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Abstract.   
In this work we develop a real time system that recognizes occluded green apples within a tree 
canopy using infra-red and color images in order to achieve automated harvesting. Infra-red 
provides clues regarding the physical structure and location of the apples based on their 
temperature (leaves accumulate less heat and radiate faster than apples), while color images 
provide evidence of circular shape. Initially the optimal registration parameters are obtained 
using maximization of mutual information. Haar features are then applied separately to color and 
infra-red images through a process called Boosting, to detect apples from the background. A 
contribution reported in this work, is the voting scheme added to the output of the RGB Haar 
detector which reduces false alarms without affecting the recognition rate. The resulting 
classifiers alone can partially recognize the on-trees apples however when combined together the 
recognition accuracy is increased. 
 
Keywords: Mutual information, multi-modal registration, sensor fusion, Haar detector, apple 
detection. 
 
Introduction  
In the last few years, object recognition algorithms are focusing on the efficient detection of 
objects in natural scenes. A system is developed to recognize in real-time partially occluded 
apples regardless of position, scale, shadow pattern and illumination within a tree canopy. 
The work is motivated by the fact that labor for orchard tasks constitutes the largest expense 
(Jiménez et al., 2000), and hence there is a need to develop autonomous robotic fruit picking 
systems. Here we address the first step in such a system by tackling the problem of on tree green 
apple detection using real-time machine vision algorithms. The complexity of the task involves 
the successful discrimination of “green” apples within scenes of “green leaves”, shadow patterns, 
branches and other objects found in natural tree canopies. Color and edges are features highly 
dependent on illumination while texture is highly sensitive to the proximity (scale) of the object. 
An excellent review regarding apple recognition systems was presented in (Jiménez et al., 
2000b). The concept of background modeling using Gaussian mixture color distributions in RGB 
images was used in Tabb et al., (2006). This algorithm detected 85 to 96 percent of both red and 
yellow apples assuming a uniform background in an artificial environment. Color distribution 
models for fruit, leaf and background classes were used in Annamalai et al., (2003) in a citrus 
fruit counting algorithm. In Stanjnko et al., (2004) pixel thermal values were mapped to RGB 
values and detected using the normalized difference index. However the efficiency of the 
algorithm was affected by the apple’s position on the tree and degree of sunlight. In Sapina 
(2001), textural features extracted from the gray level co-occurrence matrix were used to 
discriminate between warm objects and their background in thermal images. On the same vein, a 
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threshold selection approach was proposed by Fernandez et al. (1993) based on apple’s texture 
features in grayscale images. The authors assume that all the apples have a bright spot (due to 
their exposure to sunlight) and the apple region is practically homogenous and spherical. These 
assumptions have limited validity in natural un-controlled scenarios. Texture based edge 
detection combined with a measure of redness are used in Zhao et al., (2005) for the detection of 
green and red apples in trees. The authors claim that their method can deal with occluded apples, 
clustered apples and cluttered environments. However no recognition rates are reported. A robust 
system using an infrared laser is presented in Jiménez et al., (2000) which considers 
illumination, shadows and background objects. The authors report a rate of 80-90% of detection 
when used with an artificial orange tree.     
Our paper proposes the use of two modalities; infra-red and color. Infra-red provides clues 
regarding the physical structure and location of the apples based on their temperature (leaves 
accumulate less heat and radiate it faster than apples), while color images provide evidence of 
circular shape.    

Our approach consists of a pipeline of 
registration, detection, color space voting and 
combining stages as shown in Fig. 1. In 
registration correspondence matching between 
a color and a thermal image is achieved using 
the maximization of mutual information 
technique and the registration parameters are 
obtained. At the same time, apples are 
detected using a Viola –Jones classifier (Viola 
and Jones, 2004) based on Haar-like features 
in the detection phase. The color detections 
are converted to hypotheses that are tested 
each by a voting scheme. The resulting 
detections are combined with the thermal 
results and transformed using the registration 
parameters.  
This paper is structured as follows. The 
registration algorithm based on maximization 
of mutual information is described, then the 

process of training and detecting apples and the classification fusion scheme is presented. The 
results of each modality independently, their combination and the resulting enhancement are 
given in the last section. 
 
Materials & Methods 

Multimodal image registration using mutual information 

Multi-modal image registration is a fundamental step preceding detection and recognition in 
image processing pipelines used by the pattern recognition community. This preprocessing stage 
concerns the comparison of two images –the base and sensed images- acquired from the same 
scenario at different times or with different sensors in such a way that every point in one image 
has a corresponding point on the other images, in order to align the images. In our problem, the 
transformation between two images of different modalities is affine which means; rotations, 

 
Figure 1. Flowchart of multimodal apple 
detection procedure 
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translations and scaling are allowed. Transformation of the coordinates PA and PB from the 
sensed image A to the base image B is given by Equation 1. 
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Where CA and CB are the coordinates of the centers of the images, s is a scaling factor, R(θ) is 
the rotation matrix, and t is the translation vector. 
We shall compare five different registration methods using the similarity indices: cross 
correlation normalized (CC1 ), correlation coefficient (CC2 ), correlation coefficient normalized 
(CC3 ), the Bhattacharyya coefficient (BC) and the Mutual Information index (MI). 
We first introduce the mutual information (MI) method (Viola and Wells, 1995) as this will be 
compared to other methods for registration. Let A, B be two random variables, pA(a) and pB(b) 
with marginal probability distributions and pAB(a,b) a joint probability distribution. The degree 
of dependence between A and B can be obtained by the MI, according to Equation 2. 
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A data set including 125 color and thermal images of apple trees were acquired from a digital 
RGB camera and an IR FLIR camera. These images were registered by the five indices 
mentioned earlier. Table 1 shows the root mean squared errors (RMS) of the five indices for 
each registration parameter.  
 
Table 1. Registration parameteres RMS error 
using the five 5 similarity indices. 
 
Measure RMS

∆s ∆θ ∆tx (%) ∆ty (%)
bc 0.226 2.205 3.958 4.328
mi 0.175 1.701 3.547 3.912
cc1 0.196 1.929 3.985 3.868
cc2 0.196 1.715 6.030 6.875
cc3 0.196 1.713 6.067 6.848  

 

 

 

 Figure 2. Color and thermal registered image 
 
By observing the results in Table 1, the mutual information technique performed better than the 
other four methods for three parameters (∆s, ∆θ, ∆tx), and comparable to cc1 for the last 
parameter (∆ty). Therefore MI was selected as the preferred method for registering the whole set 
of images. Fig. 2 shows an example of a pair of images registered from the dataset.  

Apple detection using Haar classifiers 

Apple detection using Haar classifiers are applied separately in color and thermal images. We 
also use a boosted cascade of simple classifiers inspired by Viola and Jones  (2004). This 
classifier relies on features called Haar-like, since they follow the same arrangement as the Haar 
basis. The eleven basis features, i.e. edge, line, diagonal and center surround features, are 
presented in Fig. 3.  
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Figure 3. Eleven Haar features: edge, line, diagonal, center 
surround and rotated features 
 

Since the number of features to be computed is quite large, integral images are adopted for fast 
computation. Let I be a temporary image, representing the sub-window to be classified, which 
includes the sum of gray scale pixel values of the sub-window N with height y and width x, such 
that: 
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The integral image is calculated recursively: I(x,y)=I(x,y-1)+I(x-1,y)+N(x,y)-I(x-1,y-1) where I(-
1,y)=I(x,-1)=I(-1,-1)=0. This requires one scan over the input sub-window. Rotated features can 
be computed effectively in a similar way (Lienhart and Maydt, 2002).  
A feature is detected when the computation of the weighted differences between the white and 
black areas of the rectangles (see Fig .3) are higher than a threshold. This threshold is determined 
during the training process in such a way that the minimum number of samples is misclassified. 
The set of selected features is learned through a Classification and Regression Tree (CART) 
technique, which is a form of binary recursive tree. To achieve a given detection and error rate, a 
set of simple CARTS is selected through the Gentle Adaboost algorithm (Freund and Shapire, 
1996). 
In order to improve the overall performance of the classifiers, they are arranged in a cascade 
structure, where in every stage of the cascade, a decision is made whether the sub-window 
includes the object to be detected. At every stage, at least a high hit rate is assured, e.g., 0.995 
and at least half of the false alarms are discarded. In spite of the hit rate and the false alarms are 
reduced, the hit rate decreases slower than the false alarms rate (FA). For example for 20 stages, 
since every stage keeps the hit rate to 0.995 at least, after 20 stages, the hit rate is 
0.995x1020=0.904. The false alarms rate (FA) is decreased in every stage so half of the FA 
detections is rejected every stage. For every stage the classification function is learned until the 
maximum number of stages is reached or the minimum acceptable FA rate is obtained. 

Learning color subspaces using A voting scheme 

In this section separate artificial neural network classifiers are trained and tested for each of the 
thee color spaces; L*a*b, hsv and rgb. Since, as we will show, the accuracies obtained for all the 
color spaces are identical, it was decided to see if a fusion method would provide any advantage. 
We will show that combining the output of the three classifiers as an ensemble by “majority 
voting” will decrease the false alarms without affecting the recognition rate. Thermal images are 
not considered here since their intensity information can lead to ambiguity between classes.   

Training the classifiers 

For each window obtained from the Haar detector in the RGB images the hypothesis of whether 
the window is or is not an apple was subsequently tested.  For this purpose three classifiers of the 
type MLP (feed forward multi-layer perceptrons) were used. Each was trained and tested by 
splitting a sample set of 751100 vectors of dimension three. The dataset was constructed using 
the following procedure: 1) a user selected and labeled manually rectangular regions of interest 
(sub-windows) from the color image dataset according to 5 classes: apples, leaves, branches, sky 
and ground, and 2) each selected window was resized to 10x10 pixels and the values of each of 
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the three channels of all pixel was stored as a set of 3D vectors. This process was repeated for 
three color models: L*a*b, HSV and RGB; and hence three datasets were obtained. Each 
classifier was trained and tested with a different dataset; therefore each classifier is used for one 
color space. The details of the datasets are given in Table 2. There are 3 such data sets , one for 
each of the color models. 
 

Each classifier had the same topology: 3-layer 
perceptron with 3 inputs, 5 outputs and two 
hidden layers including 100 neurons each. A 
symmetrical sigmoid activation function was 
used f(x)=β*(1-e-αx)/(1+e-αx) with α=0.66 and 
β=1.71. The training consisted of maximally 
300 iterations resulting in the accuracies of 
0.784, 0.78 and 0.782 for training and 0.782, 
0.78 and 0.78 for testing, for the L*a*b, hsv 
and rgb classifiers respectively.   
Since the accuracy values obtained using 

different classifiers are the same, in the next section a fusion approach is tested to see if an 
improved solution can be obtained.   

Majority voting in classifier combination 

One possible way of combining the output of the three classifiers is in an ensemble that is called 
“majority voting”. For a given triplet of values z, let define a classifier Bi that responds with an 
output vector yi such that the entry yij=1 if z is classified as class j, otherwise 0. In our case 
i=1,..,3 and j=1,..,5. Lets define another type of classifier Di, that produces an output vector 
[di,1,…,di,c] where the value di,j represents the base to the hypothesis that the sub-window w 
being tested on classifier i belong to class j. Each measurement level di,j can be obtained by 
Equation 4. 
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For example, for window w1, the response vector D1=[0.2 0.2 0.1 0.4 0.1] means that 20% ,20% 
10%, 40% and 10% of the pixels in the window belong to classes “apples”, ‘leaves”, “branches”, 
“ground” and “sky” respectively. However, to discriminate between true hits and false alarms, it 
is enough to classify the sub-window in two classes “apple” and “not apple”. Therefore vector 
[di,1,…,di,c] can be converted to a binary two dimensional vector [ei,1,ei,2] such that:  
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where k is the partition index between classes, and c is the number of classes. For example, to 
consider the first two classes in one group (likely to be an apple), and all the rest in a different 
group (not likely to be an apple), k=2, n=5 and i=3.  

Table 2. Dataset used to train the classifiers 
 
Class Sub-windows Pixels

1 – apples 1416 141600
2 – leaves 2263 226300
3 - branches 1535 153500

4 – sky 1583 158300
5 – ground 714 71400
All 7511 751100 
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Then, the majority vote scheme (Equation 6) determines the label L of the sub window detected 
by the 3 classifiers. The scheme is presented in Fig. 4.  
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The majority voting scheme was used to 
accept or reject the hypothesis about whether 
the detected sub-windows were or were not 
apples. In addition, two rules were 
implemented to accept a hypothesis: a) the 
detected window does not include sub-
windows, b) the detected sub-window size is 
smaller than k*median (W,H), where we used 
k=1.5. 
 
 
 
Results & Discussion 
The following subsections describe the performance of the multimodal apple detection system 
using first, the RGB and IR Haar detectors independently.  

Results of the RGB Haar detector 

To train the RGB detector, a set of 146 color images of apple trees was used which included a 
total of 9420 green apples under natural conditions. The classifier was tested on 34 images 
including 1972 apples. There were 30 stages in the detector’s cascade, where each stage reached 
a hit rate of 0.995 with two splits, and its base resolution was 20x20 pixels. Fig 5 shows the 
detections found in a sub-region of a testing 
image.  
The figure shows the classifier’s ability to 
generalize apples (e.g. partially occluded with 
leaves, non-occluded, pits showing or not). 
False alarms were reduced using the voting 
scheme in classifier combination presented in 
Section 4.  Table 3 presents the hits over the 
total number of apples, the missed apples over 
the total number of apples, and the false 
alarms when using the RGB Haar detector alone (single color space) and after adding the voting 
scheme (multiple color spaces). The voting scheme affected the correct detections only by less 
than 0.8% while dropping the FA rate by 7%. 
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Figure 4. Classification combination scheme 
 

 
Figure 5. Six apples detected by the RGB Haar 
detector 
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Results of the IR Haar detector 

The apple detector classifier with IR images 
was trained with a training set of 286 images 
including 2330 apples from the same trees 
used to train the RGB Haar detector. Due to 
the lower resolution of the thermal camera, 
the area captured by the image is much 
smaller, and hence contained less apples. This classifier was trained with a cascade of 20 stages, 
with a minimum hit rate of 0.995 in each stage, with two splits and a base resolution of 24x24 
pixels detection window. Fig. 6 shows apples detected in an IR sub-image.  
 
The performance of this detector is given in 
Table 4 for stages 17-20. For each stage, the 
total number of apples, the total hits and the 
false alarms are presented.  These results 
show the dependency between hit rate and 
false alarms. The cascade with 18 stages was 
used for the experiments, more stages 
decrease significantly the hit rate, while an increase yielded a drastic increase in the FA.  
 

Results of combined Color-IR scheme 

The detected hits resulted from the voting 
scheme are added to the output of the IR Haar 
detector after applying the transformation 
parameters. First, the registration parameters 
for each pair of images (color and IR) are 
found using mutual information.  Then, the RGB and IR Haar detectors are applied to the color 
and infra-red images respectively. Later, the affine transformation is applied to the set of 
detections obtained using the IR Haar detector. Finally, the total number of detections is the sum 
of both sets, RGB and IR. The apples considered for the detection in this step are those found in 
the common area between the color and IR images.  
The results are presented in Table 5 when applied to 34 pairs of testing images. The combination 
approach shows that the recognition accuracy was increased (74%) compared to the conventional 
approach of detection using either the color 
(66%) or the IR (52%) modalities alone. 
One interesting feature of the methodology 
is that the three main processes: 
registration, Haar feature detection in RGB 
and IR are independent and hence can be 
easily parallelized by assigning each 
process to a different CPU. 
 
Conclusions 
We presented an algorithm for apple detection in natural scenes using a multimodal approach. 
Initially the optimal registration parameters are obtained using maximization of mutual 
information and are stored for later use. Then, Haar features in color and infra-red images are 

Table 3. Detection rate using the color Haar 
detector with and without the voting  

 Hits Missed FA 

RGB Haar 
1326/197
2 646/1972 

53
6 

RGB Haar+Voting
1307/197
2 646/1972 

53
6 

 

 
Figure. 6. Nine apples detected by the IR Haar 
detector 

Table 4. Hit rate and false alarms per stage of 
the Haar detector 
Stage # Hits Missed FA

17 274/504 0.456 80
18 263/504 241/504 61
19 245/504 259/504 51
20 231/504 273/504 47  

Table 5. Performance when using single and 
combined modalities 

Modality Hits Missed FA
Color+Voting 1307/1972 665/1972 498

IR 263/504 241/504 61
Combined 679/913 234/913 344  
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obtained through an Adaboost algorithm. Later, a voting scheme is used to improve the detection 
results. Finally, the detection results are fused after applying the best transformation found in the 
first step. A contribution reported in this work, is the voting scheme added to the output of the 
RGB Haar detector which drops the false alarms with little effect on the recognition rate. The 
resulting classifiers alone can partially recognize the on-trees apples however when combined 
together the recognition accuracy is increased. Although the algorithm did not detect all apples 
and contains false alarms, the main concern is its implementation in a robotic fruit picking 
scenario. In this case, the performance of the algorithm seems to be a sufficient for 
prepositioning a robot picking arm. Since images will be acquired from cameras mounted on the 
robotic arm which can be oriented to take close up pictures, gradually all the apples in the tree 
can be found and false alarms can be identified as the robot arm explores the canopy. In spite of 
the relatively low recognition accuracy, this is the first system, to our knowledge, that can deal 
with “green” apple detection, that are partially occluded with shadow patterns, from a tree 
canopy of “green” leaves, branches, and sky background. Future work will include increasing the 
robustness of the Haar classifiers by increasing the sample set, and incorporate morphologic 
information to the voting scheme. 
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