 2 1
2 Min temp 3 2 1
3 Geo form 3 1 1 1
4 TRMIM 3 1 1 1
5 Aspect 3 2 1
6 Curvature 3 2 1
7 TPI 3 1 1 1
8 Slope 2 1 1
9 DEM 2 1 1
10 Max temp 2 2

* Detailed descriptions of variables can be found in Table 2.
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intersection areas predicted as eastern hemlock by both classifica-
tion methods indicate that 95% of hemlock coverage is located less
than 296 m from streams and between 189 and 433 m in elevation
in the Coal Field region and less than 930 m from streams and
between 238 and 779 m in elevation in the Pine Mountain region.
Further, the majority of the eastern hemlock area is situated on
northeast to southeast facing slopes and on geologic formations
composed of shale, sandstone, or alluvium. The most abundant
soils in the predicted hemlock areas are well drained, loamy, acidic
ultisols and inceptisols including shelocta, helechawa, or grigsby
complexes.

4. Discussion and conclusions

Both of our modeling approaches produced maps of eastern
hemlock distribution in the Coal Field and Pine Mountain physio-
graphic regions with moderate accuracy. The overall accuracy
(�70%) was lower than that of similar studies (�80%) to map
eastern hemlock in other regions (Koch et al., 2005; Maingi and
Luhn, 2005). However, our study evaluated a much larger region
with more complex topographic and physiographic characteristics,
and greater vegetative variations. The reduced accuracies may be a
consequence of the extensive spatial coverage which included
greater landscape heterogeneity. We initially attempted a second
decision tree classifier which included Landsat spectral bands as
independent variables, but this method was abandoned. Reduced
spectral resolution, cloud cover, and altered brightness values
caused by the rugged terrain of eastern Kentucky, especially in
the Pine Mountain area, affected the reliability of the satellite

imagery. In addition, image processing time in areas with rugged
terrain, such as our study area, can be extremely time consuming.

In general, MaxEnt modeling appeared to provide predictions
with reasonable accuracy. Multiple model runs allowed for select-
ing optimum results. However, overall accuracies of MaxEnt
models were a balance of relatively low user’s accuracy and high
producer’s accuracy, which may imply over-fitting. The MaxEnt
approach is known to be robust for presence-only models, but its
generally high accuracy may be compromised by lacking absence
data, as indicated by the low user’s accuracy in this study and
suggested by related investigations (Elith et al., 2011). In addition,
omission of absence data when building the model, a stipulation of
the MaxEnt method, may also compromise the accuracy in
comparison to the decision tree based method.

The difficulty and time required to complete each model varied
considerably. Since the decision tree method required final maps to
be built in GIS using the node-splitting conditions, the decision
trees were significantly more time-intensive than the MaxEnt
models. The existing MaxEnt program was straightforward with a
simple user interface, and the processing was relatively efficient.
While estimation of the thresholds added to the time committed,
the MaxEnt model was the less complicated and quicker to execute.

The environmental characteristics associated with hemlock
habitat prediction affirmed previous descriptions of eastern hem-
lock habitat in the southern Appalachian Mountains, which suggest
that hemlock grows on north to east facing slopes in moist riparian
zones and in neutral to acidic soils (Godman and Lancaster, 1990;
Quimby, 1996). Soil was a significant contributor in the MaxEnt
models in predicting the presence of hemlock, while it did not
contribute in node-splitting in the decision trees. This could be
partially due to the tight association between geologic formation
and soil type and different statistical mechanisms used in the
two methods in dealing with categorical variables. Eastern hem-
lock is commonly reported between 610 and 1520 m in this region
(Southern Appalachians, Godman and Lancaster, 1990), much
higher than predicted by our study (Table 6), which potentially
reflects the regional difference of the river valley reliefs, as eastern
Kentucky is located on the western edge of hemlock distribution
with a relatively lower elevation range.

The total area predicted as eastern hemlock by each model is
larger than national and state land cover datasets and FIA data
(Fig. 3). The reason for these differences is twofold. First, areas
predicted by the two models used in this study are potential
niche/habitat, while the land cover datasets and FIA estimate the
realized niche/habitat, which is always smaller than the former
estimation. Second, classifications in the land cover datasets are
often too broad and neglect the minor components in areas with
mixed species. The total area predicted as hemlock by the decision
tree model is slightly higher than the statistical estimation from
FIA data. The intersected areas of the two models are more conser-
vative than the FIA data based estimation.

Our results suggest that the most advantageous procedure for
mapping hemlock resources in the central Appalachians may
depend on the priorities set forth by the end users. This study
demonstrates that a relatively accurate map can be produced with
environmental data at the regional scale. In situations where
absence data are unreliable or unavailable, a presence-only species
distribution model such as MaxEnt is most promising. However, if
absence data have been collected and resource managers desire to
achieve a more accurate classification, the decision tree classifier
may be a better option. Moreover, an ‘ensemble modeling’
approach could be considered to assist land management decision
making (Jones-Farrand et al., 2011). A union of both predicted
maps can be used if land managers want to be inclusive about all
possible hemlock areas, or an intersection of predicted maps can
be used if high certainty is needed.

Fig. 4. Area under the curve (AUC) and presence–absence threshold determined for
hemlock distribution models in two physiographic regions generated from MaxEnt.

Table 5
Percent contribution of environmental variables used in MaxEnt models for the Coal
Field and Pine Mountain physiographic regions.

Variable* Percent contribution (%)

Coal Field Pine Mountain

Streams 41.0 21.1
Soil 37.1 43.8
Geo form 12.0 21.2
DEM 2.4 2.3
TPI 2.0 1.8
Aspect 1.6 1.2
Min temp 1.5 3.1
Slope 1.0 1.6
TRMIM 0.5 1.1
Curvature 0.5 2.3
Max temp 0.4 0.5

* Detailed descriptions of variables can be found in Table 2.
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As non-native invaders continue to proliferate and threaten val-
ued resources, land managers must utilize diverse approaches to
develop increasingly aggressive tools for management and mitiga-
tion. The hemlock woolly adelgid is particularly threatening, since
eastern hemlock is considered an essential foundation species in
forests of eastern North America (Godman and Lancaster, 1990),
and it is especially susceptible to adelgid feeding (Souto et al.,
1996). The hemlock woolly adelgid threatens the persistence of
the hemlock forest type (Spaulding and Rieske, 2010), which has
tremendous consequences for ecosystem function (Orwig and Fos-
ter, 1998). Our results demonstrate that spatial habitat modeling
using approaches such as the decision tree classification or the
maximum entropy method is a feasible means of determining
high-risk areas of invasion at the state level, and could aid in mit-
igating the effects of the hemlock woolly adelgid invasion.
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