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ABSTRACT 

Kang, Kwangmin. Ph.D., Purdue University, May 2011. Object–oriented Hydrologic 

Modeling with GIS. Major Professor: Venkatesh Merwade. 

A prototype geographic information system (GIS) based tightly coupled object 

oriented framework called GIS and Hydrologic Information System Modeling Object 

(GHISMO) is presented in this thesis. The proposed GHISMO framework is developed 

within ArcGIS environment such that geographic datasets can be treated as hydrologic 

objects that have properties and methods to simulate a hydrologic system. The overall 

GHISMO framework consists of HydroShed as a super class which is composed of six 

sub classes, namely, HydroGrid (for grid based data such as digital elevation model), 

ParameterGrid (for grid based parameters such as land use type), HydroArea (for polygon 

features such as lakes and reservoirs), HydroCatchment (for polygon features 

representing catchments and watersheds), HydroLine (for polyline features such as 

rivers) and HydroTable (for input and output tabular data). The GHISMO framework is 

applied to develop a modular hydrologic modeling system called the Storage Release 

based Distributed Hydrologic Model (STORE DHM). The storage–release concept uses 

the travel time within each grid cell to compute how much water is stored or discharged 

to the watershed outlet at each time step. The STORE DHM is tested by simulating 

multiple hydrologic events in three watersheds in Indiana. In addition, the GHISMO 

framework is tested for its flexibility to adopt additional modules by implementing three 

rainfall bias correction methods to provide accurate input for the STORE DHM.  

Application of STORE DHM to multiple hydrologic events in three different 

watersheds in Indiana show that the model is able to predict runoff hydrographs for 

different types of events in terms of storm duration, peak flow magnitude and time–to–

peak. In addition, STORE DHM output is compared with outputs from two hydrologic 



 

 

xiv 

models including Hydrologic Engineering Center‟s Hydrologic Modeling System (HEC–

HMS) and time variant Spatially Distributed Direct Hydrograph travel time method 

(SDDH). Results from these comparisons show that the STORE DHM outperforms both 

HEC–HMS and SDDH in terms of overall hydrograph shape and flow magnitude.  

The flexibility of GHISMO framework is tested by extending it to include a rainfall 

bias correction module. The rainfall bias correction module is then used to correct 

NEXRAD radar rainfall by implanting two non–uniform bias correction techniques. 

Results from STORE DHM simulations using the original NEXRAD rainfall and bias-

corrected rainfall created in this study shows that the model response is dictated by 

rainfall variations in the study area. The performance of STORE DHM output is 

relatively better in a larger watershed with high variable rainfall compared to a smaller 

watershed with uniform rainfall pattern. The findings from this study are limited by the 

number of watersheds used, and the quality of the data. More testing of the GHISMO 

framework and its modules is needed to make the proposed framework applicable for 

different watersheds with varying scales. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

The hydrologic system is dynamic; states of the system are frequently updated as 

meteorological inputs and basin characteristics change. Modeling this dynamic behavior 

imposes special requirements on data handling and process calculations that make 

development of event–based hydrologic model a challenging task. In the past two 

decades, many event–based hydrologic models have been developed such as HEC–HMS 

(Hydrologic Engineering Center–Hydrologic Modeling System), VIC (Variable 

Infiltration Capacity), DRAINMOD and Vflo
TM

 (Vieux, Inc.). Nevertheless, most of the 

existing models have limitations in representing hydrologic processes and therefore they 

cannot guarantee realistic simulations. For example, HEC–HMS is a lumped model – it 

does not account for spatial variations in hydrologic processes. Further, most of the 

existing models are not standalone (they need external software to get data or to run 

simulation, e.g. Vflo
TM

) which makes them unwieldy. In addition, these existing models 

are also inflexible for investigating hydrological processes because it is difficult to add 

new hydrological components in them. To overcome these limitations, this study 

develops GIS and Hydrologic Information System Modeling Object (GHISMO), an 

event–based distributed hydrologic model, in a single platform of ArcGIS software. The 

GHISMO uses object–oriented programming approach which provides flexibility in 

investigating new hydrologic processes without changing the basic model framework. 

The objectives of this research are – (1) to make a prototype of an object–oriented 

hydrologic model framework (called GHISMO); (2) to investigate the robustness of the 



 

 

2 

developed prototype framework through several case studies; and (3) to demonstrate the 

flexibility of the modeling framework in overcoming critical modeling hurdles. 

1.2. Literature Review and Motivation  

1.2.1. Hydrologic Model 

Watershed based hydrologic models are important tools in operational hydrology 

and water resources planning and management. A watershed scale hydrologic model is a 

simplified description of the hydrologic system of a watershed. Traditionally, statistical 

and conceptual hydrologic models have treated input parameters as lumped over the 

entire study watershed by ignoring the spatial variability of the physical system and its 

processes. Specifically, these models cannot accurately represent and model the spatial 

variation in meteorological and land surface conditions that affect various hydrologic 

processes, and therefore cannot assure realistic simulations. With the availability of DEM 

(Digital Elevation Model) and next generation radar (NEXRAD) rainfall data, grid based 

hydrologic models are more effective in representing the variations of meteorological 

forcing and land surface parameters. Also, geographic information system (GIS) allows 

processing of grid and vector data, which has led to rapid progress in distributed 

hydrologic modeling. However, an existing problem in hydrologic modeling is that the 

available software for handling spatial information and for running model simulation is 

not integrated in the same environment. 

An object–oriented approach to hydrologic modeling increases model flexibility 

and reduces efforts when adapting the model for new application, area and algorithm. 

Rather than replacing an old code that already works, the model code can be extended 

using the object–oriented characteristic of inheritance (Kiker et al., 2006). An object–

oriented approach allows for building an incremental model that can be adapted to 
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different watershed conditions (Wang et al., 2005). In spite of many advantages, the 

object–oriented approach has found only limited applications in hydrologic modeling 

(Band et al., 2000; Kralisch et al., 2005; Lal et al., 2005). Band et al. (2000) describes a 

spatial object–oriented framework for modeling watershed systems to include 

hydrological and ecosystem fluxes. Chen and Beschta (1999) developed a 3–dimensional 

distributed hydrological model–OWLS (the Object Watershed Link Simulation model) 

for dynamic hydrologic simulation and applied it to the Bear Brook watershed in Maine. 

Garrote and Becchi (1997) employs object oriented programming techniques with 

distributed hydrologic models for real–time flood forecasting. Boyer et al. (1996) 

presents an object–oriented method to simulate a rainfall–discharge relationship using a 

lumped hydrologic model. McKim et al. (1993) introduced an object–oriented approach 

to simulate hydrologic processes, specifically infiltration excess overland flow. The 

above applications used object–oriented approach and achieved reasonable results for 

hydrologic simulations. However, object–oriented approach is not comprehensively 

discussed in the hydrologic literature and no general guideline exists for implementing 

them in hydrologic models (Wang et al., 2005 and Kiker et al., 2006).  

With the advent of remote sensing technology in topography analysis, several 

distributed grid–based hydrologic models have been developed. These include SHE 

(Système Hydrologique Europèen, Abbott et al., 1986), IHDM model (Institute of 

Hydrology Distributed Model, Calver and Wood, 1995), the CSIRO TOPOG model 

(Terrain Analysis Hydrologic Model, Vertessy et al., 1993) and HILLFLOW (Bronstert 

and Plate, 1997). These models use grid–based routing (kinematic wave or diffusive 

wave) approach to account for spatio–temporal variations in water movement. However, 

they use complex algorithms with low computational efficiency requiring a large data 

base for calibration and large computational resources for simulation (Beven, 2001). 

Recently, several event–based grid models have been developed that use travel time 

method for routing the flow through a watershed. These include: (i) the spatially 

distributed unit hydrograph method by Maidment et al., (1993, 1996; Muzik 1995; 

Ajward, 1996), (ii) the first passage–time response function which is derived from the 

advection–dispersion method by Olivera and Maidment (1999), (iii) diffusive transport 
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method by Liu et al. (2003), and (iv) spatially distributed travel time method by Melesse 

and Graham (2004), among others. Maidment (1993) assumed a time–invariant velocity 

to get the unit hydrograph; whereas Muzik (1995) and Ajward (1996) used continuity and 

Manning‟s equations to determine the flow velocity through each cell. Melesse and 

Graham (2004) propose an integrated technique using remote sensing and GIS datasets to 

compute spatially distributed excess rainfall, which was then routed by using the travel 

time concept without relying on the unit hydrograph theory. Although these techniques 

provided satisfactory results, the flow from each grid cell is routed through the system 

independently without considering the interaction of neighboring cells as the water flows 

downstream. 

1.2.2. The problem of rainfall uncertainty for hydrologic model 

Rainfall is a critical factor in hydrologic simulation. However, rainfall varies 

substantially in space and time and therefore it is often poorly represented in hydrologic 

models. Numerous studies in the past decades have investigated the sensitivity of runoff 

hydrographs to spatial and temporal variations in precipitation. Faures et al. (1995) 

concluded that for realistic hydrologic simulations, even for small watersheds, hydrologic 

models require detailed information of the spatial rainfall patterns. This result agreed 

with Wilson et al. (1979), who showed that the spatial distribution of rainfall had a 

marked influence on the runoff hydrograph from a small catchment. Troutman et al. 

(1989) investigated the effect of rainfall variability on model simulation, and concluded 

that improper representation of rainfall variability over a basin would lead to 

overestimation or underestimation of runoff.  

Combining radar and gauge information produces improved precipitation estimates, 

in terms of both quality and spatial resolution, in comparison with either radar or gauge 

estimates alone (Smith and Krajewski, 1991). However, uncertainty persists in MPE 

(Multisensor Precipitation Estimator) products because large portions of the radar 
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coverage area do not have rain gauge data to adjust biases in radar rainfall (Ciach and 

Krajewski, 1999). Habib et al. (2009) studied a small watershed with dense rain gauge 

network in south Louisiana and found that the MPE products tend to overestimate small 

rain rates and underestimate large rain rates. They suggested that dense rain gauge 

observations can improve MPE performance; however, maintaining a dense rain gauge 

network in a large catchment is costly and impractical.  

Winchell et al. (1998) investigated the effects of uncertainty in NEXRAD 

estimated precipitation input on simulation of runoff. Specifically, they studied the 

sensitivity of surface runoff to uncertainty in precipitation estimates arising from the 

transformation of radar reflectivity to precipitation rate and from spatio–temporal 

aggregation of the precipitation field. They found that the infiltration–excess mode of 

surface runoff generation is more sensitive to precipitation uncertainties than the 

saturation–excess mode of surface runoff generation. The study concluded that a limited 

number of rain gauges may not completely eradicate biases in the radar data and may 

lead to poor runoff simulations. In recent years, the availability of high–resolution 

precipitation data from different weather radar platforms has intensified the research on 

understanding the effects of spatial resolution in precipitation data on hydrologic 

simulations. 

1.2.3. The problem of DEM variations for hydrologic model 

Topographically–based modeling of catchment processes is becoming popular in 

applied environmental research, mainly due to the advances in availability and quality of 

DEM (Moore et al., 1991; Goodchild et al., 1993; Wise, 2000). Presently, DEM is used in 

terrain modeling applications such as distributed hydrologic models (Beven and Moore, 

1993), prediction of surface saturation zones (O‟Loughlin, 1986), erosion deposition 

models (Desmet and Govers, 1996; Schoorl et al., 2000), and hillslope stability and 

landslide hazard models (Montgomery and Dietrich, 1994; Tarboton, 1997). Analysis in 
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DEM include automatic delineation of catchment areas (O‟Callaghan and Mark, 1984; 

Martz and De Jong, 1998), development of drainage networks (Fairfield and Leymarie, 

1991), detection of channel heads (Montgomery and Dietrich, 1994), determination of 

flow accumulation (Peuker and Douglas, 1975), and flow direction and routing (Tarboton, 

1997). Wilson et al. (2000) demonstrated that (a) slope gradient and specific area of the 

catchment tend to decrease as DEM cell size increases, (b) larger DEM cell sizes produce 

shorter total flow length in a watershed, and (c) the accuracy of slope gradient decreases 

with increase in DEM cell size. The DEM resolution is expected to affect the delineation 

of watersheds which in turn would influence hydrologic model performance (Madsen, 

2003). However, the effect of DEM resolution on the performance of a hydrologic model 

is not yet well understood (Vazquez et al., 2004). 

Zhang and Montgomery (1994) used DEM of different resolutions in conjunction 

with eight flow–direction algorithms to detect patterns in storm runoff and surface 

saturation. They found that DEM sizes significantly affect computed topographic 

parameters and hydrographs in TOPMODEL simulation. Studying a watershed in Iowa 

using KINEROS (kinematic runoff and erosion model) Kalin et al. (2003) observed that 

increasing the DEM resolution increases the magnitude of peak flow without affecting its 

time of occurrence. FitzHugh and Mackay (2000) investigated a watershed in Wisconsin 

using SWAT (Soil and Water Assessment Tool) and observed that sediment yield from a 

watershed delineated using a fine resolution DEM (10m) dropped by 44% in comparison 

to a watershed delineated using a coarse resolution DEM (500m). All the aforementioned 

studies on DEM found that the DEM resolution significantly affects the computation of 

slope, catchment area, flow direction and surface runoff. Thus hydrologic model 

simulations are very sensitive to DEM resolution.  
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1.3. Objective of the study 

The overall goal of this research effort is to develop an efficient and robust event–

based distributed hydrologic model under ArcGIS environment that can overcome some 

of the existing hurdles of hydrologic modeling through an object–oriented approach. To 

accomplish this objective, the following tasks were executed: 

(1) Develop a prototype of GIS based object–oriented framework for hydrologic 

modeling.  

(2) Test robustness of the developed prototype by applying it to various storm events 

over different study areas. 

(3) Demonstrate the flexibility of developed prototype in linking additional 

objects/modules to it.  

The remainder of this dissertation is structured as follows. In Chapter 2, description 

of the GHISMO diagram is introduced. In Chapter 3, development and application of 

grid–based distributed hydrologic model is presented. Chapter 4 presents the 

implementation module for correcting spatially distributed rainfall bias. 
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CHAPTER 2. GIS AND HYDROLOGIC INFORMATION SYSTEM MODELING 

OBJECT 

2.1. Introduction 

Computer based models have been used as planning tools in water resources 

management over the last three decades. The researches in computational water resources 

are well known and organized. Also, many models are applied to resolve a variety of 

hydrologic components (Abbott et al., 1993). It is necessary to combine several of these 

models (e.g., surface water model, groundwater model and reservoir model) to bring a 

holistic idea in water resources planning and management. Realization of this approach 

requires a modular structure in water resources research, and it allows different sub–

models to be interconnected depending on the hydrologic system. Another important 

aspect that must be considered in new development of hydrologic models is creating 

software elements that can be adapted in future projects. If a modular structure provides 

reusable components, both regarding development time and reliability of the software 

produced, it will be an extensive water resources platform (Goldberg et al., 1995). This 

also will reduce development and maintenance cost for the project. 

Running a hydrologic model involves several steps including data collection, pre–

processing, parameter estimation, calibration and validation. With the advancement in 

data collection methods and their representation in digital form, the use of GIS is 

common for data management, pre–processing and post–analysis in any hydrologic 

modeling study (Maidment, 1993). While GIS provides a user friendly visual 

environment for handling hydrologic data, it lacks the computational engine to perform 

hydrologic simulations. Also, many hydrologic models have limitations of GIS 
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capabilities for data handling, pre–processing and visualization. As a result, several 

efforts have been made to couple GIS with hydrologic models. These efforts include: (i) 

the development of GIS tools for Hydrologic Engineering Center‟s (HEC) Hydrologic 

modeling system (HMS) and River Analysis System (RAS) models [U.S. Army Corps of 

Engineers (USACE)]; (ii) the integration of GIS and modeling tools in EPA BASINS 

analysis environment (Lahlou et al., 1998); (iv) the development of a GIS pre–processor 

for the Soil Water Assessment Tool (SWAT; Luzio et al., 2002); and (v) the development 

of Watershed Modeling System (WMS; Environmental Modeling Research Laboratory, 

Nelson 1997). 

Most previous attempts listed above to link GIS and hydrologic models can be 

categorized as „loosely coupled‟ because both systems act independent of each other, and 

are only linked through input or output data. For example, GIS tools are used to develop 

the input file, which is then used to run the hydrologic model. Any changes in the model 

domain or input attributes during the modeling process are not reflected in the data that 

are used in creating the model input. With the availability of high resolution geospatial 

and temporal data, and improved capability of GIS to handle continuous, dynamic 

datasets including time series, it is now possible to expand the role of GIS beyond that of 

a pre– or post–processing tool for hydrology to a tightly coupled modeling environment 

where GIS can perform hydrologic simulations. 

If a hydrologic model investigates a new hydrologic component within the frame, 

an object–oriented approach allows for increased model flexibility without changing the 

main frame. The model codes that already exist in the old module can be extended by 

using the inheritance characteristic through an object–oriented approach (Kiker et al., 

2006). In recent years, object–oriented based hydrologic models are increasingly used in 

water resources research, and also the modeling paradigm in water resources is changing 

to the object–oriented approach (Wang et al., 2005). Creating an incremental watershed 

model can be made by object–oriented design methods and using an object–oriented 

programming language (Wang et al., 2005), and this model can be applied to various 

watershed conditions. Even though object–oriented based hydrologic models have 

attractive advantages, few object–oriented based hydrologic models exist, and there is no 
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detailed discussion for the principle of object–oriented hydrologic approach (e.g. Band et 

al., 2000; Kralisch et al., 2005; Lal et al., 2005).  

The most advanced water resources modeling research is increasing model 

flexibility to consider comprehensive natural phenomena. In addition, constructing this 

model can promote an extension of new hydrologic components by reducing inefficient 

efforts. This research presents the development of a new prototype hydrologic model 

frame, GIS and Hydrologic Information System Modeling Object (GHISMO), developed 

with an object–oriented approach. It should be noted that the objective of this work is not 

to create another model, but to create a framework where different models or their 

components can interact with each other within a GIS environment to overcome 

hydrologic modeling issues through an object–oriented approach.  

2.2. Object Orientation in Hydrology 

According to Bian (2007), object orientation involves three levels of abstractions: 

object oriented analysis, object oriented design, and object oriented programming. Object 

oriented analysis involves conceptual representation of the world including the facts and 

relationships about a situation. In hydrology, this would mean the conceptual 

representation of a watershed as a set of objects to include streams and corresponding 

catchments. Object oriented design uses the conceptual representation from object 

oriented analysis to create a formal model of objects, their properties, events, and 

relationships. Object oriented programming involves the implementation of objects and 

their events to accomplish a certain task. Object orientation relies on two basic principles: 

encapsulation and composition. Encapsulation considers that the world is composed of 

objects, and that each object has an identity, properties and behavior. The properties of an 

object are defined by its attributes (e.g., length, area), and the behavior is represented by 

methods. While the value of an attribute can define the state of an object, a method can 

change the state of an object, and that change is referred to as an event. For example, a 
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river object will have properties such as length and slope, methods such as RouteFlow 

and ComputeStorage, and routing a hydrograph through the river (by using RouteFlow 

method) is an event.  

The principle of composition describes how objects are related through 

relationships including inheritance, aggregation and association. In object orientation, all 

objects belong to object classes, and all classes are hierarchal. A sub-class is a kind of 

this own super-class (through inheritance) and inherits all properties and methods from 

the super class, but also may have its own additional properties and methods. An object 

can also be a part of another object (through aggregation), and can simultaneously 

maintain relationships with other objects (through association). For example, an 

AlluvialRiver class can be a sub–class of River super class (inheritance), a River class 

can be a part of RiverNetwork class (aggregation) and River class is related with 

Watershed class through streamflow (relationship). Past studies that used object 

orientation for hydrologic modeling include Whittaker et al. (1991) who used object–

oriented approach to model infiltration excess overland flow. Boyer et al. (1996) used 

object oriented approach to develop a lumped rainfall–runoff model. McKim et al. (1993) 

used object orientation to combine remote sensing and hydrologic data to develop a 

forecast model. Garrote and Becchi (1997), Band et al. (2000), and Wang et al (2005) 

proposed object oriented frameworks for modeling hydrologic processes at watershed 

scale. Most of these studies used object orientation to model hydrologic processes using 

the concepts of inheritance and aggregation. Recently, Richardson et al. (2007) proposed 

a prototype geographically based object framework for linking hydrologic and 

biochemical processes in the sub–surface. The process objects, however, were loosely 

coupled with geographic objects, thus leaving an opportunity for a tightly coupled 

geographically based object oriented modeling.  

Relatively recent advances in GIS have enabled adaption of object orientation in 

storing and handling geospatial and temporal hydrologic data in research and practice. 

For example, Arc Hydro (Maidment, 2002) uses an object oriented approach to represent 

hydrologic environment through feature, object and relationship classes within a 

geodatabase. In Arc Hydro, a HydroEdge (stream) is sub class of generic Polyline super 
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class (inheritance), and is a part of HydroNetwork (aggregation). HydroEdge is related to 

Watershed (which itself is a sub–class of Polygon super class) through a common 

identifier (HydroID). Thus, ArcHydro uses object orientation to develop a physical 

representation of hydrography by using GIS objects.  Thus, by knowing the HydroID of 

any geographic feature, it is possible to trace the flow of water by using points, lines, and 

polygons at multiple scales including at continental scale. The National Hydrography 

Dataset (NHD) available for the entire United States from the United States Geological 

Survey (USGS) also uses the object oriented (or geodatabase) design to provide data to 

its users.  

The geodatabase approach to hydrology data overcomes several practical issues 

which are associated with storing and handling heterogeneous multi–scale data by 

providing a relational data model. Besides overcoming the data issues, the geodatabase 

approach provides an opportunity to exploit the potential of object oriented approach to 

overcome the limitations of scale and parameterization in distributed modeling of 

hydrologic processes. For example, if a polygon representing a watershed in GIS is 

treated as a hydrologic object that has some properties (e.g. area and slope) and methods 

(to compute runoff and route flow), then multiple watersheds can be linked and executed 

in parallel to scale–up the modeling domain from one single watershed to larger (national 

or continental) scales. Similarly, the availability of increasing GIS layers to represent soil, 

landuse and topography at multiple scales, can enable parameterization of hydrologic 

processes (or watershed methods) through GIS tools, which is not possible with most 

existing models that do not explicitly work within a GIS environment. This research 

builds on past studies to create a prototype tightly coupled object oriented GIS based 

hydrologic model to simulate hydrologic processes using geospatial inputs. The prototype 

modeling approach presented in this research is developed by using Visual Basic and 

ArcObjects within ArcGIS, and is referred to as GIS and Hydrologic Information System 

Modeling Objects (GHISMO). 
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2.3. Hydrologic Modeling Objects 

An object–oriented hydrologic model framework is implemented in ArcGIS by 

developing hydrologic modeling objects as shown in Fig. 2.1. The hydrologic modeling 

object framework implements both principles of aggregation (represented with diamond) 

and inheritance (represented with triangle arrow) as shown in Fig. 2.1. HydroShed is the 

highest level class that includes the following six classes: (1) HydroGrid (to process 

gridded hydrologic information such as topography and rainfall), (2) ParameterGrid (to 

process gridded hydrologic parameters such as Mannings n), (3) HydroArea (to process 

vector hydrologic data for lakes and rivers), (4) HydroCatchment (to process vector 

hydrologic data for catchments or sub–watersheds), (5) HydroLine (to process vector 

hydrologic data for streams), and (6) HydroTable (to process tabular data). As displayed 

in Fig. 2.1, those classes dealing with raster, vector and tables are implemented in this 

research.  

ProcessGrid (to implement hydrologic processes) and TopoGrid (to implement 

terrain processes) are two sub–classes of the HydroGrid class. ProcessGrid can work on 

gridded data to implement hydrologic processes to create excess rainfall and runoff 

hydrograph by implementing specific sub–classes such as ExRain and Hydrograph as 

shown in Fig. 2.1. ExRain implements specific techniques such as SCS curve number 

(through SCS sub–class) and Green–Ampt (through GreenAmpt sub–class) to compute 

excess rainfall using the rainfall input. Hydrograph class implements specific techniques 

such as storage release to compute runoff hydrograph from excess rainfall. TopoGrid 

implements sub–classes to create terrain attributes such as flow direction, flow 

accumulation, stream network and catchment by using topography data (DEM).  

HydroArea can work on flow transformation by implementing specific techniques 

such as SCS dimensionless unit hydrograph (through SCSUnit sub–class) and Clark unit 

hydrograph (through ClarkUnit sub–class) for vector data. Also, HydroLine can work on 

river routing by implementing specific techniques such as Kinematic wave river routing 

(through KinematicWave sub–class) and Muskingum river routing (through Muskingum 

sub–class). 
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Figure 2.1 Object Model Diagram for GHISMO. 



 

 

15 

HydroTable implements three tables: TSTable, ParameterTable and PairTable. 

TSTable class processes time series table (e.g., rainfall and streamflow time series); 

ParameterTable processes parameter values linked to geographic features (e.g., 

Manning‟s n values for different land cover types); and PairTable processes paired data 

such as stage–discharge rating curves. 

2.4. Updating the GHISMO Framework 

An object in GHISMO allows creating a class or a function to handle a variety of 

hydrologic components. The GHISMO provides flexibility in modular development of 

the model without changing the basic framework through object–oriented approach, if 

hydrologic mechanisms need more advanced investigations. For example, this research 

creates a new object, RadarBias (to implement three different radar bias correction 

processes), to investigate the effect of different radar bias corrected rainfall inputs on 

hydrologic simulations as shown in Fig. 2.2. The GHISMO allows adding a RadarBias 

object that is a part of the new modeling processes without changing its main framework 

because the GHISMO is designed to be open to extension. The greatest benefit in the 

application of this design approach (open for extension for modification) is reusability 

and maintainability, and its advantages can overcome a prospective hydrologic modeling 

issue, such as making a large and complex hydrologic model. Specific methodology and 

application of hydrologic modeling as a part of the GHISMO framework are described in 

Chapter 3, and methodology and application of updating RadarBias object are also 

described in Chapter 4.  
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Figure 2.2 Update Object Model Diagram for GHISMO. 
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CHAPTER 3. DEVELOPMENT AND APPLICATION OF A STORAGE–RELEASE 

BASED DISTRIBUTED HYDROLOGIC MODEL USING GIS 

3.1. Introduction 

Hydrologic model development is complicated by the nonlinear, time dependent 

and spatially varying nature of rainfall–runoff mechanism (Remesan, 2009). The rainfall–

runoff process is affected by many factors such as rainfall dynamics, topography, soil 

type and land use. Significant advancements in hydrological modeling started with the 

introduction of unit hydrograph model and its related impulse response function 

(Sherman, 1932). Since then, a myriad of hydrologic models have been developed, 

calibrated and validated for several watersheds at different scales. Developing a realistic 

hydrologic model requires an understanding of the interrelation between parameterization 

and scale because as the scale of the hydrologic modeling problem increases, the 

complexity of the model increases as well (Famiglietti, 1994).   

The commonly used HEC–HMS (Hydrologic Engineering Center Hydrologic 

Modeling System; USACE, 1998) model does not account for spatial variations in 

hydrologic processes because it is a lumped hydrologic model which treats input 

parameters as an average over the watershed. In addition, use of HEC–HMS requires 

external software such as HEC–GeoHMS to produce necessary input files for the model. 

HEC–GeoHMS is an ArcGIS toolbar to process digital information related to topography, 

land use, and soil to produce input files for HEC–HMS. Because of their simplicity in 

terms of data requirements, model parameterizations and application, lumped hydrologic 

models such as HEC–HMS have been very popular in hydrology.  
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Application of semi–distributed or distributed models is complicated due to data 

requirements for physically based models (Koren et al., 2003), and parameter estimation 

for conceptual models (Moreda et al., 2006). To fully exploit the strength of semi–

distributed and distributed models, it is necessary to provide data that can capture the 

spatio–temporal variations in the hydrologic system including rainfall dynamics. 

Difficulties related to data requirements for spatially distributed hydrologic models are 

addressed by the availability of continuous digital data in the form of digital elevation 

model (DEM) and gridded radar rainfall. In addition to the availability of geospatial data, 

the use of geographic information system (GIS) to process grid and vector data has led to 

rapid progress in grid based distributed hydrologic modeling (e.g., Maidment, 1993; 

Olivera and Maidment, 1999; Melesse et al., 2004). The use of spatially distributed 

topographic, soils, land use, land cover, and precipitation data in GIS ready format 

provides the framework for the development, verification, and eventual acceptance of 

new hydrologic models capable of taking full advantage of these new data, while 

acknowledging the uncertainty inherent in the data. 

The broader goal of this study is to create a conceptual hydrologic model 

framework, called GIS and Hydrologic Information System Modeling Objects 

(GHISMO), which can utilize GIS data at different resolutions, and use these data to 

simulate hydrologic processes at multiple scales. GHISMO is expected to provide a 

platform where different models or their components can interact with each other within 

a GIS environment to overcome the issues related to computational requirements, scale 

and versatility through an object oriented design. As a first step towards accomplishing 

this broader goal, this chapter presents the development and application of a prototype 

grid based hydrologic model using object oriented programming concepts. The data and 

computational side of GHISMO is developed by using ArcObjects (building blocks or 

objects of the ArcGIS software), and the conceptual model for hydrologic simulations is 

based on a simple storage–release approach. In the storage–release approach, each cell in 

a raster grid provides storage for the water draining to it from neighboring cells, and then 

the water is released to downstream cells based on the travel time computed by 

combining the continuity and Manning‟s equations. This chapter specifically presents the 
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conceptual framework of the prototype hydrologic model, and its application to three 

study sites in Indiana. The grid based hydrologic model will be referred as the Storage 

Released based Distributed Hydrologic Model (STORE DHM). 

3.2. Background and Related Work 

Maidment (1993) proposed a time–area method within raster GIS to derive a 

spatially distributed unit hydrograph. Maidment‟s method uses a DEM to determine the 

flow direction from each cell based on the maximum downhill slope, and flow velocity 

through each cell is estimated based on the kinematic wave assumption. The travel time 

through each cell is then obtained by dividing the flow distance by the flow velocity. 

Maidment demonstrated that if a constant velocity can be estimated for each grid cell, a 

flow time grid can be obtained and subsequently isochronal curves and a time–area 

diagram can be determined for a watershed. Maidment‟s method is based on velocity 

time invariance in a linear hydrologic system. 

Melesse and Graham (2004) proposed a grid based cell travel time hydrologic 

model that assumes invariant travel times during a storm event. The runoff hydrograph at 

the outlet of watershed is developed by routing the spatially distributed excess 

precipitation through the watershed using topographic data. Calculation of travel times 

from each cell to the watershed outlet requires computation of a runoff velocity for each 

grid cell. Velocity for each grid cell can be estimated depending on whether the grid cell 

represents an area of diffuse overland flow or more concentrated channel flow. This 

method ignores the variations in travel time during the storm because it takes average 

excess rainfall intensity. The advantage of Melesse and Graham‟s grid–based travel time 

method is that it can create a direct hydrograph without a spatially lumped unit 

hydrograph during a rainfall event.  

The issue of invariant travel time proposed by Melesse and Graham (2004) is 

addressed by Du et al. (2009), who proposed a time variant spatially distributed direct 
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hydrograph travel time method (SDDH) to route spatially and temporally distributed 

surface runoff to the watershed outlet. In the time variant SDDH method, the cumulative 

direct runoff and travel time are calculated by summing the individual volumetric flow 

rates and travel times from all contributing cells to outlet along a flow path for a given 

time step. This approach, however, cannot maintain the total mass balance because a cell 

that receives input from multiple upstream cells gets accounted multiple times while 

computing the flow from upstream cells. Similarly a particular cell does not account for 

flow from adjacent cells while the flow is being routed from an upstream cell. For 

example, in Fig. 3.1, water from cell A flows to the outlet cell H through cells D–E–H. 

Similarly, water from cell B reaches the outlet through D–E–H. So if the flow at the 

outlet from cells A and B is computed as cumulative flow along the flow path, flows 

from D, E and H are accounted twice, thus compromising the mass balance. As a result, 

this technique requires adjustment of travel time (which is mistakenly referred to as 

calibration) to account for high volumetric flow rates computed through repeated 

accumulations. To overcome these issues in grid based hydrologic models based on 

travel–time concept, this study proposes a simple conceptual approach for distributed 

event based hydrologic modeling using the storage release approach. 
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(a) Cell Identifier (b) Flow Direction 

Figure 3.1 Example calculation in SDDH model. 
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3.3. Study Area and Data 

The methodology for the STORE DHM is evaluated by applying it to multiple 

storm events at three study areas including Cedar Creek, Crooked Creek and Fish Creek 

in Indiana. A description of the study sites including their total area, land use type, 

elevations and annual precipitation is provided in Table 3.1, and their geographical 

locations are shown in Fig. 3.1. The three watersheds included in this study provide good 

test cases with respect to size and land use types. The geospatial data used in this study 

include: (i) topographic information in the form of a DEM from the United States 

Geological Survey (USGS); (ii) the 2001 National Land Cover Dataset (NLCD) also 

available from the USGS; and (iii) SSURGO soil data available from the National 

Resources Conservation Service (NRCS). Topographic attributes of each watershed such 

as flow direction, flow length, and slope are extracted from the DEM. The land use grid 

is used to compute Manning‟s n for velocity calculations, and to extract SCS curve 

numbers. Initial values of Manning‟s n for different land use types for all three study sites 

are presented in Table 3.2. Computation of SCS curve number also requires information 

on hydrologic soil group, obtained from the SSURGO soil data, which define the 

proportionate extent of the component soils and their properties for each map unit.   

For each study site, hourly gauged rainfall data are obtained from the National 

Climatic Data Center, and NEXRAD StageIII radar rainfall data are obtained from the 

Ohio River Forecast Center (OHRFC). The NEXRAD rainfall dataset from OHRFC is 

distributed using the Hydrologic Rainfall Analysis Project (HRAP) projection. The 

HRAP or secant polar stereographic projection is an earth–centered datum coordinate 

system. Reed and Maidment (1995, 1999) describe the HRAP projection and its 

transformations to other geodetic coordinate systems. The NEXRAD StageIII data are 

converted to raster grids by using the methodology of Xie et al. (2005), which involves 

the following steps: (i) conversion of XMRG (binary) file format to ASCII; (ii) 

conversion of ASCII data to GIS grid format by first defining the HRAP projection, and 

then re–projecting it to a desired coordinate system; and (iii) clipping the rainfall grid 

over the area of interest. The computer programs needed to complete these steps are 
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available from the National Weather Service‟s office of hydrology web site 

(HTTP://WWW.NWS.NOAA.GOV/OH/HRL/DMIP/ NEXRAD.HTML).  

The streamflow data for the study sites are obtained from the USGS Instantaneous 

Data Archive web site (HTTP://IDA.WATER.USGS.GOV/IDA/). The streamflow values 

from USGS include both base flow and surface runoff. In this study, the straight line base 

flow separation method is used for retrieving surface runoff hydrographs from 

streamflow. 

 

 

 

Table 3.1 Study sites details for the STORE DHM Application. 

Watershed  
Area 

(km
2
) 

Land use 

Elevation 

Range 

(m) 

Average 

Slope 

(%) 

Annual 

Precipitation 

(mm) 

Cedar 

Creek 
707 

Agricultural 

(76%); forest 

(21%); urban 

(3%) 

238 – 

324 
3 1100 

Fish 

Creek 
96 

Agricultural 

(82%); urban 

(9%) 

268 – 

324 
3.2 900 

Crooked 

Creek 
46 

Urban (88%); 

agricultural (6%); 

forest (6%) 

217 – 

277 
1.2 880 

http://www.nws.noaa.gov/oh/hrl/dmip/%20nexrad.html
http://ida.water.usgs.gov/ida/
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Figure 3.2 Study Areas for the STORE DHM Application (C – Cedar Creek, F – Fish 

Creek, R – Crooked Creek). 
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Table 3.2 Initial values of Manning‟s n. 

Land use Range Initial Value 

Agricultural 0.030–0.500 0.220  

Forest 0.035–0.160 0.110  

Developed 0.011–0.035 0.035  

Water 0.025–0.033 0.033  
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3.4. Model Development 

As mentioned in the Introduction section, the hydrologic model proposed here is a 

part of a broader modeling framework using object oriented concepts in GIS. In a 

nutshell, this object oriented framework uses a DEM as a hydrologic object that has 

properties and methods such as ComuteRunoff and RouteFlow to perform hydrologic 

simulations. The algorithm presented in this paper includes one set of methods that this 

grid based hydrologic object can implement. The object can be extended to implement 

additional methods including the ones from existing grid based models. The details of 

this object oriented framework are beyond the scope of Chapter 3, and only the 

conceptual framework behind the hydrologic modeling algorithm (STORE DHM) is 

presented. 

3.4.1. Conceptual Framework 

The conceptual framework for the STORE DHM involves computing excess 

rainfall, volumetric flow rate, and travel time to the basin outlet by combining steady 

state uniform flow approximation with Manning‟s equation. Basic elements of this 

conceptual framework are presented below followed by an example demonstration using 

Fig. 3.3.  
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A B C 

D E F 

G H I 
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0.10 0.10 0.10 

0.10 0.10 0.10 

0.10 0.10 0.10 

0.08 0.08 0.08 

 

21 13 09 

12 09 06 

06 03 02 

03 03 02 

 

Cell Identifier Flow Direction Manning’s n Slope (%)  

  (a)   

 

0.66 0.66 0.45 

0.45 0.61 0.66 

0.61 0.66 0.45 

0.45 0.66 0.76 

 

2.93 2.93 2.01 

2.01 2.72 2.93 

2.72 2.93 2.01 

2.01 2.93 3.36 

 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

 

10540 10540 7242 

7242 9789 10540 

9789 10540 7242 

7242 10540 12089 

 

8.1 9.4 12.4 

11.2 11.1 11.9 

19.4 14.3 18.2 

14.8 13.0 13.7 

Pe1 (mm/hr) Q1 (m
3
/s) R1 (m

3
/s) S1 (m

3
) T1 (hr) 

  (b)   

 

2.58 2.58 2.30 

2.30 2.52 2.58 

2.52 2.58 2.30 

2.30 2.58 2.68 

 

11.45 11.45 10.22 

10.22 11.21 11.45 

11.21 11.45 10.22 

10.22 11.45 11.92 

 

0.36 0.31 0.16 

0.18 0.24 0.25 

0.14 0.20 0.11 

0.14 0.22 0.25 

 

50481 50660 43457 

44689 51045 51475 

49627 52313 44532 

43551 53578 54108 

 

4.4 5.0 6.0 

5.4 5.9 6.3 

10.1 7.5 8.8 

7.2 6.8 7.5 

Pe2 (mm) Q2 (m
3
/s) R2 (m

3
/s) S2 (m

3
) T2 (hr) 

  (c)   

Sample calculation for Sto2 for cell E:  

QE,2 = ieE,2 * Area = (2.52/3600) * 0.001 * (4000 ^2) = 11.20 m
3
/s 

RE,2 = SE,1 * (∆T/ tE,1 ) = 2.72 * ((60*60)/(11.1147*3600)) = 0.24 m
3
/s 

SE,2 = QE,2∆T + SE,1 – RE,2∆T + RD,2∆T + RB,2∆T = (11.21*3600)+9789–(0.24*3600)+((0.18+0.31) *3600) = 51045 m
3
 

VE,2  = (SE,2/∆T) / (L*Y) = (51045/3600)/(4000*0.01834) = 0.19 m/s 

TE,2 = L/VE,2 = (4000)/ 0.19 = 21052 s  = 5.85 hr 

Figure 3.3 Sample calculations using a 3 x 4 hypothetical grid. 
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 (1) Excess Rainfall 

The main input to the model is rainfall that can come from either rain gauge(s) or 

radar (NEXRAD) data. The first step is to compute the excess rainfall by accounting for 

infiltration losses and depression storage. Excess rainfall is estimated by using the Soil 

Conservation Service (SCS) curve number technique (Eq. 3.1) for unsteady rainfall (SCS 

1985). The excess rainfall (Pe in mm) is the portion of rainfall that remains after initial 

and continuous abstractions. 

 

e a aP P I F  Eq. 3.1 

 

where P is precipitation (mm), and Ia = initial abstraction which is equal to 0.2*Sr. Sr is 

maximum soil water retention parameter (mm) given by Eq. 3.2, and Fa is the cumulative 

distribution of abstractions (mm) given by Eq. 3.3. 

 

rS  = 
25400

254
CN

 
Eq. 3.2 

 

where CN = curve number. 

 

aF  = 
( )r a

a r

S P I

P I S
        

aIP  
Eq. 3.3 

 

The SCS curve number ( CN ) indicates the runoff potential of an area with a given 

combination of land use characteristics and hydrologic soil group. 

 

(2) Excess Runoff  

For a shallow water depth in overland or channel flow, the wetted perimeter is 

practically independent of the surface area, and the flow in each cell can be computed by 

Eq. 3.4 after Gupta et al. (1995). 
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, ( , )i t e i tQ i A  Eq. 3.4 

 

where Qi,t is the flow (m
3
/s) corresponding to excess rainfall intensity ie(i,t) (equal to  

*

( , ) /e i tP t : *t  is time interval of rainfall) for a given time step (t) at the i
th

 cell, and A is 

the surface area (m
2
) of the cell. 

 

(3) Flowrate and Routing   

After Qi,t is computed using Eq. 3.4, the flow is then routed by using a simple storage 

release approach. In this approach (Fig. 3.4), water within a watershed or stream can be 

assumed to flow through a series of buckets. At any given time step, each bucket stores 

the accumulated water of all upstream buckets that drain into it, and then releases the 

stored water to its next downstream bucket at the next time step as shown in Fig. 3.4. 

Following the conceptual model from Fig. 3.4, storage at any given time in any given 

bucket (or a raster cell in the context of this paper) is given by Eq. 3.5.  

 

, , , 1 , ,i t i t i t i t u tS Q t S R t R t  Eq. 3.5 

 

where Ri,t (given by Eq. 3.5) represents the release term from cell i in the t
th

 time step, 

and the difference between S and R represents the storage in the cell. The subscript u in 

Eq. 3.5 represents the surrounding upstream cells that are draining to cell i. In Fig. 3.4, 

each bucket or cell releases its stored water to a downstream cell depending on the 

residence or travel time of the water within each cell. The release term in Eq. 3.5 for each 

is computed by using Eq. 3.6.  
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Eq. 3.6 
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△t, all buckets are storing 

1 unit of water with Q=0 

at the outlet. 

2△t, all buckets release their stored 

water to the next bucket and store 

water from upstream buckets. There 

is no additional input. 

3△t, storage from upstream, 

and release to downstream 

continues. 

 

Figure 3.4 Storage release concept. 
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 where Ti,t is the travel time within each cell, and is estimated depending on the flow 

conditions (overland flow or channel flow). In Eq. 3.6, all the water stored within a cell is 

released downstream if the travel time (Ti,t) is smaller than the model time step (△t), or a 

fraction (△t/ Ti,t) of the water is released if the travel time is greater than the model time 

step.  

 

(a) Travel time for overland flow  

Overland flow travel time in a grid cell can be estimated by combining the steady 

state uniform flow approximation with Manning‟s equation (Singh and Aravamuthan, 

1996). The overland flux can be given by Eq. 3.7 as shown below. 

 

,*

,

i t

i t

S
f

t A
 

Eq. 3.7 

 

where 
*

,i tf  is the overland flow flux (m/s), and A is the surface area of the cell (m
2
). The 

surface flow rate is calculated by using the Manning‟s equation below (Chow et al., 

1988).  

 

1/2 2/3

fs y
V

n
 

Eq. 3.8 

 

where V = velocity (m/s), y is the depth of water on the surface (m), 
fs  is the friction slope and n 

is Manning‟s roughness coefficient. For steady state overland flow, unit width discharge in any 

given cell is:  

 

*

, , , ,i t i t i i t i tq f L y V  Eq. 3.9 
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where q is unit width discharge (m
2
/s) and L is the flow length (equal to cell size for 

north–south and east–west flow, and equal to 1.414 times cell size for diagonal flow 

directions). Equation 3.9 can be written in terms of y as shown below. 

 

*

,

,

i t i

i t

f L
y

V
 

Eq. 3.10 

 

Equations 3.8 and 3.10 can be combined to get the following equation for V in each cell 

 

0.3 0.4 * 0.4

,

, 0.6

i i i t

i t

i

s L f
V

n
 

Eq. 3.11 

 

where Vi,t is overland flow velocity (m/s) in i
th

 cell at time t and si is slope of surface in 

cell i. Travel time for any cell i is then computed from overland flow velocity and the 

flow distance using Eq. 3.12 below. 

 

,

,

i
i t

i t

L
T

V
 

Eq. 3.12 

 

 

(b) Travel time for channel flow 

Channel flow velocity, Vi,t, is computed by using Manning‟s equation and the 

continuity equation for a wide channel (Muzik, 1996; Melesse, 2002): 

 

,i t

c t t t

S
AV ByV

t
 

Eq. 3.13 

 

where Ac is channel cross-section area. 
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,i t

t

t

S
y

BV t
 

Eq. 3.14 

 

where B is channel width (m). Manning‟s equation for channel flow is:  

 

1/2 2/3

fs R
V

n
 

Eq. 3.15 

 

where R is the hydraulic radius (cross–sectional area divided by wetted perimeter). For a 

wide channel R = y, and assuming sf = si, Eqs. 3.14 and 3.15 yield 

 

0.6
0.670.5

,

,

i ti
i t

i

Ss
V

n B t
 

Eq. 3.16 

 

Travel time for any cell i is then computed from channel flow velocity and the flow 

distance. 

 

,

,

i
i t

i t

L
T

V
 

Eq. 3.17 

 

Computation of Si and Ri can be explained by considering a hypothetical grid shown in 

Fig. 3.1. Figure 3.1 (a) shows the flow direction, Manning‟s n and slope for each cell in 

the model domain. Figures 3.1 (b) and 3.1 (c) show Qi, Si, Ti and Ri for each cell due to 

excess rainfall (Pe) in two time steps (t=1 and 2). In Fig. 3.1 (b), Si,t = Qi,t for the first 

time step (t = 1) because Ri,t, Ru,t and Si,0 have zero values. Ti,t corresponding to Si,t is 

computed by using Eq. 3.12 or 3.17. For the next time step (t = 2 and t = 60 min), sample 

calculations for cell E are presented at the bottom of Fig. 3.1. The release term (Ri,t) at the 

outlet cell (K) produces the surface runoff hydrograph for the watershed.  
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 (3) Selection of Model Time Step (△t) 

In any grid based model such as the STORE DHM presented in Chapter 3, the grid 

size affects the estimation of topographic parameters like slope, flow direction and flow 

path, thereby affecting the travel time computation, and eventually the flow hydrograph. 

As a result, a model that works at one given DEM resolution may not work for other 

DEM resolutions. Specifically, a finer resolution DEM produces lower peak (larger travel 

time), and a coarser resolution produces higher peak. Thus the model time step should be 

selected to ensure consistency in model results for different resolution DEMs. For any 

given DEM resolution, there is a minimum time step at which the water in all cells in a 

DEM will move to the next downstream cell. This time step is referred in this paper as 

the critical cell travel time (CCT). The CCT depends largely on DEM resolution, but is 

also affected by surface roughness, watershed slope and rainfall intensity. Estimation of 

CCT (in seconds using Eq. 3.18) for a given DEM resolution is based on the minimum 

surface roughness (n) and maximum slope (S) among all grid cells, and the flow (Q in 

m
3
/s) corresponding to the maximum rainfall intensity in the watershed.  

 

0.5 0.6/ [( ) / ( )]

L
CCT

Q n Q s L L
 

Eq. 3.18 

 

 

where CCT is in seconds and L is cell size in meters. CCT values for Cedar Creek DEM 

for different resolutions are presented in Table 3.3, and the effect of CCT in selecting the 

model time step for the STORE DHM simulations is presented in Fig. 3.5 using five 

different (30m, 150m, 300m, 500m and 1000m) DEM resolutions. Fig. 3.5 (a) shows the 

output from the STORE DHM for different grid resolutions using 15 min. model time 

step, and as expected the peak increases with cell size. However, if the model simulation 

time step is less than CCT for each DEM resolution, the output hydrographs are 

consistent (Fig. 3.5 (b)). Thus, all simulations in this study are conducted using a time 

step smaller than CCT to account for the effect of DEM size on model results.   
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Figure 3.5 Cedar Creek model hydrographs with different DEM resolutions: (a) STORE 

DHM simulation with 15min simulation time step: (b) STORE DHM simulation using 

time step based on CCT. 
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Table 3.3 CCT for different grid resolutions using Cedar Creek DEM 

DEM size(m) CCT (hr) CCT (min) 

30 0.076 4.56 

150 0.199 11.94 

300 0.301 18.06 

500 0.409 24.54 

1000 0.621 37.26 
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3.5. Results 

3.5.1. Model Calibration and Verification 

Four isolated storms are selected for model application at the three study sites 

(details presented in Table 3.4), and the model output is validated against observed 

streamflow data at a USGS gauging station located at the outlet of each study site. The 

model is executed by using both gauged and NEXRAD data, and the results are evaluated 

by using two performance measures: the Nash Sutcliffe efficiency coefficient (
NSE ) 

given by Eq. 3.19 (Nash and Sutcliffe, 1970), and the co–efficient of determination (R
2
). 

 

 

n

i

oioi

n

i

sioi

NS

XX

XX

E

1

2

1

2

)(

)(

1  

Eq. 3.19 

 

 

where oiX  = average measured value during the simulation period, siX  = simulated 

output on step i , and oiX  = observed data on step i . 
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Table 3.4 Details of storm events for each site. 

Study 

Site 

Event 

# 

Start Date 

and Time 

Time 

Step 

(hr) 

Total Precipitation 

(mm) 
Total 

Streamflow 

(mm) 

Peak 

Flow  

(m
3
/s) 

Time 

to 

Peak 

(hr) 
Gauge NEXRAD 

Cedar 

Creek 

1 
05–02–02, 

00:00 
1.00  7.68  8.49  4.79  23.36  30.0  

2 
05–02–21, 

01:00 
1.00  9.46  8.86  6.32  27.30  26.0  

3 
05–03–19, 

16:00 
0.50  8.89  8.94  2.88  12.80  17.5  

4 
06–01–13, 

22:00 
0.25  17.10  16.99  3.91  24.95  14.5  

Fish 

Creek 

1 
05–01–12, 

22:30 
0.50  40.34  34.74  12.58  8.67  25.0  

2 
05–03–06, 

13:30 
0.50  11.39  14.71  3.37  2.10  28.5  

3 
06–01–02, 

16:00 
0.50  15.24  17.47  5.33  3.03  20.5  

4 
06–02–16, 

08:30 
0.50  20.39  21.17  4.64  3.34  27.0  

Crooked 

Creek 

1 
05–01–03, 

14:45 
0.25  45.72  38.25  15.93  28.07  7.5  

2 
05–01–11, 

08:45 
0.25  36.13  33.21  12.01  16.57  8.5  

3 
05–02–05, 

12:45 
0.25  31.56  31.39  6.21  7.39  11.5  

4 
05–02–13, 

06:15 
0.25  40.64  36.56  18.99  18.41  6.0  
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The STORE DHM is first executed without calibration for each study site using 

rain gauge data for event 1 (C1, F1 and R1 in Table 3.5). The resulting hydrographs and 

then properties are presented in Fig. 3.6 and Table 3.5. Un–calibrated results show that 

the peak flow is underestimated by 30% for Cedar Creek, overestimated by 30% for Fish 

Creek, and within less than 0.5% error for Crooked Creek. Similarly, the time–to–peak is 

overestimated for Cedar Creek (10%) and Crooked Creek (33%) and underestimated for 

Fish Creek (20%). Overall, the total run–off depth between the model output and 

observed data looks reasonable for both Fish and Crooked Creek, and for Cedar Creek, 

the model runoff is 20% lower than observed runoff. The Nash–Sutcliffe coefficient is 

lower than 0.7 for all simulations. After the un–calibrated simulation for event 1, the 

model is calibrated manually for the same event at each study site by treating Manning‟s 

n as the calibration parameter. Calibrated values of Manning‟s n for each land use at each 

study site are presented in Table 3.6.  

 

 

Table 3.5 Uncalibrated models results for Event 1 at each study site (C is Cedar Creek, F 

is Fish Creek and R is Crooked Creek.). 

Area 
Runoff Depth 

(mm) 

Peak Flow 

(m
3
/s) 

Time to Peak 

(hr) 
R

2
 ENS 

C1 3.915  16.340  33.0  0.72  0.57  

F1 11.809  11.030  19.5  0.83  0.68  

R1 14.889  27.080  10.0  0.65  0.63  
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Figure 3.6 Uncalibrated model results for Event 1 (C1, F1 and R1) using gauged rainfall 

input. X–axis represents time in hours and Y–axis represents flow in cubic meters per 

second. 

Observation STORE DHM 
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Table 3.6 Manning‟s n for study areas. 

Land use Range 
Initial 

Value 

After Calibration 

Cedar Creek Fish Creek Crooked Creek 

Agricultural 0.030–0.500 0.220  0.103  0.253  0.153  

Forest 0.035–0.160 0.110  0.092  0.232  0.132  

Developed 0.011–0.035 0.035  0.083  0.193  0.043  

Water 0.025–0.033 0.033  0.006  0.076  0.026  
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Table 3.7 Calibration and validation results for all events (1–4) for Cedar Creek (c), Fish 

Creek  (F) and Crooked Creek (R) using gauge rainfall. 

Event  

Simulation with Gauge Rainfall 

Runoff Depth 

(mm) 

Peak Flow 

(m
3
/s) 

Time to Peak 

(hr) 
R

2
 ENS 

C1 4.30  22.92  26.00  0.90  0.87  

C2 6.03  36.00  26.00  0.92  0.78  

C3 2.49  12.88  21.00  0.98  0.95  

C4 3.08  23.89  14.50  0.95  0.85  

F1 10.96  8.50  25.00  0.86  0.81  

F2 2.93  1.97  14.00  0.89  0.82  

F3 4.96  2.84  21.50  0.90  0.88  

F4 5.05  3.29  29.00  0.90  0.87  

R1 16.00  27.58  8.25  0.84  0.84  

R2 10.95  17.12  9.75  0.91  0.89  

R3 5.83  7.40  10.75  0.76  0.73  

R4 15.15  19.87  7.25  0.91  0.87  
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Table 3.8 Calibration and validation results for all events (1–4) for Cedar Creek (c), Fish 

Creek  (F) and Crooked Creek (R) using NEXRAD rainfall. 

Event  

Simulation with NEXRAD Rainfall 

Runoff Depth 

(mm) 

Peak Flow 

(m
3
/s) 

Time to Peak 

(hr) 
R

2
 ENS 

C1 4.65  23.36  27.00  0.88  0.88  

C2 4.88  28.27  23.00  0.94  0.83  

C3 2.57  13.18  21.50  0.97  0.95  

C4 3.10  24.26  11.00  0.74  0.64  

F1 10.44  8.07  23.50  0.91  0.81  

F2 3.61  1.87  24.50  0.83  0.81  

F3 5.24  3.21  13.50  0.93  0.93  

F4 5.57  3.14  27.00  0.80  0.70  

R1 15.77  28.60  7.25  0.97  0.97  

R2 9.98  14.74  8.00  0.94  0.85  

R3 5.83  7.00  11.50  0.75  0.74  

R4 12.48  17.80  7.75  0.84  0.71  
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Figure 3.7 Cedar Creek model hydrographs. X–axis represents time in hours and Y–axis 

represents flow in cubic meters per second. 

Observed STORE DHM 
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Figure 3.8 Fish Creek model hydrographs. X–axis represents time in hours and Y–axis 

represents flow in cubic meters per second. 

Observed STORE DHM 
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Figure 3.9 Crooked Creek model hydrographs. X–axis represents time in hours and Y–

axis represents flow in cubic meters per second. 

Observed STORE DHM 



46 

 

 

After calibration using gauged rainfall, the model is applied to the same event 

using NEXRAD input, and these results are presented in Tables 3.7 and 3.8. Tables 3.7 

and 3.8 also present results from application of the model for three additional events at 

each site using both rain gauge and NEXRAD rainfall input. Hydrographs corresponding 

to results in Tables 3.7 and 3.8 are presented in Figs. 3.7–3.9 for each study site. 

Qualitative and quantitative comparisons of each model hydrograph (peak flow, total 

run–off depth and time–to–peak in Tables 3.7 and 3.8) with observed hydrograph show 

reasonable agreement (Table 3.4). Two performance measures (R
2
 and ENS) used in this 

study give a value of 0.8 or higher for most events included in this study with an average 

R
2
 and ENS of 0.88 for Cedar Creek, 0.85 for Fish Creek, and 0.85 for Crooked Creek. 

Regardless of the values of performance measures, the differences between observed data 

and model results including the differences between gauged and NEXRAD output can be 

attributed to the overall modeling approach and the quality of the input data.  

3.5.2. Comparison with HEC–HMS 

In addition to calibrating and validating the STORE DHM against independent 

storm events, the model results are compared with another event based model, HEC–

HMS, for storm events in Cedar Creek. The HEC–HMS model for Cedar Creek also uses 

the SCS curve number method for computing excess rainfall, and the excess rainfall is 

transformed to the runoff hydrograph using the Clark Unit Hydrograph method. The 

routing through river channels is simulated by using the simple lag method. The Clark 

unit hydrograph method has two parameters (Time of Concentration and Storage 

Coefficient), and the lag method has one parameter (Lag time). Thus, the HEC–HMS 

simulations used in this study involve three parameters. Similar to STORE DHM, HEC–

HMS is calibrated for these three parameters by using the data for the first storm event. 

The calibrated model is then validated by conducting simulations for three additional 

storm events in Cedar Creek. Table 3.9 presents a summary of model results and error 
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statistics for HEC–HMS simulations. Excluding the calibration results for event 1, HEC–

HMS over estimates the peak discharge by 40% for Event 2 to more than 200% for event 

3 (Fig. 3.10). The time–to–peak is underestimated for events 2 and 4, and overestimated 

for event 3. Results for events 3–4 are particularly discouraging from HEC–HMS in 

terms of the overall hydrograph shape and run–off volume.   

 

 

 

 

Table 3.9 HEC–HMS model results for Cedar Creek. 

Event  

HEC– HMS Simulation with Gauged Rainfall 

Runoff Depth 

(mm) 
Peak Flow (m

3
/s) 

Time to Peak 

(hr) 
R

2
 ENS 

C1 4.49  22.86  24.00  0.94  0.92  

C2 8.98  37.09  21.00  0.85  0.18  

C3 17.60  37.04  16.50  0.86  –9.66  

C4 51.24  62.61  21.25  0.05  –16.53  
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Figure 3.10 Comparison of HEC–HMS and STORE DHM hydrographs with observed 

data for Cedar Creek. X–axis represents time in hours and Y–axis represents flow in 

cubic meters per second. 
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3.5.3. Comparison with time variant SDDH Model 

The results from the STORE DHM are compared with the grid based time variant 

spatially distributed direct hydrograph travel time method (SDDH) by Du et al. (2009). 

The methodology for this comparison is similar to that of HEC–HMS and involves 

calibration of the time variant SDDH model using the first storm event, and validation 

using the next three storm events. The velocity needed to compute the travel time in time 

variant SDDH is given by Eq. 3.20, which involves a parameter K that is determined 

through calibration. Through manual calibration of the model for Event 1, a value of 6.5 

was determined for K, and used in subsequent simulations.  

 

 

3/8 1/4 3/4

0V Ks Q n  Eq. 3.20 

 

 

where V is velocity in m/s, Q is discharge m
3
/s, s0 is the channel slope, and n is 

Manning‟s coefficient. Results (Fig. 3.11 and Table 3.10) show that time variant SDDH 

over estimates both peak discharge and time–to–peak for events 2–4 compared to the 

observed flow. The overestimation of peak discharge ranges from 15% for event 4 to 

50% for event 2. Similarly, the time–to–peak is overestimated in the range of 10% for 

event 4 to 50% for event 2.  
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Table 3.10 Time variant SDDH model results for Cedar Creek. 

Event  

SDDH Simulation with Gauged Rainfall 

Runoff Depth 

(mm) 

Peak Flow 

(m3/s) 

Time to Peak 

(hr) 
R

2
 ENS 

C1 7.55  29.30  35.00  0.64  0.13  

C2 10.16  44.54  32.00  0.86  –0.38  

C3 8.21  20.48  26.00  0.82  –0.12  

C4 28.06  30.30  15.75  0.84  0.74  
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Figure 3.11 Comparison of time variant SDDH and STORE DHM hydrographs with 

observed data for Cedar Creek. X–axis represents time in hours and Y–axis represents 

flow in cubic meters per second. 
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3.6. Discussion 

The storage release approach used in this study is dependent mainly on the travel 

time, which in turn is dependent on Manning‟s n. The fact that the model is calibrated 

using only one parameter is attractive from a practical point of view, but it sometimes 

becomes difficult to get both the peak flow and the time–to–peak to match with observed 

data. The error in peak flow for all simulations is much smaller compared to the error in 

time–to–peak. For example, the average percentage error in peak flow for Cedar Creek, 

Fish Creek and Crooked Creek is 7.8%, 4.2%, and 3.1%, respectively. The average 

percentage error in time–to–peak for Cedar Creek, Fish Creek and Crooked Creek is 

8.0%, 28.8%, and 11.5%, respectively. Inclusion of more parameterized approaches for 

computing excess rainfall (or losses) such as the Green–Ampt Method may provide more 

flexibility in modeling hydrographs, but these options are still under development, and 

are not tested in this study.  

Radar precipitation estimates are obtained by converting reflectance (Z) into 

precipitation (R) by using Z–R relationship (Smith, 1986). The Z–R relationship has 

uncertainties that affect the estimated radar precipitation, and in general, radar estimates 

tend to be different from rain gauge data. NEXRAD data attempts to reduce this 

difference by assimilating rain gauge data into radar precipitation estimate, but still some 

differences remain between rain gauge data and radar precipitation as evident from 

results in Table 3.4. For example in Crooked Creek watershed, which is mostly urban, 

total NEXRAD precipitation estimates are significantly lower compared to rain gauge 

data for three storm events (R1, R2 and R4); whereas for Fish Creek watershed (rural) 

NEXRAD precipitation estimates are higher than gauged data. Despite these differences 

in the input data, the overall model hydrograph shape is not different for both gauged and 

NEXRAD input (Figs. 3.7–3.9), but the total runoff depth (or volume) is different as 

shown in Tables 3.7 and 3.8.  

The storage release approach in the STORE DHM does seem to capture the spatial 

distribution of rainfall as evident in C1 and C2 for Cedar Creek. In the case of C1, it 

seems that the rainfall was more uniformly distributed over the area thus giving 
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reasonable hydrographs for both gauged and NEXRAD. However for C2, higher rainfall 

recorded at the gauge yields higher runoff volume and peak (Fig. 3.7–C2), but the 

NEXRAD hydrograph matches well with observed data, thus suggesting that the rainfall 

observed at the gauge was higher than the average rainfall in the watershed. Similarly, the 

storage release approach seems to capture the bimodal nature of hydrographs observed in 

Crooked Creek watershed (Figs.3.9–R1 and 3.9–R3). The results with NEXRAD input 

are relatively better compared to gauged input for bimodal hydrographs. If it is assumed 

that NEXRAD precipitation provides better representation of the spatial distribution of 

rainfall in a watershed, then simulation results using Multisensor Precipitation Estimators 

(MPE) data should provide better output compared to the output from gauge rainfall in 

terms of peak flow and time–to–peak, which are important attributes in event based 

modeling. The results, however, show that output from MPE are not always better in 

terms of predicted peak flow and time–to–peak for some events compared to gauged data. 

These events include C4, F1, F2, F4, R1, R2 and R4 for peak flow as well as C2, C3, C4, 

F1, F3 and R4 for time to peak. 

The inability of HEC–HMS to produce reasonable results for all Cedar Creek 

simulations (Fig. 3.10) is understandable considering that the hydrograph (C1) that was 

used for its calibration has different characteristics (e.g., shape, duration and flow peak) 

compared to the other three events (C2–C4) used for its verification. Similarly, although 

the output from time variant SDDH for Cedar Creek simulations is better compared to 

HEC–HMS, the peak flow is over estimated by time variant SDDH for all simulations. 

Comparison of STORE DHM with both HEC–HMS and time variant SDDH 

demonstrates its robustness in simulating different types of events with consistent results. 

This robustness of STORE DHM can be attributed to its dependence on only one 

parameter (Manning‟s n), which retains its physical meaning (representation of surface 

roughness) in all simulations, and the selection of model time step using the concept of 

critical cell travel time.  
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3.7. Conclusions and Future Work 

The conceptual framework and application of a grid–based model, the STORE 

DHM, using the storage–release concept is presented in this study. Results show that the 

STORE DHM is able to simulate the hydrologic behavior of a watershed to produce 

streamflow hydrographs that match well with observed data. In addition, the STORE 

DHM is able to ingest both point and distributed rainfall input, and the comparison of 

outputs from these two types of inputs show that the storage–release approach is able to 

capture the rainfall dynamics in the NEXRAD data. Unlike other raster or grid–based 

models that route the flow from each cell to the watershed outlet along a common flow 

path at each time step (which can lead to improper water balance), the STORE DHM 

considers the flow contribution of neighboring cells by using the simple continuity 

equation (change in storage = input – output). This simplicity in turn provides 

computational efficiency, which is critical for real–time hydrologic forecasting. Similarly, 

the STORE DHM is a part of the broader GHISMO framework that provides flexibility in 

modular development of the model without changing the basic framework. For example, 

Chapter 4 presents a module to correct the bias (due to Z–R conversion and limited rain 

gauges information) in Multisensor Precipitation Estimator (MPE) NEXRAD data by 

developing an object for assimilating multiple data sources to get robust rainfall input. 

The modeling framework presented in this chapter is operated within ArcGIS 

environment such that all the steps from extracting information from geospatial data to 

running model simulations are executed in ArcGIS environment. The approach from data 

to model output within a single environment is attractive from a practical point of view. 

Although the prototype modeling approach and its application including comparison with 

HEC–HMS and time variant SDDH is encouraging, there are several issues that still need 

to be addressed for this modeling framework to be fully useful for practical applications. 

These issues include: (i) testing the scalability of the model by applying it to larger 

watersheds (with more than 1,000 km
2
 area) including regional basins (with areas in the 

range of several 10,000 km
2
); (ii) investigation of computational efficiency and simplicity 

with multiple runoff generation mechanisms (e.g., Green–Ampt) and parameters; (iii) 
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ability of the model to ingest near real–time spatial (remote sensing) and temporal data 

for hydrologic modeling; and (iv) creating a protocol through which existing research 

codes can be converted to objects that can be incorporated into GHISMO. 
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CHAPTER 4. IMPROVING RAINFALL ACCURACY ON DISTRIBUTED 

HYDROLOGIC MODELING BY USING SPATIALLY UNIFORM AND NON–

UNIFORM NEXRAD BIAS CORRECTION 

4.1. Introduction 

Representation of rainfall dynamics plays a critical role in making accurate 

hydrologic predictions. Numerous studies in the past decades have investigated the 

sensitivity of runoff hydrographs to rainfall by using gauged data. In addition to the 

accuracy of gauged rainfall input, the predictability and sensitivity of hydrologic models 

are dependent on the spatio–temporal representation of rainfall (Faures et al. 1995; 

Wilson et al. 1979; Troutman et al. 1989). To overcome these limitations, radar rainfall 

data are increasingly used in hydrologic applications (Smith et al., 2004). The next 

generation radar (NEXRAD) products available from 1992 provide high resolution 

rainfall information in space and time. Currently, the NEXRAD precipitation products 

are categorized into four levels according to the amount of preprocessing, calibration, and 

quality control performed. The StageI product is an hourly digital precipitation (HDP) 

directly derived from reflectivity measurements using a Z–R (reflectivity–rainfall) 

relationship after the application of several quality control algorithms (e.g. Fulton et al., 

1998). StageII is the single radar site HDP product, which is merged with surface rain 

gauge observations to correct mean field bias using Kalman filtering (Smith and 

Krajewski, 1991; Anagnostou et al., 1999). In StageIII, the StageII rainfall data from 

multiple weather radars covering a River Forecast Center (RFC) region are combined 

(Fulton et al., 1998; Reed and Maidment, 1999). Finally, StageIV is the mosaicked 

StageIII rainfall product covering the entire Continental United States (CONUS).  
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The most commonly used NEXRAD product in hydrometeorological applications 

is the NEXRAD StageIII data (e.g. Young et al., 2000) since it involves the correction of 

radar rainfall rates with multiple surface rain gauges and has a significant degree of 

metrological quality control by trained personnel at individual RFCs (Fulton et al., 1998). 

Since around 2002, Multisensor Precipitation Estimator (MPE), which are developed by 

the National Weather Service (NWS) Office of Hydrology, is available for each RFC. 

The MPE product is obtained by merging radar, gauge and satellite estimates of rainfall 

and is adjusted for mean field and local biases. In spite of better spatial representation of 

rainfall variability by radar, there are limitations of radar estimates due to data 

contamination and uncertainty issues (Smith et al., 1996; Legates, 2000; Xie et al., 2006). 

In particular, uncertainty in radar rainfall is caused by reflectivity–rainfall conversion 

method, limitation of available rain gauge information for mean field bias adjustment and 

spatially uniform bias correction for entire RFCs. Minimizing errors in radar precipitation 

has been one of the major tasks in hydrologic and meteorologic research for decades 

(Schimid and Wuest, 2005). 

An intense topic of water resources research has been merging radar and gauge 

rainfall to estimate a high accuracy rainfall. Smith and Krajewski (1991) found that 

combining radar and gauge information produces improved precipitation estimates, in 

terms of both quality and spatial resolution, in comparison with either radar or gauge 

estimates alone. Krajewski (1987), Pereira et al. (1998) and Seo (2002) proposed co–

kriging, statistical objective analysis and Kalman filtering approach, respectively. 

However, uncertainty persists in radar precipitation products because large portions of 

radar coverage areas do not have rain gauge data to adjust biases in radar rainfall 

(Winchell et al., 1998; Habib et al., 2009). The different radar rainfall error correction 

schemes in mountainous areas are investigated by Dinku et al. (2002). Correction for 

terrain blocking, adjustment for rain attenuation, and interpolation of reflectivity data are 

used for radar rainfall error correction. They also used a Kalman filtering–based mean 

field radar bias correction scheme that is similar to the approach of the Anagnostou and 
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Krajewski (1998) study. They found that adjustment of radar bias with the filtering 

approach produced extremely high accuracy radar rainfall. 

In NEXRAD StageIII (MPE), analysis bias in radar rainfall is corrected using 

available rain gauges. The correction procedures assume that the biases are spatially 

uniform over the entire RFC region. These spatially uniform biases are referred to as 

mean field bias (Smith and Krajewski, 1991). However, recent studies have shown that 

the assumption of spatially uniform bias is not valid over particular regions (Li et al., 

2010). The NEXRAD rainfall bias over a small watershed in an RFC region could be 

very different from the mean bias over the entire RFC region. Looper et al. (2009) 

concluded that even though MPE already takes radar bias correction, the resulting 

precipitation may not be accurate for a particular river basin, because adjustment is 

performed on the entire RFC region. Consequently, hydrologic model simulations for a 

particular watershed with MPE analysis data could be unrealistic. Nevertheless, the effect 

of these spatially non–uniform local biases on hydrologic simulations is not well 

understood (Li et al., 2010). Further, the few methods that are available to correct 

spatially non–uniform local biases (Seo et al., 2001) have limitations such as limited 

number of rain gauge data for correcting local radar biases, and their sensitivity to 

hydrologic model simulations has not been tested.  

Literature shows that the availability of high–resolution precipitation data from 

different weather radar platforms has led to improved understanding of rainfall 

uncertainty in hydrologic models, but few efforts have been directed towards 

understanding the influence of NEXRAD precipitation and its bias correction on rainfall–

runoff simulations. This study presents three different NEXRAD rainfall bias correction 

schemes and their influence on sensitivity of grid based distributed hydrologic model 

simulations.   
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4.2. Study Areas and Data 

The Upper Wabash River and the Upper Cumberland River (Fig. 4.1) basins are 

selected as the test beds for this study. In addition to providing two distinct geographic 

locations, both study areas include a reasonable rain gauge network to compare bias 

correction schemes using NEXRAD data. The Upper Wabash River basin (UWR; 17,907 

km
2
) is located in north central Indiana, and it drains into the Wabash River. The 

elevation in UWR ranges from 149 to 529 m. Normal annual precipitation of the UWR 

ranges between 920 and 1120 mm as computed by using data from 17 rain gauges in the 

region. The Upper Cumberland River basin (UCR; 38,160km
2
) is located in southeastern 

Kentucky bordering with Virginia and Tennessee. The UCR is primarily mountainous 

and forested, and it lies in the Eastern Coal Field physiographic region. The elevation in 

the UCR ranges from 146 to 1428 m. Normal annual precipitation of the UCR ranges 

from 950 to 1300mm as computed from 19 rain gauges in the region.  

The NEXRAD rainfall dataset for the study area is distributed by HRAP 

(Hydrologic Rainfall Analysis Project) geographic projection. The HRAP or secant polar 

stereographic projection is an earth–centered datum coordinate system. Reed and 

Maidment (1995, 1999) describe the HRAP projection and its transformations to other 

geodetic coordinate systems. The NEXRAD StageIII data are converted to re–projecting 

ASCII by using C++ program for conversion of XMRG (binary) file format to ASCII, 

and conversion of ASCII data to GIS grid format by first defining the HARP projection 

to the desired coordinate system. Rain gauge measurements of five storms recorded on 

February, April, July, October and November, 2006 for the UWR and January, February, 

March, April and July, 2005 for the UCR are selected for this study. The observational 

networks of NEXRAD StageIII, rain gauges, and stream gauges that cover the UWR and 

the UCR basins are shown in Fig. 4.2, and Table 4.1 displays summary of rainfall event 

for each site. 
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Figure 4.1 Study basin locations in relation to rain gauges and stream gauges (UWR – 

Upper Wabash River basin, UCR – Upper Cumberland River basin). 
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Figure 4.2 Basin locations and surrounding NEXRAD StageIII. 
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Table 4.1 Summary of storm events for application of NEXRAD bias correction. 

Event 

Upper Wabash River 

Basin 
  

Upper Cumberland River 

Basin 

Start Date and Time  Start Date and Time 

1  06–02–17, 01:00  05–01–11, 12:00 

2  06–04–16, 19:00  05–02–13, 10:00 

3  06–07–12, 03:00   05–03–27, 23:00  

4  06–10–27, 19:00  05–04–01, 18:00 

5  06–11–16, 08:00   05–07–13, 08:00 
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4.3. NEXRAD Bias Correction Methods 

A statistical method should be used to remove the bias between NEXRAD 

estimates at the rain gauge locations, and corresponding gauge rainfall measurements 

because NEXRAD rainfall estimates have errors from reflectivity measurement and the 

Z–R conversion. To test the sensitivity of NEXRAD bias correction on runoff 

hydrographs, three methods based on the Kalman filter are used in this study. The first 

method is based on application of spatially uniform bias correction as used in MPE data. 

The second and third methods are based on the application of spatially non–uniform bias 

correction. A brief description of Kalman Filter and its application for spatially and non–

spatially uniform bias correction is presented below. 

4.3.1. Kalman filter 

The Kalman filtering equations have two series of stages, which are time update 

and measurement update, to estimate the best possible bias. Projecting forward (in time) 

the current state is performed in time update. Correcting new a priori estimate at the 

current time step is performed in measurement update (Welch and Bishop, 2001). 

 

(1) Discrete Kalman filter Time update 

According to Smith and Krajewski (1991), NEXRAD bias ( ) is assumed as an 

Autoregressive order one (AR1) process whose parameters are updated using a Kalman 

filter as given by Eq. 1.  

 

( )t = ( 1) ( )t W t ; ( ) ~ (0, )W t  Eq. 4.1 
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where ( )t  is NEXRAD bias for hour t,  is lag–one correlation coefficient of the 

logarithmic bias, and W(t) is a sequence of independent normally distributed random 

variables with mean zero and variance . The stationary process variance ( ) and the 

stationary variance of the log bias process (
2
) are given by Eqs. 4.2 and 4.3. 

 

= 
22

)1( . Eq. 4.2 

 

2 ( )Var t ; t = 0, …., T Eq. 4.3 

 

where T is storm duration.  

The a priori estimate of  can be estimated using Eq. 4.4. 

 

( )t = ( 1)t  
Eq. 4.4 

 

where  takes into account the new measurement that is observed, and corrects for any 

errors that may be present in the newly measured value.  

The process variance ( ( )P t ) is estimated using Eq. 4.5. 

 

( )P t = 
2 2 2( 1) (1 )P t  Eq. 4.5 

 

where P(t–1) is the a posteriori estimate error variance at time t–1. The initial value of 

0
 and P0 are zero and 

2
, respectively.   

 

(2) Discrete Kalman filter Measurement update 

In each time and measurement update pair, the process is repeated with the 

previous a posteriori estimates used to project or predict the new a priori estimates. This 
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recursive nature is one of the important features of the Kalman filter. Updating the a 

priori estimates of the logarithmic NEXRAD bias ( )t  and the variance ( )P t  based 

on the actual bias for the current time step t are calculated in measurement update. After 

this stage for time step t, the estimated logarithmic bias ( ( )t ) and its variance ( ( )P t ) are 

calculated by Eqs. (9) and (10). The errors associated with the observed rain field lead to 

a deviation between the observed and true values for
t
. The observed logarithmic 

NEXRAD bias ( ( )Y t ) is represented by using Eq. 4.6. 

 

( )Y t = ( ) ( )t M t ; 
2

( ) ~ (0, ( ) )M t t  Eq. 4.6 

 

where ( )  is a nonnegative function representing the observation error given that the 

number of gauges with measurable rainfall is , and ( )M t  is a sequence of independent 

normally distributed random variable with mean zero and variance 2( ) . Estimations of 

( )t  and ( )P t  are used by 2( )  which is suggested by Smith and Krajewski (1991). 

 

2 2( ) n  Eq. 4.7 

 

where n is the number of the rain gauge.  

The measurement update of the Kalman filter allows estimation of ( )t  and ( )P t  by 

Kalman gain ( ( )K t ) and it‟s detailed in Eqs. 4.8–4.10. 

 

( )K t = 2 1( ) ( ( ) ( ) )P t P t  Eq. 4.8 

 

( )t = ( ) ( ) ( ( ) ( ))t K t Y t t  
Eq. 4.9 

 

( )P t = (1 ( )) ( )K t P t  Eq. 4.10 
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Due to the bias model defined in terms of the log bias process, Smith and Krajewski 

(1991) suggest Eq. 4.11 for state expectation of the bias correction factor at the time t as 

shown below  

 

( )B t = 
( ) 0.5 ( )

10
t P t

 . 
Eq. 4.11 

 

4.3.2. Spatially uniform NEXRAD Bias Correction using Kalman filter 

According to Seo et al. (1999) and Dinku et al. (2002), mean field bias corrections 

and vertical profile of reflectivity adjustments are needed to correct spatially uniform 

biases in NEXRAD data. The variance of the observed mean field bias should affect the 

magnitude of the Kalman filter observation error model. The time–dependent variance of 

the observed mean field bias (MFB) is estimated by using the variance of logarithmic 

bias proposed by Smith and Krajewski (1991). The correction procedures assume that the 

biases are spatially uniform over the entire study area. The logarithmic MFB between 

NEXRAD estimates at the rain gauge locations and the corresponding gauge rainfall 

amounts is computed by equation 4.12. 

 

( )t = 
10

1

10

1

1
log ( ( ) )

1
log ( ( ) )

n

i

i

n

i

i

G t
n

R t
n

 

Eq. 4.12 

 

where G(t)i is hourly rain gauge rainfall at NEXRAD–gauge paired cell i for hour t, R(t)i 

is hourly NEXRAD rainfall at NEXRAD–gauge paired cell i for hour t, and n is the 

number of radar–gauge pairs data available for an hour. The spatially uniform bias 

corrected NEXRAD rainfall is then computed by using Eq. 4.13. 
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*( ) ( ) ( )j jR t B t R t  Eq. 4.13 

 

where R
*
(t)j is bias corrected NEXRAD at j location at time t, and R(t)j is hourly 

NEXRAD rainfall at gauge cell j for hour t within the study area. 

 

4.3.3. Spatially non–uniform NEXRAD Bias Correction using Kalman Filter 

In the spatially uniform bias correction method, the radar bias (Eq. 4.12) over the 

cells with observed rain gauge data is assumed to be uniform for all NEXRAD cells 

without corresponding rain gauges. The assumption of uniform bias may or may not be 

true depending on the rainfall dynamics and the size of the watershed. As a result, the 

bias may be higher for NEXRAD cells that do not overlap with rain gauge locations. In 

order to minimize such un–gauged NEXRAD cell bias, this study suggests application of 

a spatially non–uniform bias correction using Kalman filter. Unlike the MFB (Eq. 4.12), 

the spatially non–uniform biases vary from pixel to pixel across the NEXRAD domain. 

The corrected NEXRAD rainfall at an un–gauged NEXRAD pixel j for hour t, R
*
(t)j, is 

computed by multiplying spatially non–uniform bias correction factor (B(t)j) at each un–

gauged NEXRAD grid location j using Eq. 4.14. 

 

*( ) ( ) ( )j j jR t B t R t  Eq. 4.14 

 

There are two approaches for computing the spatially non–uniform bias. In the first 

approach, the rain gauge data are interpolated to get interpolated rainfall estimates for 

un–gauged NEXRAD pixels. The squared inverse distance weighting (IDW) method (Eq. 

4.15) is used for interpolation. Compared with other methods like Kriging, even though 
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its method consists of simple approach, it provides flexibility enough to predict the 

variables with small size datasets in storm period (Adisoma and Hester, 1995). 

 

* 1

1

( )

( )

n

i i

i
j n

i

i

w G t

G t

w

 

Eq. 4.15 

 

where G
*
(t)j is interpolated gauge information at un–gauged NEXRAD pixel j for hour t, 

and wi (Eq. 4.16) is the weight corresponding to each gauged point. 
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Eq. 4.16 

 

where di is the distance between a radar pixel and the i
th

 rain gauge, b is an empirical 

exponent and n is the number of rain gauges. The spatially non–uniform local NEXRAD 

biases can then be estimated and corrected by using the interpolated rainfall (Eq. 4.17).  
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10
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log ( ( ) )
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j

G t
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R t
 

Eq. 4.17 

 

where ( ) jt  is logarithmic local bias at un–gauged NEXRAD pixel j for hour t within the 

study area. 

 

In the second approach for applying non–uniform bias, the error at each gauged location 

is computed using Eq. 4.18.   
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Eq. 4.18 
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The errors at each i
th

 gauge are then interpolated to get errors at all ungauged NEXRAD 

pixels using squared inverse distance weighing. Ware (2005) found that the interpolation 

errors associated with this IDW are comparable to those obtained using the multi–quadric 

interpolation (Nuss and Titley, 1994) and ordinary kriging. An un–gauged NEXRAD bias 

for spatially non–uniform bias correction is computed based on surrounding ratios and 

distance of each gauge from the selected grid (Eq. 4.19).  
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( )

n
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i
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i

i

w e t

t

w

 

Eq. 4.19 

 

where ( ) jt  is logarithmic local bias at un–gauged NEXRAD pixel j for hour t within the 

study area. 

4.4. Results 

Results are presented in two sections. In the first section, the quality of NEXRAD 

data is assessed through cross–validation with observed rainfall. The NEXRAD data used 

in cross–validation is prepared by using the spatially uniform bias correction method 

(MPE), spatially non–uniform bias correction method by interpolating rainfall data 

(SNU–R), and spatially non–uniform bias correction method by interpolating errors 

(SNU–E). In the second section, the sensitivity of the STORE DHM hydrograph outputs 

to rainfall created by using spatially uniform and non–uniform bias correction is 

presented.  
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4.4.1. Assessment of NEXRAD Rainfall Inputs 

The cross–validation of NEXRAD rainfall inputs created by using MPE, SNU–R 

and SNU–E is conducted by using a total 17 rain gauges in UWR and 19 rain gauges in 

UCR basins for five different events (Table 4.1). From the total number of gauging 

stations, three numbers are excluded for cross–validation. The scatter plot of NEXRAD 

bias corrected rainfall and cross–validated observed gauge rainfall for the UWR and the 

UCR are shown in Fig. 4.3. The results presents in Fig. 4.3 (a) and (b) indicate that the 

use of spatially uniform NEXRAD bias correction (MPE scheme) in estimating 

NEXRAD can increase scatter in comparison with spatially non–uniform NEXRAD bias 

correction. Considerable scatter is seen in the NEXRAD data created using the MPE 

scheme; whereas the data created using spatially non–uniform bias correction schemes 

show relatively low bias and error. The performance of bias corrected NEXRAD is 

assessed by computing the root mean square error (RMSE), mean absolute percentage 

error (MAPE) and coefficient of determination (R
2
) as shown in Tables 4.2 and 4.3. 

The spatially non–uniform NEXRAD bias correction improves rainfall accuracy in 

for the UWR events by reducing error from 1.17 RMSE mm for MPE to 0.80 mm RMSE 

for SNU–R and 0.94 mm RMSE for SNU–E. For the UCR events, the RMSE is reduced 

from 13.76 mm for MPE to 6.16 mm for SNU–R and 6.75 mm for SNU–R. The 

reduction in RMSE is more than –53% for the UCR, and more than –25% for the UWR 

by using spatially non–uniform bias correction method compared to the MPE scheme. 

Average values for MAPE also show similar results where the MAPE reduced by more 

than –59% for SNU–R and –45% for SNU–E compared to the MPE scheme. The average 

R
2
 in the UWR (Table 4.2) is 0.67 for MPE scheme, 0.83 for SNU–R, and 0.76 for SNU–

E. For the UCR dataset, the average R
2
 is 0.30 for MPE scheme, 0.58 for SNU–R scheme, 

and 0.64 in SNU–E scheme (Table 4.3). 
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Figure 4.3 Scatter plot of NEXRAD bias corrected rainfall and cross–validated observed 

gauge rainfall for (a) the UWR and (b) the UCR basins. 
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Table 4.2 NEXRAD bias corrected rainfall statistics in the UWR basin. 

Event 

MPE scheme   SNU–R scheme   SNU–E scheme 

RMSE 

(mm) 

MAPE 

(%) 
R

2
  

RMSE 

(mm) 

MAPE 

(%) 
R

2
  

RMSE 

(mm) 

MAPE 

(%) 
R

2
 

1 0.80  12.06  0.74   0.59  8.05  0.87   0.71  9.98  0.80  

2 1.73  48.13  0.57   0.76  18.76  0.92   1.09  31.07  0.82  

3 1.63  30.72  0.62   1.46  14.40  0.70   1.44  17.56  0.70  

4 0.38  22.00  0.89   0.13  10.28  0.98   0.26  17.73  0.93  

5 1.30  93.41  0.53   1.05  19.04  0.67   1.21  66.79  0.57  

Ave. 1.17  41.26  0.67    0.80  14.11  0.83    0.94  28.63  0.76  

 

 

Table 4.3 NEXRAD bias corrected rainfall statistics in the UCR basin. 

Event 

MPE scheme   SNU-R scheme   SNU-E scheme 

RMSE 

(mm) 

MAPE 

(%) 
R

2
  

RMSE 

(mm) 

MAPE 

(%) 
R

2
  

RMSE 

(mm) 

MAPE 

(%) 
R

2
 

1 3.27  80.37  0.35   1.02  15.45  0.88   2.08  30.27  0.93  

2 5.15  169.69  0.37   0.59  29.37  0.60   0.99  45.27  0.85  

3 29.48  90.38  0.01   26.47  26.34  0.04   26.64  34.88  0.01  

4 16.66  127.66  0.13   1.84  23.93  0.53   2.04  36.74  0.53  

5 14.23  108.64  0.67   0.88  25.70  0.90   2.02  41.60  0.88  

Ave. 13.76  115.35  0.30    6.16  24.16  0.58    6.75  37.75  0.64  
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Figure 4.4 Time series of (a) Standard Deviation and (b) Variation. 
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4.4.2. Sensitivity of Hydrographs to NEXRAD Bias Correction Schemes 

To study the sensitivity of model hydrograph to rainfall inputs obtained by using 

three different approaches for NEXRAD bias correction, the STORE DHM model is 

calibrated for each event for both watersheds. The model is manually calibrated by using 

the Nash–Sutcliffe coefficient (ENS) for discharge and root mean square error (RMSE) for 

the total runoff volume.  The RMSE are defined as 

 

2

1

( )
n

i i

sim obs

i

RMSE Q Q  
Eq. 4.1 

 

where Qsim is the simulated hourly streamflow, and Qobs is the observed hourly 

streamflow. Calibration factors used to adjust the model and the corresponding parameter 

values are presented in Tables 4.4 and 4.5. The results from calibration are presented in 

Figure 4.5 and Tables 4.6 and 4.7.   

 

Table 4.4 Calibrated Manning‟s n values for each event in the UWR basin. 

Event 

Upper Wabash River Basin 

Land Use Calibration 

Agricultural Forest Developed Water 

1  0.023  0.013  0.011  0.006  

2  0.020  0.019  0.015  0.005  

3  0.019  0.014  0.011  0.006  

4  0.025  0.020  0.018  0.006  

5  0.018  0.015  0.013  0.005  
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Table 4.5 Calibrated Manning‟s n values for each event in the UCR basin. 

Event 

Upper Cumberland River Basin 

Land Use Calibration 

Agricultural Forest Developed Water 

1  0.051  0.035  0.033  0.016  

2  0.081  0.055  0.043  0.026  

3  0.061  0.036  0.023  0.020  

4  0.062  0.043  0.037  0.012  

5  0.054  0.037  0.035  0.015  
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(a) UWR basin (b) UCR basin 

Figure 4.5 Calibrated model results for every event using NEXRAD rainfall input (e.g. 

UWR1 represents event 1 for UWR basin). X–axis represents time in hours and Y–axis 

represents flow in cubic meters per second. 
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Table 4.6 Calibrated simulation statistics for each event in the UWR basin. 

Event 

Upper Wabash River Basin 

Calibration with NEXRAD input 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1  0.98  0.97  2.21  14.58  

2  0.97  0.97  9.13  19.56  

3  0.94  0.93  13.49  37.59  

4  0.98  0.97  4.70  27.45  

5  0.95  0.93  12.83  33.89  

Ave. 0.96  0.95  8.47  26.62  

 

Table 4.7 Calibrated simulation statistics for each event in the UCR basin. 

Event 

Upper Cumberland River Basin 

Calibration with NEXRAD input 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1  0.97  0.96  10.24  10.48  

2  0.94  0.86  43.97  23.77  

3  0.98  0.96  16.50  16.94  

4  0.97  0.94  24.36  16.57  

5  0.95  0.90  7.54  40.81  

Ave. 0.96  0.93  20.52  21.72  
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After calibration, each event is simulated with the STRORE DHM using three 

variations of NEXRAD rainfall created by applying uniform and non–uniform spatial 

bias correction. The hydrographs from these simulations are presented in Figures 4.6–

4.10, and results are summarized in Tables 4.8–4.13. For the UWR basin (Figs 4.6a–

4.10a and Tables 4.8–4.10), the calibrated R
2
 of 0.96 decreased to 0.92 for MPE, 0.95 for 

SNU–R, and 0.95 for SNU–E. The calibrated ENS of 0.95 decreased to 0.82 for MPE, but 

remained unchanged for SNU–R and SNU–E. The calibrated RMSE of 8.47 m
3
/s 

changed to 16.49 m
3
/s for MPE, 9.86 m

3
/s for SNU–R and 11.20 m

3
/s for SNU–E. 

Similarly, the calibrated MAPE of 26.62% changed to 33.75% for MPE, 27.98% for 

SNU–R and 30.80% for SNU–E. Overall, SNU–R shown a 67% improvement in RMSE 

and 21% improvement in MAPE of the output hydrographs compared to hydrographs 

from MPE rainfall input. SNU–E shown a 47% improvement in RMSE and 10% in 

improvement in MAPE of the output hydrographs compared to hydrographs from MPE 

rainfall input.  

For the UCR basin (Figs 4.6b–4.10b and Tables 4.11–4.13), the calibrated R
2
 of 

0.96 decreased to 0.80 for MPE, 0.94 for SNU–R, and 0.94 for SNU–E. The calibrated 

ENS of 0.93 decreased to 0.65 for MPE, 0.88 for SNU–R, and 0.94 for SNU–E. The 

calibrated RMSE of 20.52 m
3
/s changed to 47.36 m

3
/s for MPE, 27.08 m

3
/s for SNU–R 

and 24.73 m
3
/s for SNU–E. Similarly, the calibrated MAPE of 21.72% changed to 

54.75% for MPE, 26.99% for SNU–R and 26.56% for SNU–E. Overall, SNU–R shown a 

75% improvement in RMSE and 103% improvement in MAPE of the output hydrographs 

compared to hydrographs from MPE rainfall input. SNU–E shown a 92% improvement 

in RMSE and 106% in improvement in MAPE of the output hydrographs compared to 

hydrographs from MPE rainfall input. 
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(a) UWR basin (b) UCR basin 

Figure 4.6 Storm Event 1 model hydrographs for both (a) the UWR basin and (b) the 

UCR basin. X–axis represents time in hours and Y–axis represents flow in cubic meters 

per second. 
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(a) UWR basin (b) UCR basin 

Figure 4.7 Storm Event 2 model hydrographs for both (a) the UWR basin and (b) the 

UCR basin. X–axis represents time in hours and Y–axis represents flow in cubic meters 

per second. 
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(a) UWR basin (b) UCR basin 

Figure 4.8 Storm Event 3 model hydrographs for both (a) the UWR basin and (b) the 

UCR basin. X–axis represents time in hours and Y–axis represents flow in cubic meters 

per second. 
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(a) UWR basin (b) UCR basin 

Figure 4.9 Storm Event 4 model hydrographs for both (a) the UWR basin and (b) the 

UCR basin. X–axis represents time in hours and Y–axis represents flow in cubic meters 

per second. 
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(a) UWR basin (b) UCR basin 

Figure 4.10 Storm Event 5 model hydrographs for both (a) the UWR basin and (b) the 

UCR basin. X–axis represents time in hours and Y–axis represents flow in cubic meters 

per second. 
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Table 4.8 Details of simulation results with MPE NEXRAD bias corrected rainfall input 

for the UWR basin. 

Event 
Simulation with MPE scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.96  0.92  3.51  21.48  

2 0.90  0.72  25.83  30.30  

3 0.86  0.84  20.43  41.58  

4 0.96  0.85  10.63  29.46  

5 0.94  0.79  22.08  45.95  

Ave. 0.92  0.82  16.49  33.75  

 

Table 4.9 Details of simulation results with SNU–R NEXRAD bias corrected rainfall 

input for the UWR basin. 

Event 
Simulation with SNU–R scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.97  0.96  2.56  18.18  

2 0.97  0.93  13.13  19.59  

3 0.91  0.91  15.54  40.42  

4 0.98  0.97  4.94  27.48  

5 0.95  0.93  13.12  34.22  

Ave. 0.95  0.94  9.86  27.98  
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Table 4.10 Details of simulation results with SNU–E NEXRAD bias corrected rainfall 

input for the UWR basin. 

Event 
Simulation with SNU–E scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.97  0.96  2.53  18.19  

2 0.96  0.86  18.38  28.24  

3 0.91  0.90  16.24  41.26  

4 0.97  0.96  5.35  28.63  

5 0.94  0.92  13.49  37.66  

Ave. 0.95  0.92  11.20  30.80  
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Table 4.11 Details of simulation results with MPE NEXRAD bias corrected rainfall input 

for the UCR basin. 

Event 
Simulation with MPE scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.88  0.81  23.24  17.40  

2 0.92  0.60  74.64  37.95  

3 0.36  0.19  92.02  149.85  

4 0.89  0.89  34.51  19.66  

5 0.95  0.73  12.40  48.90  

Ave. 0.80  0.65  47.36  54.75  

 

Table 4.12 Details of simulation results with SNU–R NEXRAD bias corrected rainfall 

input for the UCR basin. 

Event 
Simulation with SNU–R scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.99  0.97  9.42  10.81  

2 0.82  0.70  65.16  32.74  

3 0.97  0.95  19.48  30.89  

4 0.96  0.89  33.74  18.51  

5 0.95  0.90  7.59  42.00  

Ave. 0.94  0.88  27.08  26.99  
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Table 4.13 Details of simulation results with SNU–E NEXRAD bias corrected rainfall 

input for the UCR basin. 

Event 
Simulation with SNU–E scheme 

R
2
 ENS RMSE(m

3
/s) MAPE(%) 

1 0.96  0.96  11.42  12.69  

2 0.89  0.75  59.06  31.22  

3 0.97  0.95  18.25  26.69  

4 0.94  0.93  27.27  18.76  

5 0.94  0.90  7.64  43.42  

Ave. 0.94  0.90  24.73  26.56  
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Figure 4.11 Storm events peak discharge (m
3
/s) scatter plots for (a) the UWR and (b) the 

UCR basins.   
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The rainfall input derived by applying spatially uniform bias correction to 

NEXRAD data decreased calibrated model prediction accuracy as evident from R
2
, ENS, 

RMSE and MAPE values in comparison to input derived by applying spatially non–

uniform bias correction scheme. The improvement in model results from spatially non–

uniform bias corrected input are better in UCR basin compared to UWR basin because 

the NEXRAD values are more variable in time over UCR basin compared to UWR basin 

as shown in Fig. 4.4. 

Even though the NEXRAD input is adjusted by using gauged rainfall, some under–

prediction or over–prediction of runoff volume and peak flow are found in both study 

areas as shown in Figs. 4.6–4.10. Simulations with SNU–E inputs performed the best 

with regard to the estimation of peak flow as shown in scatter Fig. 4.11. Similarly, the 

input from both methods using spatially non–uniform bias correction produced overall 

better output compared to input from spatially uniform bias correction method in terms of 

total runoff volume. 

4.5. Summary and Conclusions 

Three NEXRAD bias corrections are presented in this study. To evaluate the 

sensitivity and accuracy of NEXRAD bias corrected rainfall, the Upper Wabash River 

and the Upper Cumberland River basins is selected because of different spatial 

characteristics. Suggested NEXRAD bias correction schemes are applied to the study 

basins to evaluate effects of each NEXRAD bias correction scheme on the variation of 

NEXRAD distribution. Simultaneous comparisons of three NEXRAD bias corrected 

rainfall are made to cross validate with observed gauge rainfall at down, middle and up 

location of two study basins (Fig. 4.1). Improvement in the accuracy of rainfall is 

achieved through adjustment of spatially non–uniform NEXRAD bias correction at the 

two watersheds in comparison with spatially uniform NEXRAD bias correction. Overall, 

spatially non–uniform NEXRAD bias correction performance in comparison to MPE 
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scheme improves from 1.17 to 0.87 mm RMSE in the Upper Wabash River basin, and 

from 13.76 to 6.45 mm RMSE in the Upper Cumberland River basin. Spatially non–

uniform NEXRAD bias correction reduces accuracy error in the Upper Wabash River 

basin from 41.26% MAPE to 21.37% MAPE, whereas in the Upper Cumberland River 

Basin, a large reduction is obtained, 115.35% MAPE to 30.96% MAPE. Use of spatially 

non–uniform NEXRAD bias correction in large variability of NEXRAD distribution over 

the entire watershed such as the Upper Cumberland River basin is more effective than 

small variability of NEXRAD distribution over the entire watershed such as the Upper 

Wabash river Basin. 

When a spatially uniform bias corrected rainfall input is used in the STORE DHM, 

prediction accuracy is degraded. Spatially uniform bias corrected rainfall input produces 

inconsistent results with both over prediction and under prediction and no clear trend. To 

evaluate sensitivity of rainfall accuracy on hydrologic model simulation, calibrated 

parameters in each event are obtained from simulation with original NEXRAD. These 

calibrated parameters then are applied to the STORE DHM with three different schemes 

of NEXRAD bias corrected rainfall. The accuracy of model prediction with different 

NEXRAD bias corrected rainfall is estimated in terms of the R
2
, ENS, RMSE and MAPE 

based on observed data combination. Spatially non–uniform NEXRAD bias corrected 

rainfall improves prediction accuracy in both the Upper Wabash River and the Upper 

Cumberland River basins. However, a reduction in accuracy of model prediction is 

shown in both study areas, when model is used with spatially uniform NEXRAD bias 

corrected rainfall. An interpolation scheme that accounts for the spatially non–uniform 

NEXRAD bias is applied for reducing spatio–temporal variation of NEXRAD bias. The 

spatially non–uniform NEXRAD bias correction proposed in this study uses two different 

schemes. Even though these schemes have different procedures before trying the Kalman 

filtering, the STORE DHM model simulations with these two NEXRAD bias corrected 

rainfall produced nearly equivalent prediction accuracy error statistics and peak flow 

error for the events tested that are consistent with both the Upper Wabash River and the 

Upper Cumberland River basins. 
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Testing sensitivity to variation of NEXRAD values distribution reveals that the 

improvement of prediction accuracy with spatially non–uniform NEXRAD bias corrected 

rainfall is greater in larger NEXRAD variation area, whereas, prediction accuracy in 

smaller NEXRAD variation area is less improved in comparison to simulation with MPE 

scheme rainfall. The large NEXRAD variation at a certain time step implies that each 

NEXRAD pixel bias is not uniform, thus NEXRAD bias correction with spatially non–

uniform scheme is much more effective than uniform NEXRAD bias correction scheme. 

To evaluate this investigation, this study selects two different characteristics of study 

areas: the Upper Wabash River basin has flat terrain with less rainfall variability, and the 

Upper Cumberland River basin with relatively mountainous terrain and more variable 

rainfall. The results in comparison to simulation with spatially uniform NEXRAD bias 

corrected rainfall show that prediction accuracy with spatially non–uniform NEXRAD 

bias corrected rainfall in the Upper Cumberland River basin shows more improvement 

compared to the Upper Wabash River basin. Consequently, spatially non–uniform 

NEXRAD bias correction is an efficient scheme for high NEXRAD variability areas. 
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CHAPTER 5. RESEARCH SYNTHESIS AND FURTURE WORK 

5.1. Object–oriented hydrologic model 

This research is focused on developing a prototype GIS based tightly coupled 

object–oriented framework called GHISMO. The GHISMO has an object–oriented 

approach using object–oriented design techniques and object–oriented language, Visual 

Basic, to the description and simulation of a watershed based hydrologic process. The 

GHISMO allows flexibility and extensibility to investigate future hydrologic issues 

without changing its main framework because it uses characteristics of inheritance and 

aggregation through an object–oriented hydrologic approach. For example, if object–

oriented based hydrologic models try large scale programming components (infiltration, 

Green–Ampt and SCS curve number) at the same time, object–oriented programming can 

be easy to manage because each object has a component which has an individual method 

and property based on the object class. 

Expanding of the GHISMO framework will be essential for robustness of the 

hydrologic model. For example, linkage between GHISMO and water quality model (e.g., 

SWAT) can predict effect of storm event on water quality assessment. Similarly, linkage 

between the GCMs (General Circulation Models), which are the most advanced tools for 

estimating future climate change, and GHISMO will provide a foundation to assess the 

impact of climate change on rainfall–runoff prediction. The conceptualization and 

characterization of this coupling strategy can be extended to a hydrologic management 

and decision supporting tool such as a real–time flood warning system. If the prototype of 

the object–oriented hydrologic framework, the GHISMO, is successfully used to develop 

a coupled open source and platform for seamless hydrologic components, it may lead to 
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change a hydrologic modeling paradigm to object-oriented approach through its flexible 

modeling schemes. 

5.2. Parameter Estimation for STORE DHM 

Surface roughness has a significant effect on runoff peak flow and time to peak in 

rainfall–runoff simulation. Although STORE DHM simulations (the first part of the 

broader GHISMO framework) show promising results in comparison with observed 

hydrographs, the issue for estimation of surface roughness in different land surface types 

is still open to dispute because model calibration only rely on surface roughness for 

runoff peak flow and time to peak. For example, surface roughness parameter values at 

Fish Creek simulations are out of land use range values (which are provided by Brater 

and King (1976)). Also, even though calibrated surface roughness values for each event 

are obtained from the same study area (UWR or UCR basin), each calibrated surface 

roughness value in the same study shows difference in each land use type.  

5.3. Critical Cell Travel Time Criteria 

This research suggests CCT to overcome the DEM issue for STORE DHM 

simulations. To avoid different simulation results depending on DEM size, this research 

uses minimum simulation time step at each event in the particular region. Even though 

CCT is theoretically ideal approach for STORE DHM simulation, it still needs to be 

refined for physical approach to other hydrologic components and its boundary condition 

depending on event types (e.g., small, medium and heavy storm events) and study areas.  



94 

 

 

5.4. Number of Rain gauge for correcting radar bias 

Rainfall is a critical factor in hydrologic simulation. However, rainfall varies 

substantially in space and time and therefore it is often poorly represented in hydrologic 

models. Even though radar rainfall provides a better spatial representation of rainfall 

variability, it still suffers from uncertainties and biases. To overcome this limitation, this 

research suggests three radar rainfall bias correction schemes (e.g., MPE, SNU–R and 

SNU–E). The research results suggest that spatially non–uniform radar bias correction 

schemes in large radar variation area are a higher improvement of radar bias correction 

over small radar variation area, both in regards to analysis of correcting radar bias and 

prediction accuracy of the STORE DHM with different radar bias corrected rainfall. 

However, the fundamental issue of minimum number of rain gauge information for 

correcting radar bias remains.  
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Appendix A.  

Local Bias Correction Procedure Used in Process 1 (P1) 

In the simplest terms, the local bias correction procedure used in P1 may be 

described by the following: 

 

3 3

0

1 1

c i i i i

i i

r r w w  
Eq. A.1 

 

where 

 

1                      if /

/                if /

i i i

i

i i i i i

g r

g r g r
 

Eq. A.2 

 

              if /

 0                    if /

i i i i i

i

i i i

g r g r

g r
.

 
Eq. A.3 

 

In Eq. A.1, rc denotes the bias–corrected radar rainfall (mm), r0 denotes the raw radar 

rainfall at the bin centered at u0 (mm), wi denotes the weight given to the radar–gauge pair 

at the i
th

 vertex in the triangle of radar–gauge pairs that encloses u0, i

 

denotes the 

multiplicative sample bias from the ith radar–gauge pair, and  
i

 

denotes the additive 

sample bias from the ith radar–gauge pair. In Eqs. A.2 and A.3, 
ig  and 

ir  denote the 

gauge rainfall measurement (mm) and the collocation radar rainfall estimate (mm), 

respectively, at the i
th

 vertex in the enclosing triangle, and 
i
 , an adaptable parameter, 

denotes the threshold for the multiplicative sample bias, /i ig r , i = 1,2,3. The neighboring 
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radar–gauge pairs are identified by “triangulation,” which connects all available radar–

gauge pairs into a mesh of triangles. The weights, wi, i = 1,2,3, sum to unity and are 

inversely proportional to the distance to the neighboring radar–gauge pairs in the 

enclosing triangle. 
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Appendix B.  

Exponential Smoothing of Bin–Averaged Gauge Rainfall Using Gauge Measurements 

The observation equation for the bin–average gauge rainfall centered at u0 at hour k, 

G0k, is given by 

 

0 Vgk k k gkG  Eq. B.1 

 

where the observation vector Zgk; the structure vector Hk; the unknown bin–averaged 

gauge rainfall centered at u0, G0k; and the error vector Vgk; are given by [g1k, g2k, g3k, g4k, 

g5k, g6k, ……, g(nk)k]T; [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ……, 1]T; 
1

0
0
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A P u du ; and 
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In the above, gik denotes the i
th

 rain gauge measurement at hour k, and P(u) denotes the 

point hourly gauge rainfall at location u within the bin. The ij
th

 entry in the error 

covariance matrix of Vgk, gk
, is then given by 
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where cov[] and [] denote the covariance and the semivariogram, respectively. 
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Appendix C.  

Effect of Using Gauge Measurements, in lieu of Areally Averaged Gauge Rainfall, on 

Mean Square Error Calculations 

The mean square error of raw radar–gauge estimates with respect to the gauge 

measurements, mse[Rr – P(u)] is an estimate of E{[Rr – P(u)]
2
}, where Rr denotes the raw 

radar rainfall and P(u) denotes the gauge rainfall at some point u within the radar bin. We 

may rewrite E{[Rr – P(u)]
2
} as 

 

2 2{[ ( )] } {[ ( )] }.r rE R P u E R G G P u  Eq. C.1 

 

In the avove, G denotes the areally averaged gauge rainfall over the radar bin, that is, 

1

0
0

( )
A

G A P u du , where A0 denotes the area of the bin. Then, under the assumption 

that the estimation error in the raw radar rainfall estimate, Rr – G, and the sampling error 

in the gauge measurement due to microscale variability of rainfall, G – P(u), are linearly 

independent (Drake 1967; Ciach and Krajewski 1999 for justification), we may write 

 

2 2{[ ( )] } [( ) ] var[ ( )].r rE R P u E R G G P u  Eq. C.2 

 

Likewise, under the similar assumption that Rc – G and G – P(u) are linearly independent, 

where Rc denotes the bias corrected radar rainfall, we may write 

 

2 2{[ ( )] } [( ) ] var[ ( )].c cE R P u E R G G P u  Eq. C.3 

 

From Eqs. D.2 and D.3, we then have 
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2 2 2 2{[ ( )] } {[ ( )] } [( ) ] [( ) ]r c r cE R P u E R P u E R G E R G  Eq. C.4 

 

2 2 2 2

2 2

{[ ( )] } {[ ( )] } [( ) ] [( ) ]

{[ ( )] } [( ) ]

r c r c

r r

E R P u E R P u E R G E R G

E R P u E R G
 

Eq. C.5 

 

In other words, the true reduction in mean square error based on bin–averaged gauge 

rainfall, mse[Rr – G] – mse[Rc – G], is approximately the same as the apparent reduction, 

mse[Rr – P(u)] – mse[Rc – P(u)], based on rain gauge measurements, and the true percent 

reduction in mean square error based on bin–averaged gauge rainfall is larger than the 

apparent percent reduction based on rain gauge measurements. 
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