
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

Younghun Jung

Uncertainty in Flood Inundation Mapping

Doctor of Philosophy

Venkatesh Merwade

Dennis Lyn

Indrajeet Chaubey

Rao S. Govindaraju

Venkatesh Merwade

Garrett D. Jeong 09/26/2011



Graduate School Form 20 

(Revised 9/10)  

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

For the degree of       Choose your degree                    

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 

Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this 

thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the 

United States’ copyright law and that I have received written permission from the copyright owners for 

my use of their work, which is beyond the scope of the law.  I agree to indemnify and save harmless 

Purdue University from any and all claims that may be asserted or that may arise from any copyright 

violation. 

______________________________________ 
Printed Name and Signature of Candidate 

______________________________________ 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Uncertainty in Flood Inundation Mapping

Doctor of Philosophy

Younghun Jung

09/26/2011



 

 

 

 

UNCERTAINTY IN FLOOD INUNDATION MAPPING 

 

A Dissertation 

Submitted to the Faculty 

of  

Purdue University 

by 

Younghun Jung 

 

In Partial Fulfillment of the  

Requirements for the Degree 

of 

Doctor of Philosophy 

 

December 2011 

Purdue University 

West Lafayette, Indiana 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

With a great pleasure and a deep sense of gratitude, I would first like to thank to my 

major professor, Dr. Venkatesh Merwade, for the opportunity to pursue my academic 

goals. Also, I greatly appreciate his willingness to provide the resources and moral 

support during the course of this research. His expertise, guidance and critique have been 

extremely valuable contributions to my research and greatly enhanced my PhD 

experience. To my committee members, Dr. Indrajeet Chaubey, Dr. Rao S. Govindaraju, 

and Dr. Dennis Lyn, I would also like to express my sincere appreciation for their 

insightful questions and advice on my research.  

I am truly grateful to all Hydraulics and Hydrology group members including Dr. Cary 

Troy and Judith Haan who help in enjoying campus life as well as supporting my 

research. To Dr. Suresh Rao in Environmental group and Dr. Laura Bowling in 

Department of Agronomy, I appreciate their encouragement during the course of my 

doctoral studies. I would also like to thank to Scott Morlock and Moon Kim of the 

Indiana Water Science Center, and to North Carolina Floodplain Mapping Program for 

providing data used in this research.  

It is also my pleasure to thank to Dr. Myung-Pil Shim and Dr. Hung Soo Kim in 

Department of Civil Engineering, Inha University, South Korea for always mentoring me 

in my career choices. 



iv 

 

Finally, no words can express my gratitude to my family - parents, sisters, brothers-in-

law, nephews, nieces, and other relatives. Without their love, encouragement and 

understanding, it would not have been possible for me to finish this work and achieve my 

pursuits. 

Thanks to the Almighty Lord for the amazing grace and kindness that he has 

continuously bestowed on me. 

 

 

 

  



v 

 

 
 
 

 
 

TABLE OF CONTENTS 

 

 

 

Page 

LIST OF TABLES ………………………………………………………………………. viii 

LIST OF FIGURES …………………………………………………..…………………… x 

ABSTRACT ………………………….……………………………..…………………… xii 

 

CHAPTER 1 INTRODUCTION ...……………………………………….……………… 1 

1.1 Background ..……………………………………………………………… 1 

1.2 Research Objectives ……………………………………………………… 7 

1.3 Organization of this Dissertation ………………………………………….. 8 

 

CHAPTER 2 LITERATURE REVIEWS …………………………………………………. 9 

 2.1 Parameterization in flood inundation modeling ………………………….. .9 

  2.1.1 The effect of topography ………………………………………..... 9 

  2.1.2 The effect of discharge ………………………………………….. 10 

  2.1.3 The effect of Manning‟s n ………………………………………. 11 

 2.2 HEC-RAS Model …………………...………………………………….. 12 

 2.3 First Order Approximation (FOA) method  ……………………………… 13 

 2.4 Hornberger-Spear-Young (HSY) method ………………………………. 16 

 2.5 Generalized Likelihood Uncertainty Estimation (GLUE) ………………. 17 

 

CHAPTER 3 STUDY AREAS AND DATA …………………………………………… 21 

 3.1 Description ……………………………………………………………….. 21 

 3.2 Accuracy of the model variables ……………………………….………..  25 

  3.2.1 Topography ……………………………………………………….. 25 



vi 

 

Page 

  3.2.2 Discharge ……………………………………………………….… 26 

  3.2.3 Manning‟s n .……………………………………………………… 27 

 

CHAPTER 4 ESTIMATION OF UNCERTAINTY PROPAGATION  

IN FLOOD INUNDATION MAPPING ……………………………….… 29 

4.1 Introduction ……………………………………………………………...  29 

4.2 Methodology …………………………………………………………….. 29 

  4.2.1 Probability distribution for model variables …………………….. 30 

  4.2.2 Monte Carlo simulation ………………………………………….. 31 

  4.2.3 Estimation of uncertainty propagation using FOA method .…….. 34 

  4.2.4 HSY sensitivity analysis …………………………………………. 36 

4.3 Results ……………………………………………………………………. 37 

  4.3.1 Monte Carlo simulation …………………………………………. 37 

  4.3.2 Uncertainty propagation estimation using the FOA method ……. 41 

  4.3.3 Relative sensitivity analysis using the HSY method ……………. 45 

4.4 Conclusion …………………………………………..…………………… 50 

 

CHAPTER 5 UNCERTAINTY QUANTIFICATION IN FLOOD  

INUNDATION MAPPING USING GENERALIZED  

LIKELIHOOD UNCERTAINTY ESTIMATION (GLUE)  

AND SENSITIVITY ANALYSIS ………………………………………. 52 

5.1 Introduction ………………………………………………………………. 52 

5.2 Methodology ……………………………………………………………. 53 

  5.2.1 Probability distribution for model variables ……………………. 53 

  5.2.2 Monte Carlo simulation …………………………………………. 54 

  5.2.3 Uncertainty bounds using GLUE ……………………………….. 55 

5.3 Results …………………………………………………………………… 57 

  5.3.1 Monte Carlo simulation ………………………………………… 57 

  5.3.2 GLUE and sensitivity analysis ………………………….……… 64 

 5.4 Summary and Conclusion……………………………………………….. 67 

 5.5 Discussion ………………..……………………………………….…….. 70  



vii 

 

Page 

CHAPTER 6 ASSESSMENT OF THE ROLE OF PRIOR  

AND POSTERIOR PDFS ON SUBJECTIVITIES  

IN THE GLUE METHODODLOGY …………………………………… 73 

6.1 Introduction ……………………………………………………………… 73 

6.2 Methodology ……………………………………………………………. 74 

  6.2.1 Random number generation for model variables ………………. 75 

6.2.2 Monte Carlo simulation ………………………………………… 76 

6.2.3 The effect of prior PDFs in the GLUE methodology ……………77 

6.2.4 Posterior PDFs and effective range of model variables  

            for cut-off thresholds ……………….…………………………… 79 

6.2.5 Uncertainty quantification ………………………….…………… 82 

6.3 Results …………………………………………………………………… 82 

  6.3.1 Monte Carlo simulations  ………………………………………… 82 

  6.3.2 The effect of prior PDFs …………………………….………….. 85 

  6.3.3 Posterior PDFs of model variables ……………………………… 86 

6.3.4 Effective range of model variables ……………………………... 90 

6.3.5 Uncertainty quantification ……………………………………… 94 

 6.4 Conclusions …………………………..….……………………………… 99 

 

CHAPTER 7 SYNTHESIS  .……….………………………………………………….. 101 

 7.1 Flood risk management  ………………………………………………… 101 

 7.2 Estimation of the uncertainty propagation rate………………………… 102 

 7.3 Uncertainty quantification in flood inundation mapping ………………103 

7.4 The role of prior and posterior PDFs  

on the uncertainty analysis method ...………………………………….. 104 

 

LIST OF REFERENCES ……………………………………………………………..... 106 

 

APPENDIX ……...…………………………………………………………………….. 117 

 

VITA ..……..……….………………………………………………………………….. 125 

  



viii 

 

 

 

 

 

 

LIST OF TABLES 

 

 

 

Table                Page 

3.1  Roughness coefficients (Manning‟s n)  

for Seymour reach and Strouds reach   …………………………………………… 28 

4.1  The conditions for random variables generated in a simulation  ………………… 30 

4.2  The conditions of topography and discharge for uncertainty  

       propagation using the FOA method …………………………………………….. 33 

4.3  The conditions for relative sensitivity of  

topography (E), discharge (F), and Manning‟s n (N)  

using the HSY method in Seymour reach ………………………………………. 33 

4.4  The deviations of flood inundation area  

       under the given conditions for Seymour reach  ………………………………….. 39 

4.5  The deviations of flood inundation area  

       under the given conditions for Strouds reach  …………………………………… 39 

4.6  Flood inundation area simulated by the combination  

       of two target random variables for Seymour reach …………………………….. 40 

4.7  Flood inundation area simulated by the combination  

       of two target random variables for Strouds reach  ……………………………….. 40 

4.8  The uncertainty propagation rates of  

target variables for Seymour reach ………….................................................. 44 

4.9  The uncertainty propagation rates of  

target variables for Strouds reach ………………………………………………. 44 

4.10  D-statistics using the HSY method for Seymour and Strouds reaches …………. 47 

5.1  The conditions for random variables generated in a simulation  ………………… 54 

5.2  MC simulation results for Seymour Reach ……………………………………... 59 

5.3  MC simulation results for Strouds Reach ………………………………………. 60 



ix 

 

Table                Page 

5.4  Uncertainty of inundation areas (in km
2
) using GLUE for Seymour reach …….. 65 

5.5  Uncertainty of inundation areas (0.1km
2
) using GLUE for Strouds reach  ……… 66 

6.1  The conditions for random variables generated in a simulation ………………… 76 

6.2  The combinations of prior PDFs for model variables ………………………….. 78 

6.3  Uncertainty bounds based on likelihood measure ………………………..…….. 85 

6.4  The effective range of model variables by taking 3.5%  

       of E-likelihood measures for the Seymour reach ……………………………….. 91 

6.5  The effective ranges of model variables for thresholds of 

W, E, and F likelihood measures ……………………………………………….. 92 

6.6  E-likelihood measure values, the number of dataset, and  

       uncertainty bounds corresponding to the thresholds ……………………………. 96 

6.7  Uncertainty bounds using initial and effective ranges ………………………….. 97 

 

 

  



x 

 

 

 

 

 

 

LIST OF FIGURES 

 

 

 

Figure                          Page 

3.1  Study area ……….………………………………………………………………. 23 

3.2  Cross-sections ……….………………………………………………………….. 24 

3.3  Discharge distribution for Seymour reach ……….……………………………… 27 

4.1  Steps of FOA method for estimating uncertainty propagation …………………. 35 

4.2  Regression equations between Manning‟s n change rate  

       and flood inundation of Seymour reach ………………………………………… 43 

4.3  CDFs of top 70% class and bottom 30% class for Seymour reach …………….. 48 

4.4  CDFs of top 70% class and bottom 30% class for Strouds reach………………. 49 

5.1  WSE for Seymour reach ..………………………………………………………. 61 

5.2  WSE for Strouds reach …………………………………………………………. 61 

5.3  Inundation areas for Seymour reach ……….…………………………………… 62 

5.4  Inundation areas for Strouds reach ……………………………………………… 63 

5.5  GLUE for Seymour reach ………………………………………………………. 65 

5.6  GLUE for Strouds reach .……………………………………………………….. 66 

5.7  Flood inundation extents applied to Google map ……….……………………… 72 

6.1  Dot plots of model variables (T, D, and N) based on  

       different likelihood measures and the combination of the prior PDFs …………. 84 

6.2  The posterior PDFs of model variables for top 3.5% 

  of W, E, and F likelihood measures …………………………………………….. 88 

6.3  The posterior PDFs of model variables for top 100% 

  of W, E, and F likelihood measures …………………………………………….. 89 



xi 

 

Figure                          Page 

6.4  The ranges of model variables based on likelihood measures  

       corresponding to 1, 2, 3, 4, 5, 10, 20, 50, and 100% cut-off thresholds ………… 90 

6.5  The posterior PDFs of model variables  

       by taking top 3.5% of E-likelihood measures …………………………………… 93 

6.6  Uncertainty bounds according to the thresholds  

based on E-likelihood measure …………………………………………………. 96 

6.7  Comparison of the GLUE results from initial and efficient ranges …………….. 97 

6.8  Inundation areas for Seymour reach …………………….……………………… 98 

A.1  The posterior PDFs of model variables  

for top 1% of W, E, and F likelihood measures  ……………………………….. 117 

A.2  The posterior PDFs of model variables  

for top 2% of W, E, and F likelihood measures  ……………………………….. 118 

A.3  The posterior PDFs of model variables  

for top 3% of W, E, and F likelihood measures  ……………………………….. 119 

A.4  The posterior PDFs of model variables  

for top 4% of W, E, and F likelihood measures  ……………………………….. 120 

A.5  The posterior PDFs of model variables  

for top 5% of W, E, and F likelihood measures  ……………………………….. 121 

A.6  The posterior PDFs of model variables  

for top 10% of W, E, and F likelihood measures ………………………………. 122 

A.7  The posterior PDFs of model variables  

for top 20% of W, E, and F likelihood measures ………………………………. 123 

A.8  The posterior PDFs of model variables  

for top 50% of W, E, and F likelihood measures ………………………………. 124 

 
  



xii 

 

 

 

 

 

 

ABSTRACT 

 

 

 

Jung, Younghun. Ph.D., Purdue University, December 2011. Uncertainty in Flood 

Inundation Mapping. Major Professor: Venkatesh M. Merwade. 

 

 
 
Flood inundation maps serve as an important tool in decision making related to 

minimizing losses from flooding. Generally, flood risk management is based on the 

prediction of flood inundation for the design flood event (e.g., the 100 years). Flood 

inundation modeling includes hydraulic modeling, hydrologic modeling, and terrain 

analysis. The accuracy of flood prediction is influenced by various internal and external 

uncertainties in flood inundation modeling. To address the issue of uncertainty in flood 

inundation modeling, the objectivities of this study are: 1) to estimate the uncertainty 

propagation from model variables into flood inundation prediction; 2) to quantify the 

uncertainty in flood inundation mapping using generalized likelihood uncertainty 

estimation (GLUE) and sensitivity analysis; and 3) to assess the role of prior and 

posterior probability distribution functions on the subjectivities in uncertainty 

quantification using the GLUE methodology. Three variables, namely, discharge, 

topography, and Manning‟s n are used for uncertainty analysis in this study.  The 

objectives of this study are accomplished by using a 1D HEC-RAS model and data from 
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study areas including the East Fork White River near Seymour, Indiana (Seymour reach) 

and the Strouds reach in Orange County, North Carolina (Strouds reach).  

Estimation of uncertainty propagation using the FOA method shows that the uncertainty 

of a single variable is propagated differently to the flood inundation area, depending on 

the role of other variables in the overall process. In addition, the results from HSY 

sensitivity analysis show that topography is a major contributor to the uncertainty in the 

flood inundation area at the Seymour reach, and discharge is the major contributor at the 

Strouds reach.  

Performance of GLUE is assessed by selecting three likelihood functions including the 

sum of absolute error (SAE) in water surface elevation and inundation width, sum of 

squared error (SSE) in water surface elevation and inundation width, and a statistic (F-

statistic) based on the area of observed and simulated flood inundation map. Results 

showed that the uncertainty in topography, roughness and flow information created an 

uncertainty bound in the inundation area that ranged from 1.4 to 4.6% for Seymour reach 

and 4 to 29% for Strouds reach of the base inundation areas.   

The prior and posterior PDFs for model variables are used to investigate the consistency 

of datasets for behavioral models in the GLUE methodology. The results show that the 

type of prior probability distribution functions affects the uncertainty bounds for the 

Seymour reach. The small number of dataset leads to approximate uncertainty bounds, 

but the use of the effective range provides a reasonable number of datasets to quantify the 

uncertainty in flood inundation mapping. 
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CHAPTER 1. INTRODUCTION 

 

 

 

1.1.Background 

 

 

Flood inundation mapping plays a major role in conveying flood risk information to 

decision makers and the general public for planning purposes and relief operations. In 

addition to the estimates from the global climate models that predict more frequent floods 

in the future, recent major floods in many parts of the world show that floods are getting 

more severe and frequent (e.g., Collins 2009; Hurkmans et al. 2009; Xu et al. 2009). As a 

result, improvement in our flood prediction capabilities, including flood inundation maps, 

could prove valuable in efforts to lessen the human and economic losses associated with 

major flood events.  

Flood inundation areas are presently mapped in the following ways: 1) surveying high 

water marks; 2) extracting the water body from the images obtained by using optical 

devices or sensors  (e.g., aerial photography or satellite image); and 3) flood inundation 

modeling. The observed flood extent map produced by surveying high water marks is still 

the fundamental and traditional method used to estimate flood damages. However, the 

critical weakness of this mapping method is that the water marks can only be measured 

after the flood waters have receded.  In addition, since the high water marks are 
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intermittent and sparse, describing the inundation area using these sparse points is less 

accurate. The second method, which uses the geographic information system (GIS) and 

satellite images, enables a more practical and convenient way to map flood inundation. 

Many researchers are interested in, and are working on improving the effectiveness of 

this method because of its high utility value in various fields, including the mapping of 

flood inundation. However, this method also produces uncertain maps because of the 

horizontal resolution of the image, type of classification methods, satellite equipment, 

and image quality. 

Typically, flood inundation maps created from high water marks and satellite images are 

used as observation data to calibrate a hydraulic model. The third method includes 

hydrologic modeling, hydraulic modeling, and terrain analysis.  The accuracy of a flood 

map obtained from modeling is dependent on several uncertainties related to data and 

modeling parameters. Incorporating the uncertainties arising from various elements in the 

overall process is one of the major issues in predicting accurate flood inundation areas. 

Uncertainty in flood inundation modeling arises from the following: (i) flow estimation 

from a hydrologic model or a stage-discharge rating curve; (ii) input data, including 

topography and land use data; (iii) modeling type (1D versus 2D); (iv) model set-up and 

assumptions (e.g. steady versus unsteady state); (v) model parameters (e.g., Manning‟s 

roughness); (vi) lack of model calibration data (e.g., observed flood extent); and (vii) 

mapping approaches.  

Among the several uncertainty sources listed above in relation to flood inundation 

modeling, topography, flow, and model parameters (Manning‟s n) have received 
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significant attention in the literature. In most cases, the model type and topography are 

dictated by practical considerations, such as experience in using a certain model, industry 

norms (e.g., 1D HEC-RAS is a norm in creating flood inundation maps); the availability 

of hydraulic (e.g., hydrograph, water surface elevations, and velocity); and topography 

data (e.g., cross-sections, bathymetry point measurements).  With a predetermined 

modeling tool and topography data, Manning‟s n is the only parameter available to 

calibrate a hydraulic model, which means that the Manning‟s n value can be changed for 

a given circumstance, and the variation in Manning‟s n is transferred to the next process 

in flood inundation modeling. Typically, Manning‟s n is often assumed to be different in 

a main channel and a floodplain. The effect of Manning‟s n in flood inundation modeling 

can be changed for other hydrologic conditions including discharge and geometry. Flow 

conditions that are utilized as input data in hydraulic modeling are usually estimated by 

hydrologic modeling or statistical methods. Uncertainty in hydrologic model can arise 

from the various parameters and input data (e.g., precipitation and temperature). 

Moreover, rating curves that are based on historical discharge can show uncertainty due 

to the difficulty of mathematical models to perfectly match the relationship between 

historical discharges and water surface elevations. In addition to the flow conditions, the 

geometric data used in hydraulic modeling are extracted from the topographic data. Thus, 

the accuracy of the topography is directly transferred to the bathymetry of the reach.  

Several studies have reported the role of uncertainty in flood inundation mapping 

(Weichel et al 2007; Koivumäki 2010). Uncertainty analysis is usually performed by 

sensitivity analysis and uncertainty quantification. Sensitivity analysis in flood inundation 



4 

 

modeling has been conducted by Sobol, Kullback–Leibler entropy, Morris regionalized 

sensitivity analysis, regression and PEST (Pappenberger et al., 2007; Bahremand and 

Smedt, 2008). Among sensitivity analysis techniques, first-order approximation (FOA) is 

a regional sensitivity analysis method used to quantify the uncertainty propagation (Bates 

and Townley, 1988; Melching, 1992). The FOA method normally requires a 

mathematical equation, but it is complicated to mathematically express the relationship 

between model variables and flood inundation areas. However, the difficulty in using 

FOA can be resolved by mathematically describing the relationship between the target 

variable and the output by statistical methods, such as regression analysis (Linton, 1995). 

The uncertainty propagation rate obtained by FOA method is defined as the ratio of the 

change in output in relation to the change in the target variable. Thus, FOA method can 

provide the quantitative information needed to determine the priority of variables that add 

uncertainty to flood inundation modeling.  

Generally, uncertainty propagation analysis is conducted to investigate the sensitivity of 

model parameters for more accurate model prediction. Unlike a regional FOA method, a 

global sensitivity analysis such as HSY method can be used to estimate relative 

sensitivity between model variables. HSY method was first used to assess an 

environmental model in Western Australia (Hornberger and Spear, 1981) and United 

Kingdom (Whitehead and Young, 1979). The concept of HSY sensitivity analysis forms 

the basis for the generalized likelihood uncertainty estimation (GLUE) method developed 

by Beven and Binley (1992) to estimate uncertainty in wide ranges of environmental 

applications including flood modeling (Yatheendradas et al., 2008; Hunter et al. 2005; 

http://www.springerlink.com/content/?Author=A.+Bahremand
http://www.springerlink.com/content/?Author=F.+De+Smedt


5 

 

Heidari et al., 2006). The sensitivity using the HSY method, a basis of the GLUE 

methodology, is estimated by calculating the maximum difference between two 

cumulative density functions (CDF) of behavioral and non-behavioral models. A 

likelihood measure can be defined by several functions including Nash-Sutcliffe 

efficiency, sum of squared error, and sum of absolute error (Beven, 2009).  Among 

several likelihood functions, the F-statistic is based on spatial extent of flooding, which 

quantitatively estimates the suitability between an observed and a predicted map (Horritt 

et al., 2001). 

Several techniques have been used to address the issue of uncertainty in flood inundation 

mapping, including Bayesian forecasting system (Krzysztofowicz, R., 1999, 2002), 

GLUE (Blazkova and Beven, 2009), parameter estimation (PEST) (Liu et al., 2005), and 

a methodology based on fuzzy extension principle (Maskey et al., 2004). Among these 

techniques, the GLUE method proposed by Beven and Binley (1992) is one of the first 

methods to represent prediction uncertainty in hydrologic and hydraulic modeling. The 

GLUE method uses Monte Carlo simulations in conjunction with Bayesian theory to 

produce parameter distributions conditioned on available data and associated uncertainty 

bounds.  The parameter distributions are generated based on parameter sets that can 

produce acceptable model outputs in comparison with observed data. The criterion for an 

acceptable model is based on the definition of a user-specified likelihood function. 

The GLUE method has found widespread implementation in various studies related to 

uncertainty analysis in environmental and hydrologic modeling, including flood mapping 

(Romanowicz and Beven 1998; Pappenberger et al. 2005a, 2006a). While GLUE has 
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found widespread application in flood inundation mapping because of its simple and 

flexible conceptual structure, it has been criticized in literature for not being formally 

Bayesian and statistically coherent (Beven 2009; Vrugt et al. 2005). Specifically, the 

subjectivity involved in defining the likelihood measure and the criteria for defining 

acceptable versus unacceptable models have been pointed out as incoherent and 

inconsistent from a statistical point of view. Even studies that implement formal 

likelihood measures through sequential data assimilation and multi-model averaging have 

been reported to have their own weaknesses.  

As previously discussed, there is a need to consider uncertainties in the estimation of the 

rating curve from historic discharge, the variation in Manning‟s n calibrating parameter, 

and the extraction of geometric data from topography. Moreover, not only is it necessary 

to recognize uncertainty propagated from a single variable, but it is also important to be 

aware of the combined effect of multiple variables and their relative uncertainty in the 

overall flood inundation mapping process. FOA has been used for sensitivity analysis and 

can provide quantitative information for the uncertainty propagation rate, which is the 

ratio of the propagated flood inundation area to change in a target variable. Similarly, 

GLUE has been widely used in quantifying uncertainty in several fields of hydrology, 

including hydraulic modeling and flood inundation mapping. However, the effect of the 

subjectivity issue in the GLUE methodology in quantifying the uncertainty in flood 

inundation mapping remains to be investigated. Accordingly, the overall goal of this 

study is to analyze the uncertainty arising from multiple variables in flood inundation 

mapping using Monte Carlo simulations, GLUE, and FOA.   
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1.2.Research Objectives 

 

 

The approach needed to accomplish the goal of analyzing uncertainty in flood inundation 

mapping involves quantifying uncertainty in flood inundation mapping, estimating 

uncertainty propagation, and assessing the role of prior and posterior PDFs in uncertainty 

quantification using the GLUE methodology. Accordingly, the three major topics pursued 

in this dissertation are: 

1) Estimation of uncertainty propagation in flood inundation mapping.  

The hypothesis that the uncertainty in one model variable is differently 

propagated to flood inundation area based on the role of other variables is tested 

by: (i) estimating the uncertainty propagation rates of individual as well as 

combined variables in uncertainty propagation by using the FOA method; and (ii) 

investigating the relative effect of combined model variables in flood inundation 

mapping through HSY sensitivity analysis. 

 

2) Uncertainty Quantification in Flood Inundation Mapping using Generalized 

Likelihood Uncertainty Estimate (GLUE) and Sensitivity Analysis. 

The topic involves: (i) quantifying and comparing the uncertainty arising from 

multiple variables in flood inundation mapping using Monte Carlo simulations 

and GLUE; and (ii) investigating the role of subjective selection of GLUE 

likelihood measures in quantifying the uncertainty in flood inundation mapping. 

3) Assessment of the role of prior and posterior PDFs in uncertainty 

quantification using the GLUE methodology. 
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This topic involves assessing the effect of prior probability density functions 

(PDF) on the estimation of the flood inundation area with several likelihood 

measures.  

 

 

 

1.3.Organization of this Dissertation 

 

 

Chapter 2 includes overall literature reviews on parameterization of model variables 

including the topography, discharge, and Manning‟s n, HEC-RAS model, First order 

approximation (FOA) method, Hornberger-Spear-Young (HSY) method, and Generalized 

Likelihood Uncertainty Estimation (GLUE) used in this dissertation. Chapter 3 describes 

study areas and data used in this dissertation. Chapters 4 to 6 describe the three topics of 

this dissertation in a self contained manner, i.e., each chapter includes introduction, 

methodology, results, and conclusions.  
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CHAPTER 2. LITERATURE REVIEW 

 

 

 

2.1.Parameterization in flood inundation modeling 

 

 

 

2.1.1 The effect of topography 

 

 

 

Uncertainties from using topography data arise at two levels in flood inundation 

mapping. First, topography affects the hydrologic model (e.g., watershed delineation) that 

is used to derive the flow estimate. Second, topography plays a significant role in the 

hydraulic modeling that is used to derive water surface elevations corresponding to the 

design flow. Topography affects the geometry which defines the flow domain, including 

river cross-sections and bathymetry mesh in a hydraulic model (Marks and Bates, 2000; 

Werner, 2001; Vazquez et al., 2002). Topography also affects the process of transferring 

the water surface elevation into flood inundation extent by subtracting the topography 

from the water surface (Colby et al., 2000; Tate et al., 2002; Bates et al. 2003; Omer et 

al., 2003; Wang and Zheng, 2005). Although the use of recently available LIDAR (light 

detection and ranging) data has improved the accuracy of flood inundation mapping, the 

absence of detailed river bathymetry in LIDAR can lead to flood inundation area errors in 

the range of 15 – 20% (Cook and Merwade, 2009). The quality of DEMs is determined 

by the LIDAR device type, filtering, and interpolation methods. Generally, on-line 
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accessible LiDAR DEMs for USA have vertical uncertainty in the range of 0.05 to 0.25 

m root mean squared error (RMSE), but access for the LiDAR DEMs is limited for a few 

States including Idaho, North Carolina, Ohio, Pennsylvania, and South Carolina. United 

States Geologic Survey (USGS) also provides national elevation data (NED) at 1/9, 1/3 

and 1 arc second resolution which have vertical errors in the range of 0.3-0.5 m, 7 m, and 

7-15 m, respectively. 

 

 

 

2.1.2 The effect of discharge 

 

 

Generally, discharge is considered as one of the most uncertain variables in flood 

inundation mapping (Pappenberger et al. 2006b). Uncertainty in discharge data arises 

from how the observed discharge data are estimated (stage-discharge rating curve) and 

from methods used to derive the design flow (e.g., 1% flow or 100-yr return period flow) 

for a given area. Stage-discharge rating curves that are used to estimate discharge from 

stage recordings can have standard error ranging from less than 10% for average 

discharge to up to 40% for flood conditions (e.g., Clarke et al., 1999, 2000; Di 

Baldassarre and Montanari, 2009). The uncertainty in stage-discharge rating curves gets 

translated to the discharge input to a hydraulic model, and consequently to water surface 

elevation estimates and flood extent (Freeman et al., 1996; Herschey 2002; Schmidt, 

2002; Parodi and Ferraris, 2004; Bales, 2009; Purvis et al., 2008). When detailed 

hydrologic modeling is used to derive the design flow, uncertainty arises from 

precipitation inputs (number of rain gauges, radar rainfall data), model set-up (lumped, 

semi-distributed and distributed), topography, and model parameters (Hossain et al., 
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2004). Use of regression equations to derive design flow is common for ungauged basins 

(Lara 1987), and some of the regression equations have standard errors in the range of 20% 

to 61%. For example, in a previous study involving Strouds reach in North Carolina, 

USA, the regression equation from the National Flood Frequency program had a standard 

error of - 34% to + 57% associated with the design flow estimate (Merwade et al., 

2008a). Similarly, the use of flood frequency equations in the United States has a 

significant level of uncertainty because of the assumptions made in deriving the design 

flow (Stedinger and Griffis, 2008). 

 

 

 

2.1.3 The effect of Manning‟s n 

 

 

Manning‟s n is considered as a “calibrating” parameter that is manipulated to account for 

all other uncertain variables in the overall hydraulic modeling process (e.g., Nicholas et 

al. 2005; Horritt 2005; Hunter et al. 2005). Typically, the Manning‟s n is different at 

multiple locations, such as in the main channel and floodplain, along the cross-section, 

but some studies use a single value of Manning‟s n (e.g., Pappenberger et al. 2005b) for 

the entire cross-section, thus adding uncertainty. Similarly, many hydraulic models are 

calibrated for a particular discharge, and this calibrated Manning‟s n value adds another 

level of uncertainty in the model because the calibrated Manning‟s n parameter may yield 

incorrect solution for other flow conditions. 
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2.2.HEC-RAS model 

 

 

The Hydrologic Engineering Center – River Analysis System (HEC-RAS) was developed 

by the Hydrologic Engineering Center (HEC) of the United States Army Corps of 

Engineers (USACE 2006). HEC-RAS is one-dimensional (1D) hydraulic model that can 

simulate steady and unsteady flow conditions in river channels including floodplains. In 

this study all simulations are conducted by assuming steady state flow condition. The use 

of 1D HEC-RAS is justified by the assumption that all simulations are performed for 100 

year return period flow where the river and its floodplain behave as a single channel; the 

floodplain only serves as a route to convey the flow parallel to the river centerline, and 

does not act as storage area. Thus, the cross-sections used in the HEC-RAS model extend 

across the floodplain. In HEC-RAS, each cross-section is divided into sub-divisions 

based on the values of roughness coefficients (Manning‟s n). The basic profile 

calculation in HEC-RAS is based on the energy equation (Eq. 2.1).  
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    (2.1) 

where, Y1, Y2: depth of water at 1 (upstream) and 2 (downstream), V1, V2: average 

velocities, Z1, Z2: elevation of channel bottom,

 
1 , 2 : velocity weighting coefficients, g: 

gravitational acceleration, he: energy head loss. 

Total conveyance in HEC-RAS is calculated by summing all incremental conveyances 

that are calculated for each subdivision by using the continuity and Manning‟s equation 

(Eq. 2.2).  
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         (2.2) 

where,   n: Manning‟s roughness coefficient, A: flow area, Sf: friction slope, and R: 

hydraulic radius.  

A high roughness coefficient raises the water surface elevation under the condition of the 

fixed flow rate and slope based on Manning‟s equation. Similarly, a change in total 

conveyance leads to variations in water surface for fixed roughness and slope. The 

channel bottom elevation has an effect on the water surface elevation (WSE) under the 

conditions of fixed roughness and flow rate because the elevation is related to the wet 

area in the Manning‟s equation, and to the elevation head in the energy equation.  HEC-

RAS needs geometric data (e.g., channel centerline, cross-section elevations, and 

spacing) and flow data (input discharge in the main channel including tributaries) and 

boundary conditions. Typically, geometric data are created using HEC-GeoRAS, which 

is an ArcGIS tool that allows digitizing cross-sections over a DEM, and exporting this 

information to HEC-RAS. HEC-GeoRAS also allows importing HEC-RAS output into 

ArcGIS to create flood inundation map by subtracting topography from water surface, 

which is created by interpolating water surface elevations at each cross-section. 

 

 

 

2.3.First Order Approximation (FOA) method 

 

 

A first-order approximation (FOA) is a relatively simple technique for estimating the 

amount of uncertainty transferred by multiple variables in the prediction of a 
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deterministic model. The basis of FOA method proposed by Benjamin and Cornell 

(1970) is based on the moment analysis for a function associated with independent 

random variables. In addition, the FOA method makes it possible to determine the 

fraction of model output variance (the second moment) contributed by each variable 

involving uncertainty. Applications using FOA have been performed in various fields 

including: hydrologic modeling (Garen and Burges 1981; Lei and Schilling 1994); 

coastal ocean circulation modeling (Blumberg and Georgas 2008); groundwater modeling 

(Sitar et al. 1987); water quality modeling (Beck 1987; Zhang et al. 2004); and flood risk 

analysis (Tang et al. 1975; Lee and May 1986; Yen 1989; Johnson and Rinaldi 1998; Liu 

et al. 2001) 

Uncertainty propagation by the FOA method can be derived as follows (Eqs. 2.3-2.8):  

Let Y be the model output dependent on a random variable X. The functional relationship 

can be rewritten by adding an expansion point (xe). 

 )xx(xf)x(fy ee 
      

(2.3)

 

The function can be expanded by using Taylor‟s theorem about the expansion point, 
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The mean of the random variable, x , is typically used as the expansion point in 

applications to water resources and environmental engineering (Zhao et al. 2011). FOA is 

based on the analysis of moments for the series expansion of model output truncated after 
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the first-order term because of an assumption that the second and higher order terms are 

relatively much smaller than the first two terms. 

)xx(
dx
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)x(f)x(fy

xx


        

(2.4)

 

As mentioned previously, FOA uses the first and second moments for the first order 

series of a function, which indicate the mean and variance. In addition, using the 

properties of the expected value,  
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 By substituting Eq. 2.4 and 2.5 into the relationship ])yy[(E]y[Var 2 , 
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The uncertainty ( y ) of model output (Y) is associated with the uncertainty propagation 

rate (
dx

dy
), and uncertainty ( x ) of independent variables (X) (Eq. 2.8).  
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2.4.Hornberger-Spear-Young (HSY) method 

 

 

The HSY method is a type of global sensitivity analysis (GSA), and it was first used by 

Hornberger and Spear in appraising an environmental model for eutrophication and algal 

growth (1981). In the HSY method, model parameters are sampled from their prior PDFs, 

and are used in MC simulations of a particular model. The model‟s outputs are typically 

divided by binary classification into behavioral and non-behavioral dataset. In the HSY 

method, sensitivity is determined by comparing the cumulative distribution functions 

(CDF) of an individual parameter in each classification. For a parameter, the differences 

between the CDF in the behavioral and non-behavioral classes indicate the magnitude of 

sensitivity. In other words, when the individual parameter is less sensitive, the gap 

between the CDFs in two classes would be narrower. Furthermore, the quantitative 

measure of sensitivity can be expressed by the non-parametric Kolmogorov-Smirnov 

(KS) d statistic (Eq. 2.9). The KS test is performed under the null hypothesis that 

behavioral and non-behavioral classes have the same distribution. 

)|()|(:

)|()|(:
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BXfBXfH

BXfBXfH

ii

ii





 

)|()|(sup)( BXFBXFXd iii         (2.9)
 

where, X: parameter, i: the number of parameter, B : behavioral class, B : non-behavioral 

class, and  f: probability density function, and F: cumulative density function. 
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2.5.Generalized likelihood uncertainty estimation (GLUE) 

 

  

The GLUE methodology, which is based on the Hornberger-Spear-Young global 

sensitivity analysis (Whitehead and Young, 1979; Hornberger and Spear, 1981; Young, 

1983), involves forward Monte Carlo simulations using different parameter values 

sampled from distributions, usually with independent normal or uniform distributions for 

each parameter.  The objective of the GLUE method is to identify a set of „behavioral‟ or 

acceptable models within the possible model/parameter combination (Beven and Binley, 

1992). Outputs from the all the simulations that are created by using the feasible 

parameter sets are weighted by likelihood measures, which is a function that describes 

how well the simulated model matches the observed data. Generally, likelihood measures 

based on Bayes equation (Eq. 2.10) can be estimated by several likelihood functions, 

such as inverse of sum of squared error, inverse of sum of absolute error, and Nash-

Sutcliffe efficiency.   

     zZIMLzZP |,)(
      

(2.10) 

where, P is posterior likelihood value and Z is the value of z simulated by the model.  

)],([ IML   is a likelihood measure of model prediction (M) for given parameter ( ) 

and set of input data (I).  

In flood modeling and mapping, a likelihood function can be defined by using the 

difference between observed and simulated water surface elevations (e.g., Kiczko et al., 

2007; Aronica et al., 1998). The likelihood measure based on the difference between 

observed and simulated water levels is useful, but it cannot capture the spatial extent of 
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flood inundation area when observed flood maps are not available. Despite this 

limitation, the water level is a preferable variable to be used in likelihood measure in 

many practical situations because of the lack of observed flood inundation maps during 

flooding. Spatial uncertainties in flooding can be utilized when flood inundation maps are 

available. Spatial data related to flood inundation can also be extracted from satellite or 

air-borne remote sensing images (Horritt and Bates 2002).  Likelihood function based on 

spatial extent of flooding is typically defined by F-statistic, which quantifies the 

discrepancy between two maps based on their intersection area (Horritt and Bates 2001; 

Aronica et al. 2002; Bates et al. 2004; Pappenberger et al. 2007).  An F-statistic value of 

100 means a perfect match between two maps (observed and predicted areas of 

inundation), and a lower F indicates discrepancy between the two.  

A higher likelihood measure indicates better fit between the model output and the 

observed data, and vice versa.  A cutoff threshold for likelihood measure then classifies 

the simulated outputs as behavioral (acceptable) or non-behavioral. The cut-off threshold 

can be defined in terms of either an absolute value (e.g., likelihood measure > 90), or a 

percentage of total simulations (e.g., top 75% of 1000 simulations). The likelihood 

measures of the behavioral models are then rescaled to obtain the cumulative density 

function (CDF) of the output prediction. The median of the rescaled CDF is generally 

taken as the deterministic model prediction (Blasone et al. 2008a and 2008b), and the 

uncertainty bound corresponding to this prediction is quantified by the 90% confidence 

interval chosen at 5% and 95% confidence levels.  
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As mentioned in the Introduction (chapter1), GLUE has been criticized in the literature 

for not being formally Bayesian and statistically coherent because of the subjectivity 

involved in defining the likelihood measure and the threshold for separating behavioral 

models from non-behavioral models. The debate on GLUE is still ongoing, and in the 

absence of any non-subjective solution to the current approach, it is necessary to 

investigate the roles of prior PDFs, posterior PDFs, likelihood measures and thresholds 

leading to the subjectivity in GLUE.   

In the GLUE method, posterior PDFs are determined by prior PDFs, cut-off thresholds, 

and likelihood functions. Typically, prior PDFs in previously GLUE applications have 

been assumed to be normal or uniform for each model variable (Stedinger et al., 2008). 

When the model variables generated from different PDFs are combined, and if the 

posterior PDFs of each variable are robust, the posterior PDFs will be helpful in finding 

the combination dataset of the model variables for behavioral models. However, if the 

prior and posterior PDFs are similar to each other throughout the GLUE process, it will 

be difficult to obtain any information from the posterior PDFs for the behavioral models. 

A likelihood measure is a critical index to indicate good fitness with observations. In 

previous GLUE applications, likelihood measure was estimated by several likelihood 

functions. Generally, inverse of sum of squared error, inverse of sum of absolute error, 

and Nash-Sutcliffe efficiency were used as likelihood functions, but the uncertainty 

bounds are not consistent for likelihood functions. Therefore, a proper likelihood function 

can be selected for the purpose of a study. With the selection of a prior PDF and a 

likelihood function, a cut-off threshold is a subjective decision. A cut-off threshold 
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influences in the determination of behavioral models and the posterior PDF of model 

variable. For example, if all likelihood measures area selected as behavioral models in 

MC simulations for a certain threshold, the posterior PDF of model variables will be 

same to their prior PDFs for the range of model variable and distribution shapes.  A 

tighter criterion can lead to posterior PDF different from the prior PDF because all 

parameter datasets are not selected as behavioral models. Therefore, a tighter threshold 

can lead to narrower ranges of model variables in their posterior PDF than a relaxed 

threshold (Kuczera and Parent, 1998; Jia and Culver, 2008).  
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CHAPTER 3. STUDY AREAS AND DATA 

 

 

 

3.1.Description 

 

 

This study used data from two river reaches, including a reach along the White River in 

Seymour, Indiana, and another along Strouds reach in Orange County, North Carolina 

(Fig. 3.1). Seymour reach is selected because of the availability of an observed flood 

inundation map for a historical flood in June 2008. The flooding of June 2008 was one of 

the worst in modern history, and led to evacuation of more than 100 homes in the area. 

Similarly, the area surrounding Strouds reach is designated as a high priority community 

by the U.S. Federal Emergency Management Agency (FEMA) because of the history of 

recurrence of floods in the area. An observed flood inundation map is necessary for using 

the GLUE technique to select behavioral models and to develop the uncertainty bound. 

Strouds reach is selected because of the availability of data and hydraulic model from a 

detailed flood inundation mapping study for FEMA. An observed flood inundation map 

for a storm event does not exist for Strouds reach, but the 100-yr flood inundation map 

from the FEMA study is treated as the base map in creating the uncertainty bound, thus 

enabling a sensitivity analysis of model output in response to variations in the input data. 

Both study areas have distinct physical (topographic and geomorphic) and climatic 

settings, thus providing good test beds for the study.  



22 

 

White River is one of the major rivers in Indiana, and is a tributary of the Wabash River 

which joins the Ohio River before draining to the Mississippi River. The Seymour reach 

selected in this study is 5.5 km long, and its floodplain is relatively flat with a U-shaped 

valley (Fig. 3.2.a). The geometric data for the Seymour reach contains 9 digitized cross-

sections extracted from a 1.5 m resolution digital elevation model (DEM) developed by 

the Information Technology Services at Indiana University in Bloomington, IN. The 

DEM data for the Seymour Reach is generated from digital orthophotographs taken in 

2006. The vertical accuracy of these data is 0.69 m for the study area, and is verified by 

comparing the DEM derived elevations with twelve bench mark points in the area.  The 

average width of Seymour reach cross-sections is about 3.9 km with an average spacing 

of 700 m. The Strouds reach is a tributary of the Eno River, and is characterized by a 

relatively narrow floodplain with a V-shaped valley (Fig. 3.2.b). The available GIS data 

for Strouds reach, used in Map Mod and available from NCFMP, include 17 surveyed 

cross-sections and 6m horizontal resolution LIDAR DEM as shown in Fig. 3.1.b. The 

average width of these cross-sections is 142 m with an average spacing of 167 m. The 

LIDAR survey was conducted by the NCFPM in 2001-2002. NCFPM evaluated the 

accuracy of the LIDAR data by comparing the LIDAR-derived bare earth elevations with 

100 check points in each county, and found the vertical accuracy to be in the range of ± 

0.25 m for the Strouds reach (Sanders, 2007).  
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Fig. 3.1: Study areas 
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a) Seymour reach b) Strouds reach 

Fig. 3.2: Cross-sections 

 

 

Discharge data for the Seymour reach including the observed inundation extent for the 

June 2008 flood event were obtained from the United States Geological Survey (USGS) 

Water Science Center in Indianapolis. The flood inundation extent was prepared by 

USGS by using high water marks and 1.5m resolution DEM for the region. A total of 20 

high water marks were collected by the Indiana Water Science Center and Indiana 

Department of Natural Resources staff for the Seymour reach. The reported vertical 

accuracy of these high water marks is less than 3 cm for most points (Morlock et al., 

2008). The flow data used for hydraulic modeling of the Seymour reach include observed 

discharge of 2729.7 m
3
/s for the June 2008 flood event with a reach boundary condition 

of downstream normal depth. The flow for the Seymour reach was estimated by the 
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USGS Water Science Center in Indiana by using a stage discharge rating curve. The 

Manning‟s n values for the Seymour reach hydraulic model are extracted from four land 

use conditions for the reach including cultivated & brush (n = 0.04), tree (n = 0.055), 

stream (n = 0.04), and urban (n = 0.12). The HEC-RAS model for Seymour Reach is 

manually calibrated for Manning‟s n. The design flow data including surface roughness 

(Manning‟s n) and boundary conditions for steady state flow simulation for Strouds reach 

are obtained from the hydraulic model input files from NCFMP. The Manning‟s n for 

Strouds reach main channel ranges from 0.04 – 0.05, and in the floodplain, it ranges from 

0.1 - 0.2. The downstream boundary conditions for Seymour reach and Strouds reach are 

normal slopes of 0.016% and 0.58%, respectively. The design flow (100 year event) for 

Strouds reach, which is available from the FEMA study conducted by NCFMP, was 

estimated by using the USGS National Flood Frequency (NFF) computer program (Ries 

and Crouse, 2002). The NFF uses regression equations that relate design flow to 

watershed characteristics such as drainage area and impervious cover.     

 

 

 

3.2.Accuracy of the model variables 

 

 

 

3.2.1. Topography 

 

 

As mentioned in the Study Area and Data section, cross-sections for the Seymour reach 

were extracted from a 1.5 m horizontal resolution DEM available from Indiana 

University. Cross-sections for the Strouds reach, which are available from NCFMP, are 
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created through a combination of manual surveying and by extracting elevations from 

LIDAR derived DEM. The reported accuracy for Strouds reach LDAR DEM is ± 0.25 m, 

and that for Seymour DEM is ± 0.69 m.  

 

 

 

3.2.2. Discharge 

 

 

The discharge data for the White River that are available from USGS for the 2008 flood 

event are included in this study. The USGS uses stage-discharge rating relationship to 

estimate discharge by measuring stages at their gauging stations. By using USGS field 

measurements of stage and discharge at the White River gauging station, a stage, H, (in 

meters) and discharge, Q, (in cubic meters per second) rating relationship (Eq. 3.1) is 

developed through regression.  

)log44.158.1(10 HQ 
    (3.1) 

The stage corresponding to the observed flow of 2729.7 m
3
/s is 19.67 m. The regression 

equation for the stage-discharge rating curve is developed assuming Student‟s t 

distribution. Using 95% confidence interval, a stage of 19.67 m gives a lower bound of 

2257 m
3
/s, and upper bound of 3301 m

3
/s (Fig. 3.3).  

Design discharge estimate for Strouds reach is derived through a regression equation (Eq. 

3.2) that related the 100 year design discharge with drainage area using the USGS 

National Flood Frequency program.  
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Q100 = 745 DA
0.625

 ,     (3.2)  

Where Q100 is the 100-year flow in cubic feet per second and DA is the drainage area in 

square miles, with an applicable range of 0.1 – 41 square miles. The standard error of 

prediction, which is the square root of the summation of the mean square model error and 

the mean square sample error associated with logarithmic Q100, is reported to be in the 

range of – 19.4% to + 19.4% for the given range of drainage areas. For Strouds reach, 

with a drainage area of 9 sq. mi., Eq. 3.2 gives a Q100 of 83.3 m
3
/s (2940 cfs) with an 

associated standard error range between 53.3 m
3
/s (1,882 cfs) and 130.7 m

3
/s (4616 cfs).   

 

 

Fig. 3.3: Discharge distribution for Seymour reach. X axis shows stage height in meters and Y 

axis shows discharge in cubic meters per second. 

 

 

 

3.2.3. Manning‟s n 

 

 

Manning‟s roughness coefficient has been typically used as the only calibrating 

parameter in 1D hydraulic modeling. A flood inundation map using a 1D model is based 
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on the water surface elevations estimated at cross-sections associated with the right bank, 

main channel, and left bank. Therefore, there are at least three Manning‟s n values, and, 

moreover, the number of Manning‟s n values at a cross-section depends on the land use 

distribution in the floodplain. The Manning‟s n values at the Seymour reach are assigned 

by four types of land use (cultivated land, tree, urban area, and water). For Strouds reach, 

Manning‟s n is based on the land use map used in the previous FEMA study. For both 

reaches, a range of Manning‟s n is used based on values published in the literature 

(Chow, 1959) (Table 3.1).  

Table 3.1: Roughness coefficients (Manning‟s n) for Seymour reach and Strouds reach. 

Model value represents the calibrated value of Manning‟s n 

 

a) Seymour Reach 

Land use Model Minimum Maximum 

Stream 0.04 0.025 0.055 

Tree 0.055 0.034 0.076 

Cultivated & Brush 0.04 0.025 0.055 

Urban 0.12 0.075 0.165 

 

b) Strouds Reach 

Stream 0.04 0.025 0.062 

Deciduous Forest 0.15 0.094 0.206 

Pasture/Hay 0.1 0.063 0.138 

Urban 0.2 0.125 0.275 
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CHAPTER 4. ESTIMATION OF UNCERTAINTY PROPAGATION IN FLOOD 

INUNDATION MAPPING 

 

 

 

4.1.Introduction 

 

 

The following two topics are described in this chapter: (i) propagation uncertainty rate 

estimation of key variables in flood inundation mapping by using the first order 

approximation (FOA) method; and (ii) evaluation of the relative sensitivity between the 

model variables utilizing the Hornberger-Spear-Young (HSY) method.  Monte Carlo 

simulations using HEC-RAS and triangle-based interpolation are performed to 

investigate the uncertainty arising from discharge, topography, and Manning‟s n in the 

East Fork of the White River near Seymour, Indiana (Seymour reach) and in Strouds 

Creek in Orange County, North Carolina (Strouds reach). 

 

 

 

4.2.Methodology 

 

 

The methodology consists of the following steps: (i) choice of the probability distribution 

types and ranges for discharge, Manning‟s n, and topography; (ii) Monte Carlo 

simulations using a HEC-RAS model and a terrain analysis tool; (iii) estimation of the 

uncertainty propagation rates related to discharge, Manning‟s n, and topography using the 
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FOA method; and (iv) relative sensitivity analysis using HSY method. A brief description 

of each step is given below 

 

 

 

4.2.1. Probability distribution for model variables 

 

 

In Chapter 3.2, the ranges of model variables are determined, but there is no information 

on the probability distribution for model variables except for discharge in the Seymour 

reach. Generally, the probability distribution for a model variable is assumed to be 

uniform or normal in uncertainty analysis. In the case of Seymour reach, discharge data 

are obtained from a rating curve equation based on historical data, and the uncertainty in 

discharge is determined by Student‟s t-test with a 95% confidence interval. Therefore, a 

t-distribution is assumed for the discharge. However, topography and Manning‟s n are 

assumed to have a uniform distribution. For Strouds reach, it is assumed that all model 

variables (Manning‟s n, discharge, and topography) have uniform distribution.   

Table 4.1: The conditions for random variables generated in a simulation 

Study 

Area 

Initial 

(variables) 

Modeling Variables 

estimated by RV  
Min Max 

Probability 

Type 

No. of 

Chosen 

RV 

Seymour Ni  

Manning‟s 

n 

N = Ni (1+RV) -0.375 0.375 Uniform 1 

Strouds  N = Ni (1+RV) -0.375 0.375 Uniform 1 

Seymour Fi   

Discharge 

F = Fi *10
0.0286RV 

 [m
3
/s] -1.963 1.963 t-distribution 1 

Strouds F = Fi *10
RV

 [m
3
/s] -0.194 0.194 Uniform 1 

Seymour Ei 

Topography 

E = Ei + RV [m] -0.69 0.69 Uniform 1 

Strouds E = Ei + RV [m] -0.25 0.25 Uniform 1 
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4.2.2. Monte Carlo simulations 

 

 

Monte Carlo simulations are conducted to estimate the flood inundation areas by using 

random variables selected from their probability distribution in a 1D hydraulic model and 

a terrain analysis tool. The simulations are separately conducted for uncertainty 

propagation estimation with the FOA method and relative sensitivity analysis with the 

HSY method. For both methods, the same probability distribution and ranges in variable 

magnitudes (Manning‟s n, discharge, and topography) are used in the MC simulations. In 

addition, all target random variables are generated only once for each simulation. In the 

case of discharge, a t-distribution is used for the Seymour reach, and a uniform 

distribution is used for the Strouds reach. In the case of Manning‟s n, which is differently 

assigned at each cross-section, the selected random variable represents a percentage 

change that is applied to the entire cross-section. Similarly, a random number for 

topography represents an error in the selected range, and this error is applied to each 

elevation point within all cross-sections.  

In estimating the uncertainty propagation rate of each variable, one variable (referred as 

target variable) among the three variables is randomly selected, and the two other 

variables (referred as conditional variables) are kept constant with minimum, mean, and 

maximum values in their feasible range. For example, Table 4.2 shows nine cases (Case 1 

to 9) where topography and discharge (conditional variables) have minimum, mean, and 

maximum values to study the effect of Manning‟s n (target variable) on the flood 

inundation area. One thousand Monte Carlo simulations are conducted for each 
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condition. Therefore, a total of 9,000 simulations are performed for each target variable 

because of the nine conditions associated with the other two conditional variables. 

Unlike the FOA method that uses one target variable and two conditional variables, 

Monte Carlo simulations for HSY sensitivity analysis use randomly selected two target 

variables, and one conditional variable, which is kept constant with minimum, mean, and 

maximum values. Two target variables are used to estimate their relative sensitivities on 

flood inundation area. Also, the relative sensitivities between two target variables are 

estimated for one conditional variable with minimum, mean, and maximum values, 

respectively. Table 4.3 shows three cases consisting of two target variables and one 

conditional variable for Seymour reach. Case H1 in Table 4.3 is for estimating relative 

sensitivities between two target variables (discharge and Manning‟s n) when one 

conditional variable is changed to minimum, mean, and maximum values. Fifteen 

thousand simulations are performed for each case (Case H1, H2, and H3), and thus a total 

of 45,000 simulations are conducted for each study reach.  
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Table 4.2: The conditions of topography and discharge for uncertainty propagation using 

the FOA method (A target variable: Manning‟s n; two conditional variables: topography 

and discharge)  

 

 Topography Discharge Iterations 

Case 1 Min Min 1000 

Case 2 Min Mean 1000 

Case 3 Min Max 1000 

Case 4 Mean Min 1000 

Case 5 Mean Mean 1000 

Case 6 Mean Max 1000 

Case 7 Max Min 1000 

Case 8 Max Mean 1000 

Case 9 Max Max 1000 

 

 

 

Table 4.3: The conditions for relative sensitivity of topography (E), discharge (F), and 

Manning‟s n (N) using the HSY method in Seymour reach  

 

 

Conditional 

variable 

Target 

variable 1 

Target 

variable 2 
Iteration 

Case H1 

   EMin F N 5000 

   EMean F N 5000 

   EMax F N 5000 

Case H2 

   FMin E N 5000 

   FMean E N 5000 

   FMax E N 5000 

Case H3 

   NMin E F 5000 

   NMean E F 5000 

   NMax E F 5000 
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4.2.3. Estimation of uncertainty propagation using FOA method 

 

 

Estimation of uncertainty propagation using FOA is based on a function associated with 

multiple variables. Studying error propagation in flood inundation mapping is complex 

due to the difficulty of creating a mathematical equation that includes spatial extent of a 

flood inundation map. Instead of a function that includes all of the modeling variables, a 

regression equation between an individual variable and the inundation area can be 

developed. This approach is only feasible when the regression equation has a high 

coefficient of correlation. In this study, the minimum correlation coefficient between the 

simulated and regressed inundation area is 0.99. The effect of a single variable on a flood 

inundation area can be influenced by changes in the other variables. It is inefficient to 

consider simultaneous changes in all variables to study uncertainty propagation. 

Therefore, while studying the effect of one variable, the conditions of other variables are 

restricted to minimum, mean, and maximum values in the feasible range. As a result, one 

target variable has nine conditions associated with two other conditional variables, and in 

this study, a total of 27 conditions for each reach are used to quantitatively estimate 

uncertainty propagation. The FOA method is eventually applied to the regression 

equations based on the simulation results, and then the uncertainty propagation rate is 

estimated (Fig. 4.1). In the FOA method, the uncertainty propagation rate is the ratio of 

the flow inundation area to the modeling variable, which means the magnitude of 

uncertainty from the modeling variables is linearly transferred to the inundation area.   

The FOA methodology for the uncertainty propagation includes: 1) creating the 

inundation area by randomly selecting one target variable by restricting the two 
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conditional variables to minimum, mean, and maximum values; 2) creating the regression 

equation based on the plot between a target variable and the simulated inundation area; 

and 3) evaluating the uncertainty propagation of the variable using the FOA method. 
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Fig. 4.1: Steps of FOA method for estimating uncertainty propagation: 1) plotting output; 

2) adding regression equation; 3) making first order function, where X-axis 

indicates a variable, and Y-axis shows inundation area. IA indicates inundation 

areas, σ is standard error, and N means a parameter  
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4.2.4. HSY sensitivity analysis 

 

 

When multiple variables are used in a model, all variables will have different effects on 

the model output. Therefore, it is important to understand how the multiple variables 

interact under various conditions. The HSY method, which is a global sensitivity 

analysis, is used to evaluate the relative influence among multiple model variables. In 

HSY sensitivity analysis, one variable is used as a conditional variable and two target 

variables are restricted to minimum, mean, and maximum values during the Monte Carlo 

simulations. In this study, the cut-off threshold is defined in terms of the top 70% of the 

ranked model outputs because there is no clear definition to distinguish the behavioral 

and non-behavioral classes (Hornberger et al. 1985). In addition, the cumulative density 

functions (CDF) of the two classes are estimated by a likelihood measure based on F-

statistic (Eq. 4.1).  

100
1

,iteration i for the statistic-F
,,

,th 

















iopipo

iop

i

i
AAA

A

P
F    (4.1) 

where, Ao indicates the observed inundation area, Ap refers to the predicted flood 

inundation area, and Aop represents the intersection of both observed and predicted 

inundation areas.  

The HSY methodology includes: 1) determining two target variables and one conditional 

variable; 2) fixing a conditional variable and randomly selecting two target variables in 

the feasible ranges; 3) estimating the water surface elevation by applying three variables 

to HEC-RAS; 4) estimating the flood inundation area by terrain analysis; 5) calculating 
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the F-statistic; 6) repeating  Steps 1-5 5,000 times; 7) defining two classes of flood 

inundation areas for each target variable taking the top 70% and bottom 30% of the 

simulated flood inundation areas; 8) plotting CDFs for two classes separately; 9) 

calculating Kolmogorov-Smirnov (KS) d statistic; 10)  comparing the estimated KS d 

statistics of two target variables.  

 

 

 

4.3.Results 

 

 

4.3.1. Monte Carlo simulations 

 

 

For the uncertainty propagation estimation, Monte Carlo simulations were conducted for 

the individual variables, including Manning‟s n (N), topography (E), and discharge (F). 

Specifically, the uncertainty propagation from one target variable is estimated for the 

combined conditions of the other two conditional variables. In both study reaches, the 

differences between the maximum and minimum flood inundation areas are generally 

larger when the other two conditional variables are fixed at minimum values. In the case 

of the Seymour reach, Manning‟s n had the highest influence on the flood inundation 

area, and flow condition had the least influence. The differences between the simulated 

inundation areas are in the range of 0.07 to 4.49 km
2
 (Table 4.4). In the case of Strouds 

reach, discharge shows the largest difference with 0.082 km
2
, while the Manning‟s n 

variation yields the minimum inundation difference of 0.023 km
2
 (Table 4.5). These 

simulated inundation areas are also used for estimating the regression model to overcome 

the difficulty of a mathematical equation for flood inundation modeling. 
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The results from the Monte Carlo simulations for HSY sensitivity analysis show the flood 

inundation area obtained by using two target variables with one fixed conditional variable 

in HEC-RAS. In the case of the Seymour reach, the combination datasets of two target 

variables among Manning‟s n, discharge, and topography involving uncertainty produced 

a flood inundation area in the range of 6.26 to 11.09 km
2
 (Table 4.6). In the case of 

Strouds reach, the flood inundation area simulated by the combination dataset ranged 

from 0.127 to 0.259 km
2
 (Table 4.7).  Similar to the case of uncertainty propagation 

estimation, the deviations in flood inundation area increased when the conditional 

variable has minimum value for both study reaches.  
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Table 4.4: The deviations of flood inundation area under 

the given conditions for Seymour reach [km
2
] 

 

a. Target variable: Manning‟s n 

 
FMin FMean FMax 

EMin 3.47 3.07 2.68 

EMean 0.99 0.88 0.73 

EMax 0.28 0.25 0.25 

b. Target variable: discharge 

 
EMin EMean EMax 

NMin 1.38 0.41 0.11 

NMean 0.91 0.23 0.07 

NMax 0.60 0.15 0.09 

c. Target variable: topography 

 
NMin NMean Nmax 

FMin 4.49 2.26 1.31 

FMean 3.86 1.75 1.05 

FMax 3.22 1.43 0.79 

 

Table 4.5: The deviations of flood inundation area under 

the given conditions for Strouds reach [0.1km
2
] 

 

i. Target variable: Manning‟s n 

 
FMin FMean FMax 

EMin 0.48 0.42 0.37 

EMean 0.45 0.35 0.34 

EMax 0.36 0.31 0.33 

ii. Target variable: discharge 

 
EMin EMean EMax 

NMin 0.82 0.72 0.58 

NMean 0.74 0.63 0.53 

NMax 0.69 0.62 0.55 

iii. Target variable: topography 

 
NMin NMean Nmax 

FMin 0.43 0.40 0.32 

FMean 0.37 0.29 0.26 

FMax 0.27 0.25 0.23 
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Table 4.6: Flood inundation area simulated by the combination two target random 

variables for Seymour reach [km
2
] 

 

a. Target variables: Manning‟s n and discharge 

Area EMin EMean EMax 

Min 6.35 9.76 10.74 

Max 10.25 10.88 11.09 

Dev 3.90 1.12 0.35 

b. Target variables:  topography and Manning‟s n 

Area FMin FMean FMax 

Min 6.26 6.97 7.67 

Max 11.00 11.04 11.09 

Dev 4.74 4.07 3.42 

c. Target variables: discharge and topography 

Area NMin NMean Nmax 

Min 6.31 8.75 9.73 

Max 10.83 10.99 11.09 

Dev 4.52 2.24 1.36 

 

Table 4.7: Flood inundation area simulated by the combination two target random 

variables for Strouds reach [0.1 km
2
] 

 

i. Target variables: Manning‟s n and discharge 

Area EMin EMean EMax 

Min 0.13 0.15 0.17 

Max 0.24 0.25 0.26 

Dev 0.11 0.10 0.09 

ii. Target variables:  topography and Manning‟s n 

Area FMin FMean FMax 

Min 0.13 0.16 0.20 

Max 0.25 0.23 0.26 

Dev 0.12 0.07 0.06 

iii. Target variables: discharge and topography 

Area NMin NMean Nmax 

Min 0.13 0.15 0.18 

Max 0.23 0.24 0.26 

Dev 0.10 0.09 0.08 
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4.3.2. Uncertainty propagation estimation using the FOA method 

 

 

All of the regression equations used in estimating the uncertainty propagation rate have 

high correlation coefficients of more than 0.99 with the flood inundation areas simulated 

from regression equation and MC simulations. Results from the FOA method show that 

error in a selected target variable (discharge, Manning‟s n, and topography) is differently 

transferred to the flood inundation area according to values of the two conditional 

variables. Tables 4.8 and 4.9 show the uncertainty propagation rates of each variable for 

both study reaches. The uncertainty propagation rate is the ratio of flood inundation area 

to the rate of change of the target variable. The uncertainty propagation rate of a target 

variable is maximized when the two conditional variables assume minimum values. The 

trend of uncertainty propagation rates using FOA method (Table 4.8 and 4.9) is very 

similar to the deviation of flood inundation areas in the MC simulations (Table 4.4 and 

4.5). These results could have been influenced by the geometric features of both study 

reaches. Specifically, the Seymour reach has a wide U-shaped valley and the Strouds 

reach has a relatively small V-shaped valley. Typically, for these geometric features, a 

high conveyance which has large wet areas for a given flow condition leads to a wide top 

water surface. Therefore, although the same uncertainty in one individual variable is 

applied to flood inundation modeling, the uncertainty propagation could be lower in high 

conveyance channels, and higher in low conveyance channels.  

In the case of the Seymour reach, 1% change in initial Manning‟s n values produced 

uncertainties from 0.27E-2
 
to 4.55E-2 km

2
 in flood inundation area, 1% change in 

discharge produced uncertainties from 0.3E-2 to 5.36E-2 km
2
, and 1 cm vertical error in 
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topography produced uncertainties between 0.4E-2 and 2.52E-2 km
2
. In the case of 

Strouds reach, 1% change in Manning‟s n values produced uncertainties from 4.32E-4 

km
2
 to 6.62E-4 km

2
, 1% change in logarithmic discharge produced uncertainties from 

0.50E-4 to 0.70E-4 km
2
, and 1 cm change in topography produced uncertainties from 

4.98E-4 and 8.79E-4 km
2
.  

In Table 4.8 (a) the uncertainty propagation rate due to Manning‟s n is affected by 

topography and discharge, but its effect is drastically reduced with increasing topography 

values. Similarly, in Table 4.8 (b) the uncertainty propagation rate due to discharge gets 

affected more by increasing topography values than by increasing Manning‟s n values. 

As a result, topography is the main contributor to the uncertainty in flood inundation area 

for the Seymour reach, and the discharge is the main contributor of uncertainty for the 

Strouds reach. Assuming that the price to remove unit uncertainty in all model variables 

(Manning‟s n, discharge, and topography) is equal, in the case of the Seymour reach, 

discharge gets the highest priority in terms of uncertainty removal for more accurate 

flood inundation mapping for low conveyance channel, and topography for high 

conveyance channel. In the case of the Strouds reach, the uncertainty in topography 

should be removed first for accurate flood inundation mapping.  
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 FMin FMean FMax 

EMin 

   
    

EMea

n 

   
    

EMax 

   
 

 

Fig. 4.2: Regression equations between Manning‟s n change rate and flood inundation of 

Seymour reach under the conditions of discharge and topography. x-axis 

indicates the relative change rate of Manning‟s n, and y-axis is flood inundation 

area (0.1km
2
). 
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Table 4.8: The uncertainty propagation rates of target 

variables for Seymour reach  

 

a. Target variable: Manning‟s n         [0.01 km
2
/%] 

 
FMin FMean FMax 

EMin 4.55 3.60 2.60 

EMean 1.11 0.89 0.80 

EMax 0.31 0.28 0.27 

b. Target variable: discharge              [0.01 km
2
/%] 

 
EMin EMean EMax 

NMin 5.36 1.59 0.44 

NMean 3.74 0.89 0.30 

NMax 2.71 0.61 0.34 

c. Target variable: topography         [0.01 km
2
/cm] 

 
NMin NMean Nmax 

FMin 2.52 1.28 0.68 

FMean 2.06 1.07 0.52 

FMax 1.70 0.80 0.40 

 

 

Table 4.9: The uncertainty propagation rates of target 

variables for Strouds reach  

 

i. Target variable: Manning‟s n          [10
-4

 km
2
/%] 

 
FMin FMean FMax 

EMin 0.48 0.42 0.37 

EMean 0.45 0.35 0.34 

EMax 0.36 0.31 0.33 

ii. Target variable: discharge [10
-4

 km
2
/% in logarithm] 

 
EMin EMean EMax 

NMin 0.82 0.72 0.58 

NMean 0.74 0.63 0.53 

NMax 0.69 0.62 0.55 

iii. Target variable: topography          [10
-4

 km
2
/cm] 

 
NMin NMean Nmax 

FMin 0.43 0.40 0.32 

FMean 0.37 0.29 0.26 

FMax 0.27 0.25 0.23 
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4.3.3. Relative sensitivity analysis using the HSY method 

 

 

The results from the HSY sensitivity analysis show the relative sensitivity when a pair of 

target variables generated from their prior probability distribution are analyzed in 

mapping the flood inundation area. Figs. 4.3 and 4.4 show CDFs of top 70% class and 

bottom 30% class for two target variables with one conditional variable restricted by 

minimum, mean, and maximum values. The difference between two CDFs in a target 

variable indicates sensitivity, and two target variables for a given condition have different 

sensitivities (relative sensitivity). In Table 4.10, cases H2 and H3 show that the 

topography is much more sensitive to the flood inundation area for the Seymour reach 

than the other variables; and case 1 shows that the D-statistic of Manning‟s n is higher 

than the discharge. These results indicate that topography is the most sensitive variable 

on the flood inundation area for the Seymour reach. For the Strouds reach, the discharge 

had a higher D-statistic than topography and Manning‟s n for H4 and H6 cases, which 

means that the discharge is most sensitive among the three variables. The results from the 

uncertainty propagation estimation, using FOA and HSY sensitivity analysis, show the 

same variables are most sensitive for each study reach. 

Unlike the uncertainty propagation estimation corresponding to the simulated flood 

inundation area, the D-statistics calculated in this study are based on the F-statistic, which 

indicate the degree of fitness between the base maps and the simulated floodplains. For 

each case, the relative D-statistic values of the two target variables vary as a conditional 

variable is changed. Specifically, in the case of the Seymour reach, the relative 

sensitivities from the two target variables generally decreased with increasing value of a 
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conditional variable.  However, in the case of the Strouds reach, Manning‟s n does not 

show any consistent trend with change in the conditional variable. Considering change in 

a conditional variable, the results for the Strouds reach are different for HSY method in 

comparison with the results from the FOA method.  This is because the HSY method 

based is on F-Statistic that is related to the overlap between simulated and observed flood 

inundation; whereas the FOA method is based on just the change in the total inundation 

area (Table 4.8 and 4.10).  

In Table 4.10, case H5 has two target variables (topography and Manning‟s n) and one 

conditional variable (discharge) for Strouds reach. This case shows that the topography 

has lower D-statistic than Manning‟s n for the minimum and mean discharge. However, 

when discharge is maximum, topography is more sensitive than Manning‟s n.  
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Table 4.10: D-statistics using the HSY method for Seymour and Strouds reaches 

Cases 
Conditional 

variable 
Target variable1 Target variable2 

Case H1 

Seymour reach 

topography Manning‟s n discharge 

EMin 0.149 0.945 

EMean 0.099 0.941 

EMax 0.153 0.926 

Case H2 

Seymour reach 

discharge topography Manning‟s n 

FMin 0.836 0.283 

FMean 0.789 0.266 

FMax 0.735 0.262 

Case H3 

Seymour reach 

Manning‟s n Topography discharge 

NMin 0.987 0.049 

NMean 0.974 0.054 

NMax 0.905 0.042 

Case H4 

Strouds reach 

topography Manning‟s n discharge 

EMin 0.601 0.316 

EMean 0.620 0.353 

EMax 0.676 0.438 

Case H5 

Strouds reach 

discharge topography Manning‟s n 

FMin 0.237 0.472 

FMean 0.437 0.572 

FMax 0.566 0.526 

Case H6 

Strouds reach 

Manning‟s n Topography discharge 

NMin 0.284 0.606 

NMean 0.326 0.681 

NMax 0.403 0.757 

 

 

 



 

 

a) Case H1 (Fixed variable: topography, Target variables: discharge and Manning‟s n) 

Minimum topography Mean topography Maximum topography 

discharge Manning‟s n discharge Manning‟s n discharge Manning‟s n 

      

b) Case H2 (Fixed variable: discharge, Target variables: topography and Manning‟s n) 

Minimum discharge Mean discharge Maximum discharge 

topography Manning‟s n topography Manning‟s n topography Manning‟s n 

      

c) Case H3 (Fixed variable: Manning‟s n, Target variables: topography and discharge) 

Minimum Manning‟s n Mean Manning‟s n Maximum Manning‟s n 

topography discharge topography discharge topography discharge 

      

Fig. 4.3: CDFs of top 70% class and bottom 30% class for Seymour reach. Solid line indicates the top 70% class, and dashed line 

is bottom 30% class.  

0

0.5

1

-15 -5 5 15

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-15 -5 5 15

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-15 -5 5 15

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-70 0 70

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-70 0 70

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-70 0 70

0

0.5

1

-40 -20 0 20 40

0

0.5

1

-70 0 70

0

0.5

1

-15 -5 5 15

0

0.5

1

-70 0 70

0

0.5

1

-15 -5 5 15

0

0.5

1

-70 0 70

0

0.5

1

-15 -5 5 15

4
8
 



 

 

a) Case H4 (Fixed variable: topography, Target variables: discharge and Manning‟s n) 

Minimum topography Mean topography Maximum topography 

discharge Manning‟s n discharge Manning‟s n discharge Manning‟s n 

      

b) Case H5 (Fixed variable: discharge, Target variables: topography and Manning‟s n) 

Minimum discharge Mean discharge Maximum discharge 

topography Manning‟s n topography Manning‟s n topography Manning‟s n 

      

c) Case H6 (Fixed variable: Manning‟s n, Target variables: topography and discharge) 

Minimum Manning‟s n Mean Manning‟s n Maximum Manning‟s n 

topography discharge topography discharge topography discharge 

      

Fig. 4.4: CDFs of top 70% class and bottom 30% class for Strouds reach. Solid line indicates the top 70% class, and dashed line is 

bottom 30% class.
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4.4.Conclusions 

 

 

Accuracy in flood inundation prediction depends on the uncertainty of the variables 

involved in flood inundation modeling. Despite recognizing uncertainty in the input data 

and model parameters, several practical constraints make it difficult to completely 

remove the uncertainty. However, an improved understanding of uncertainty can lead 

toward finding ways for reducing the uncertainty. In reducing the uncertainty, the priority 

of the target variables that contribute to uncertainty should be considered for optimal 

flood risk management because the uncertainty from the input data and the model 

variables is differently propagated to flood inundation. This study addressed the issue of 

uncertainty propagation from combined variables through computation of the uncertainty 

propagation rates of individual variables using the FOA method and relative sensitivity 

between two target variables using the HSY sensitivity analysis. 

The following conclusions are drawn from this study: 

 Uncertainty analysis using the FOA and HSY methods show that topography is a 

major contributor of uncertainty for the Seymour reach, and discharge had the 

most impact for the Strouds reach.  

 If the price to remove unit uncertainty in all model variables (Manning‟s n, 

discharge, and topography) is assumed to be equal, discharge gets the highest 

priority in terms of uncertainty removal for Seymour reach during low 

conveyance and topography during high conveyance. In the case of the Strouds 
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reach, the uncertainty in topography should be removed first for accurate flood 

inundation mapping.  

 The uncertainty propagation rates estimated by using the FOA method shows that 

uncertainty in a target variable is differently propagated to a flood inundation area 

corresponding to values of two conditional variables. In addition, the results using 

the FOA method show that uncertainty in all model variables (Manning‟s n, 

discharge, and topography) is less propagated to flood inundation area for high 

conveyance channel with wide top water surface. Therefore, estimation of 

uncertainty propagation needs to consider the effect of physical geometry as well 

as uncertainty in model variables. 

 The results from the HSY sensitivity analysis show that as a conditional variable 

gets higher values, the relative sensitivities between two target variables are lower 

for the Seymour reach, and higher for the Strouds reach. The HSY sensitivity 

analysis for Strouds reach produces inconsistent results with the results using the 

FOA method because HSY sensitivity analysis is based on F-statistic. From these 

results, it can be expected that discrepancy in the matches between simulations 

and observations is higher in high conveyance channel compared to low 

conveyance channel for the Strouds reach.  

 For Strouds reach, the HSY sensitivity analysis shows that topography is more 

sensitive than Manning‟s n for high discharge, but Manning‟s n is more sensitive 

than topography for low discharge. Therefore, efficient flood risk management for 

Strouds reach needs to consider the magnitude of design flood in improving the 

quality of model variables.  
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CHAPTER 5. UNCERTAINTY QUANTIFICATION IN FLOOD INUNDATION 

MAPPING USING GENERALIZED UNCERTAINTY ESTIMATION (GLUE) AND 

SENSITIVITY ANALYSIS 

 

 

 

5.1.Introduction 

 

 

The process of creating flood inundation maps is affected by uncertainties in data, 

modeling approaches, parameters, and geo-processing tools. Generalized likelihood 

uncertainty estimation (GLUE) is one of the popular techniques used to represent 

uncertainty in model predictions through Monte Carlo analysis coupled with Bayesian 

estimation. The objectives of this study are to: (i) compare the uncertainty arising from 

multiple variables in flood inundation mapping using Monte Carlo simulations and 

GLUE; and (ii) investigate the role of subjective selection of the GLUE likelihood 

measure in quantifying uncertainty in flood inundation mapping.  The roles of flow, 

topography and roughness coefficient are investigated on the output of one-dimensional 

HEC-RAS model and flood inundation map for an observed flood event on East Fork 

White River near Seymour, Indiana (Seymour reach) and Strouds reach in Orange 

County, North Carolina. Performance of GLUE is assessed by selecting three likelihood 

functions including the sum of absolute error (SAE) in water surface elevation and 

inundation width, sum of squared error (SSE) in water surface elevation and inundation 

width, and a statistic (F-statistic) based on the area of observed and simulated flood 

inundation map. 
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5.2.Methodology 

 

 

The methodology involves: (i) creating probability distributions for discharge, Manning‟s 

n and topography; (ii) using the probability distributions to run Monte Carlo simulations 

using HEC-RAS model; and (iii) creating uncertainty bounds related to discharge, 

Manning‟s n and topography using the GLUE framework. A brief description of each 

step in the methodology is given below. 

 

 

 

5.2.1. Probability distribution for model variables 

 

 

In this chapter, probability types for model variables are same to those in chapter 4. All 

model variables, except discharge which has t-distribution in the Seymour reach, have 

uniform distributions. However, in the case of the Seymour reach, the number of uniform 

distributions to generate random numbers are 9 for either of Manning‟s n or topography 

because the model variables at each cross-section that has different effects on the output. 

Similarly, a total of 17 uniform distributions of Manning‟s n and topography values and 

one uniform distribution for discharge are required for the Strouds reach. 
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Table 5.1: The conditions for random variables generated in a simulation 

Study 

Area 

Initial 

(variables) 

Modeling Variables 

estimated by RV  
Min Max 

Probability 

Type 

No. of 

Chosen 

RV 

Seymour Ni  

Manning‟s n 

N = Ni (1+RV) -0.375 0.375 Uniform 9 

Strouds  N = Ni (1+RV) -0.375 0.375 Uniform 17 

Seymour 
Fi  Discharge 

F = Fi *10
0.0286RV 

 [m
3
/s] -1.963 1.963 T-distribution 1 

Strouds F = Fi *10
RV

 [m
3
/s] -0.194 0.194 Uniform 1 

Seymour Ei 

Topography 

E = Ei + RV [m] -0.69 0.69 Uniform 9 

Strouds E = Ei + RV [m] -0.25 0.25 Uniform 17 

 

 

 

 

 

5.2.2. Monte Carlo simulations 

 

 

Monte Carlo simulations are conducted by using the HEC-RAS model with steady state 

flow conditions. A total of 1000 HEC-RAS simulations are performed for each variable 

(discharge, topography and channel roughness) by selecting a random number from their 

prior probability distributions. In the case of discharge, which is a single input to the 

model, only one random discharge value is generated to conduct one simulation. In the 

case of channel roughness, which is different for each cross-section, multiple random 

numbers (one for each cross-section) are generated for each simulation. As mentioned in 

the “Probability Distribution for Channel Roughness” sub-section, a random number 

actually represents a percentage, and this percentage is applied to each Manning‟s n 

within a cross-section. For example, if a cross-section has three Manning‟s n of 0.03 (left 

bank), 0.02 (main channel), and 0.04 (right bank), a random number of -10 (percent) will 

reduce these Manning‟s n to 0.027, 0.018 and 0.036 to represent a change of -10%.  
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Similarly, multiple random numbers are generated to conduct HEC-RAS simulations for 

topography.  Similar to channel roughness, a random number for topography represents 

an error in the ± 0.25 m range, and this error is applied to each elevation point within a 

cross-section. The combination of uncertainty is performed by selecting all random 

variables for topography, flow, and roughness in a simulation. Therefore, the 

combination dataset include more uncertainty transferred to the flood inundation than 

uncertainty arising from a single variable. 

 

 

 

5.2.3. Uncertainty bounds using GLUE 

 

 

A description of GLUE is already presented in section 2.5. After Monte Carlo 

simulations, all outputs are evaluated by a likelihood measure to reflect how well the 

simulated model compares with the observed or baseline output. The selection of a 

likelihood measure is a subjective process, and the uncertainty bound obtained using 

GLUE is affected by the choice of the likelihood measure. To investigate the effect of the 

selection of likelihood measures on the uncertainty bound, xix likelihood measures are 

used in this study. These measures include: (W1) sum of absolute errors in inundation 

width (Eq. 5.1); (W2) sum of squared errors in inundation width (Eq. 5.2); (E1) sum of 

absolute errors in water surface elevation (Eq. 5.3); (E2) sum of squared errors in water 

surface elevation (Eq. 5.4); F-statistic (Eq. 5.5); and (U) uniform probability (Eq. 5.6) 

that describes the overall matching of the model flood inundation area with the model 

predicted area.  
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where Ao indicates the observed inundation area, Ap refers to the predicted flood 

inundation area, and Aop represents the intersection of both observed and predicted 

inundation areas.  
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A 1D model such as HEC-RAS provides water surface elevations along cross-sections 

only. To get inundation area from these discrete model output, the topography is 
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subtracted from the water surface area, which is derived by triangulated interpolation of 

water surface elevations at each cross-section. Likelihood measures W1 and W2 are 

related to inundation width, E1 and E2 are related to inundation elevation, and F is 

related to inundation area. Observed inundation width at each cross-section is extracted 

by intersecting the observed inundation area polygon with the cross-section, and the 

observed water surface elevation is extracted by reading the DEM elevation at the 

intersection point. It is assumed that the observed data do not have any errors, and this 

assumption will lead to a conservative analysis, thus yielding relatively narrower 

uncertainty bounds. In this study all simulation outputs are assumed as behavioral models 

to build the CDF for getting the uncertainty bound.  

 

 

 

5.3.Results 

 

 

 

5.3.1. Monte Carlo Simulations 

 

 

Results from Monte Carlo simulations for each variable including roughness, topography 

and flow, and a combination of all variables are presented in Table 5.2 – 5.3, and Fig. 5.1 

– 5.2. Results show that the combined parameters create the most deviation in the output 

compared to the base data. Because of the differences in size and topography of these two 

reaches, the effect of each variable on water surface elevation, extent and flood 

inundation area is different. In the case of Seymour reach, topography creates the most 

deviation in flood inundation area compared to the observed inundation map; whereas 

flow and topography are major factors in the case of Strouds reach. Considering that 
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there is a difference of 1044 m
3
/s between the flow bounds, the narrowest uncertainty 

bound in the flow can be contributed to the wide U-shaped river valley along the 

Seymour reach.  

The statistics presented in Tables 2 and 3 are computed by using the data from all Monte 

Carlo simulations for a particular variable or their combination. For example, a minimum 

WSE of 172.82 m from roughness (first row on Table 5.2) represents the minimum WSE 

among all cross-sections from all 1000 simulations. Similarly, the statistics for the 

combined column is computed using data from 5000 simulations. The WSE and extent 

bounds in Figs. 5.1- 5.4 are also computed by using the data at each cross-section from 

all Monte Carlo simulations for a specific variable, or the combination of all variables.  

The observed minimum and maximum water surface elevations among all cross-sections 

for the Seymour reach are 173.27 m and 175.60 m, respectively. Combined uncertainty 

from all variables produces the largest deviation in minimum and maximum WSE by 

reducing the minimum WSE by 1.1 m, and increasing the maximum WSE by 0.88 m. 

Uncertainty in topography seems to contribute most variations in the WSE at the 

Seymour reach after the effect from all combined variables.  Similarly, uncertainty in 

flow has the least effect on WSE variations at the Seymour reach. Changes in WSE affect 

the flood inundation extent and area. The combined effect of all variables produces the 

widest bound in the uncertainty in flood inundation area followed by topography, 

roughness and flow. The minimum and maximum inundation areas for the Seymour 

reach from MC simulations are shown in Fig. 5.3(a - c).  
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Table 5.2: MC simulation results for Seymour reach (WSE, extent and area) 

a) Average WSE (m) from changes in 

 
Base Flow Topography Roughness Combined 

Min 173.27 173.13 172.58 172.82 172.17 

Max 175.60 175.73 176.28 175.88 176.48 

Mean 174.34 174.34 174.38 174.32 174.37 

St. Dev 0.76 0.76 0.77 0.75 0.77 

(Max-Min) 2.33 2.60 3.70 3.06 4.31 

 

 

b) Average extent (km) from changes in 

 
Base Flow Topography Roughness Combined 

Min 3.02 3.02 2.79 3.01 2.78 

Max 4.52 4.54 5.85 4.66 5.86 

Mean 3.89 3.89 3.90 3.90 3.90 

St. Dev 0.56 0.56 0.57 0.56 0.57 

(Max-Min) 1.50 1.52 3.06 1.66 3.08 

 

 

c) Area(km
2
) from changes in 

 
Base Flow Topography Roughness Combined 

Min 10.44 9.69 10.16 9.10 10.44 

Max 10.67 10.89 10.77 10.95 10.67 

Mean 10.56 10.54 10.54 10.51 10.56 

St. Dev 0.05 0.21 0.11 0.28 0.05 

(Max-Min) 0.23 1.20 0.61 1.85 0.23 
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Table 5.3: MC simulation results for Strouds reach (WSE, extent and area) 

a) Average WSE (m) from changes in 

 
Base Flow Topography Roughness Combined 

Min 146.66 146.30 146.41 146.60 145.75 

Max 159.48 159.84 159.72 159.68 160.19 

Mean 152.97 153.09 152.97 152.96 152.97 

St. Dev 3.99 3.97 3.99 3.98 3.97 

(Max-Min) 12.82 13.54 13.31 13.08 14.44 

 

 

b) Average extent (km) from changes in 

 
Base Flow Topography Roughness Combined 

Min 22.58 19.29 20.90 22.13 18.59 

Max 299.82 321.44 316.00 315.69 370.06 

Mean 188.13 190.05 187.85 187.77 189.61 

St. Dev 64.00 61.22 63.54 63.18 61.49 

(Max-Min) 277.24 302.16 295.11 293.56 351.48 

 

 

c) Area (0.1 km
2
) from changes in 

 
Base Flow Topography Roughness Combined 

Min 1.75 1.95 1.93 1.64 1.75 

Max 2.37 2.08 2.09 2.46 2.37 

Mean 2.08 2.02 2.01 2.07 2.08 

St. Dev 0.16 0.02 0.03 0.18 0.16 

(Max-Min) 0.63 0.13 0.17 0.82 0.63 
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Flow Elevation 

  
Roughness Combined 

 

Fig. 5.1: WSE for Seymour reach. X axis shows stationing in meters and Y axis shows 

elevation in meters 

 

 

  
Flow Elevation 

  
Roughness Combined 

Fig. 5.2: WSE for Strouds reach. X axis shows stationing in meters and Y axis shows 

elevation in meters 
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(a) (b) (c) 

   

(d) (e) (f) 

 

Fig. 5.3: Inundation areas for Seymour reach. 5 and 95 indicate the lower 5% and the 

higher 95% inundations areas, respectively. Min and max show the minimum 

and maximum inundation areas. Obs indicates the observed inundation area 

 

 

In the case of Strouds reach, the observed minimum and maximum water surface 

elevations among all cross-sections are 146.66 m and 159.48 m, respectively. Similar to 

the Seymour reach, combined uncertainty from all variables produces the largest 

deviation in minimum and maximum WSE by reducing the minimum WSE by 0.91 m, 

and increasing the maximum WSE by 0.71 m. Unlike the Seymour reach, uncertainty in 

flow condition produces the largest variations in WSE at individual variable level 
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followed by uncertainty in topography and roughness. Except for the combined 

uncertainty from all variables, the uncertainty in flow conditions produces the widest 

bound in the flood inundation extent and area at Strouds reach, followed by topography 

and roughness. The minimum and maximum inundation areas for Strouds reach from MC 

simulations are shown in Fig. 5.4(a - c). 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

Fig. 5.4: Inundation areas for Strouds reach. 5 and 95 indicate the lower 5% and the 

higher 95% inundations areas, respectively. Min and max show the minimum 

and maximum inundation areas. Obs indicates the observed inundation area  
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5.3.2. GLUE and sensitivity analysis 

 

 

Results from GLUE analysis at Seymour reach and sensitivity analysis at Strouds reach 

show the uncertainty bound in the flood inundation area from individual and combined 

effects of flow, topography and roughness for both study sites (Table 5.4 – 5.5 and Fig. 

5.5 – 5.6). Table 5.4 and 5.5 show the 5 and 95% uncertainty bound using different 

likelihood measures. The uncertainty bound for the Seymour reach inundation area is in 

the range of 0.14 to 0.68 km
2
 for individual variable, and is 0.53 to 0.88 km

2
 for 

combined variables. Similar to Monte Carlo simulations, combination of all variables 

produce the widest uncertainty bound (0.88 km
2
) followed by topography, roughness and 

flow.  Considering the observed inundation area of 10.57 km
2
 for the Seymour reach, the 

uncertainty bound for inundation area ranges from 1.3% to 8.3% of the base inundation 

area. Inundation areas for the Seymour reach corresponding to 5 and 95% confidence 

interval are shown in Fig. 5.3(d - f). The uncertainty bound for Strouds reach inundation 

area is in the range of 0.007 km
2
 to 0.052 km

2
 for individual variables, and is 0.058 km

2
 

for combined variables. At the individual variable level, flow data produce the widest 

uncertainty bound in the inundation area for Strouds reach. Considering the base 

inundation area of 0.2 km
2
 for the Strouds reach, the uncertainty bound for the inundation 

area ranges from 4% to 29% of the base area. Inundation areas for Strouds reach 

corresponding to 5 and 95% confidence interval are shown in Fig. 5.4(d - f). The 

likelihood measure based on the E2 produces the narrowest uncertainty bound for the 

Seymour reach for each individual variable, as well as when the variables are combined.  
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Table 5.4: Uncertainty of inundation areas (in km
2
) using GLUE for Seymour reach 

Variable Uncertainty Bound 
Likelihood Measure 

W1 W2 E1 E2 F U 

Flow 

Lower 5% 10.50 10.51 10.47 10.52 10.52 10.47 

Upper 95% 10.65 10.66 10.66 10.66 10.67 10.64 

Bound 0.15 0.15 0.19 0.14 0.15 0.17 

Elevation 

Lower 5% 10.15 10.13 10.27 10.35 10.16 10.13 

Upper 95% 10.82 10.81 10.82 10.82 10.81 10.81 

Bound 0.67 0.68 0.55 0.47 0.65 0.68 

Roughness 

Lower 5% 10.37 10.37 10.36 10.43 10.43 10.35 

Upper 95% 10.71 10.70 10.67 10.72 10.72 10.71 

Bound 0.34 0.33 0.31 0.29 0.29 0.36 

Combination 

Lower 5% 9.99 9.97 10.20 10.30 10.03 9.96 

Upper 95% 10.84 10.83 10.84 10.83 10.84 10.84 

Bound 0.85 0.86 0.64 0.53 0.81 0.88 

 

  
Flow Elevation 

  
Roughness Combined 

 

Fig. 5.5: GLUE for Seymour reach. X axis shows the inundation area and Y axis 

indicates CDF 
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Table 5.5: Uncertainty of inundation areas (0.1km
2
) using GLUE for Strouds reach 

 

Variable Uncertainty Bound 
Likelihood Measure 

W1 W2 E1 E2 F U 

Flow 

Lower 5% 1.79 1.77 1.78 1.78 1.77 1.78 

Upper 95% 2.28 2.28 2.27 2.27 2.26 2.30 

Bound 0.49 0.51 0.49 0.49 0.49 0.52 

Elevation 

Lower 5% 1.98 1.98 1.98 1.98 1.98 1.98 

Upper 95% 2.06 2.06 2.06 2.05 2.05 2.06 

Bound 0.08 0.08 0.08 0.07 0.07 0.08 

Roughness 

Lower 5% 1.96 1.96 1.97 1.97 1.96 1.96 

Upper 95% 2.05 2.05 2.06 2.06 2.04 2.06 

Bound 0.09 0.09 0.09 0.09 0.08 0.10 

Combination 

Lower 5% 1.78 1.76 1.77 1.76 1.75 1.77 

Upper 95% 2.30 2.30 2.28 2.26 2.28 2.35 

Bound 0.52 0.54 0.51 0.50 0.53 0.58 

 

  
Flow Elevation 

  
Roughness Combined 

 

Fig. 5.6: GLUE for Strouds reach. X axis shows the inundation area and Y axis indicates 

CDF 
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The change in uncertainty bound from different likelihood measures is in the range of 0 

to 2% for individual variable, and is in the range of 0 to 3.3% for combined variables. In 

the case of Strouds reach, all likelihood measures except U perform equally for all 

individual cases. The likelihood measure based on U produces the widest uncertainty 

bound for all individual and combined cases for the Strouds reach. The uncertainty bound 

from each variable does not add up to produce the combined uncertainty bound, thus 

demonstrating the non-linear nature of uncertainty propagation in the overall flood 

inundation mapping process.  

 

 

 

5.4.Summary and Conclusions 

 

 

Accurate communication of flood is critical for risk assessment in flood-prone areas, and 

to assist rescue and relief operations during floods. Accurate mapping and prediction of 

flood inundation is affected by uncertainty in input data and model parameters. Despite 

knowing the uncertainty in data and model parameters, it is still complex to understand 

and quantify the role of each uncertain variable in producing the final flood inundation 

map. Addressing this issue of uncertainty requires the knowledge of: (i) the extent to 

which the flood inundation map is affected by each variable; (ii) how the effect of any 

single variable changes from one area to another; and (iii) how the uncertainty from each 

variable propagates through the flood inundation process to contribute to the combined 

uncertainty in the flood inundation map. This study addresses the first issue of the impact 

of individual variables on the flood inundation extent through MC simulations. The 

second issue of the impact of uncertain variables in relation to different settings is 
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addressed to some extent, but this will require more than two study areas that are used in 

this study. In addition to looking at the uncertainty at each variable, this study also 

addresses the issue of quantifying and representing this uncertainty through the GLUE 

framework.  The issue of subjective selection of a likelihood measure, and its effect on 

quantifying the uncertainty is investigated by using five different likelihood measures 

that are based on water surface elevation, extent and inundation area. 

The following conclusions are drawn from this study: 

 The overall flood inundation process is driven by the flow input, and it is logical to 

expect the uncertainty in flow to add the maximum uncertainty among all other 

variables (Prudhomme et al. 2003; Pappenberger et al. 2006c), but this may not hold 

true for all cases. In this study, it is found that a smaller “V” shaped cross-sectional 

reach (Strouds reach) is more affected by flow compared to a larger “U” shaped 

cross-sectional Seymour reach.  

 Topography emerged as the top uncertain variable for Seymour Reach and ranked 

second after flow for Strouds reach. This finding can be attributed to the accuracy of 

topography data in flood inundation modeling and mapping. The vertical accuracy of 

Seymour DEM is 0.69 m, which is much lower than the vertical accuracy of the 

Strouds reach DEM. This conclusion is consistent with past studies that have found 

the accuracy of topography data to play a major role in flood inundation mapping 

(Wilson and Atkinson 2005; Merwade and Cook 2008b).  

 The results from the Seymour reach show that the uncertainty from roughness 

coefficient is higher than the uncertainty from flow data, thus highlighting the 
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importance of this variable in the overall flood modeling process. This finding is 

related to the range of values and their corresponding distribution in applying the 

GLUE procedure, and the overall percentage changes in flow and Manning‟s n are in 

the range of 20 and 37.5% for Seymour reach, respectively. This result  suggests that 

manipulating the roughness parameter during hydraulic model calibration without 

sound reasoning or physical basis will add more uncertainty in flood inundation 

mapping  

 Results from GLUE for Seymour reach and sensitivity analysis for Strouds reach 

show that the difference in the uncertainty bound from all the likelihood measures 

produce less than 5% change in flood inundation for both study reaches. These results 

suggest that subjectivity involved in selecting the likelihood measure did not create 

significant impact on the overall quantification of the uncertainty in flood inundation 

mapping. It should be noted that the uncertainty bound depends on the nature of the 

flood event, the valley shape, model parameters, and assumptions made in the 

uncertainty analysis. Therefore, the generality of this finding in flood inundation 

mapping warrants investigation using data from more areas. In addition, it should be 

considered that as more variables are combined, the difference of uncertainty bounds 

between likelihood measures is larger.    
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5.5.Discussion 

 

 

There are several aspects of this study that need more research to advance the treatment 

of uncertainty in flood inundation modeling and mapping. This study involved the use of 

only two datasets, and therefore similar studies must be conducted using more datasets 

with different topography, land use, hydrology, climatology and sizes. In addition, each 

variable must be investigated more thoroughly considering several aspects. For example, 

the topographic uncertainty in this study used only vertical accuracy as the source of 

uncertainty. Cook and Merwade (2009) found that other topographically derived model 

attributes such as geometry (cross-section spacing) can also have significant impact on 

the overall hydraulic model output including the subsequent mapping of flood inundation 

extent and area. Similarly, the flow data used in this study involved uncertainty arising 

from regression equations. When hydrologic modeling is used to get the design flow, 

uncertainties arising from input data and hydrologic model parameters should also be 

included.  

The uncertainty arising from model choice and assumptions also needs additional work. 

This study used a simple 1D model, which only gives water surface elevations at 

individual cross-sections. The approach used to interpolate the water surface elevations at 

cross-sections to create a 2D water surface can also add uncertainty in creating the flood 

inundation polygon. While uncertainty in interpolation techniques used for creating water 

surface may be small in v-shaped valleys, but may be significant in flat floodplains.   
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In this study, the uncertainty in topography, roughness and flow information created an 

uncertainty bound in the inundation area that ranged from 1.4 to 6.5% of the base 

inundation area for the Seymour reach, and from 4 to 29% for Strouds reach. The 

question is: how significant is this uncertainty bound? Currently, there are no guidelines 

(e.g., less than 5% uncertainty bound is acceptable ) in defining or quantifying the 

uncertainty that can be used for collecting data, executing models and eventually creating 

flood maps. The Federal Emergency Management Agency (FEMA) in the United States 

undertakes three levels of flood mapping projects called approximate, enhanced 

approximate and detailed. There are clear differences in the quality of data and level of 

modeling efforts in creating flood inundation maps for approximate and detailed FEMA 

studies, but it is unknown how the uncertainty bound changes using either approach, and 

how significant is this change in the uncertainty bound.  

The importance of quantifying uncertainty in flood inundation mapping is illustrated in 

Fig. 5.7 that shows the base inundation map, minimum (L4) and maximum (L1) area 

inundation maps from MC simulations, and 5 (L3) and 95% (L2) confidence interval 

maps from GLUE for an area around Strouds reach overlaid on top of a Google earth 

image. Property P1 (which seems under construction at the cul-de-sac when this image 

was taken) is outside the 100-yr flood zone based on the base map, minimum area map 

and 5% confidence interval map, but is partially in the flood inundation zone based on 

95% confidence interval and maximum area inundation map. Similarly, Property P2 

(which does not look like a residential property) is partially in the 100-yr flood zone 

based on the base map, outside the flood zone based on minimum area map and 5% 
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confidence interval map, but is completely in the flood inundation zone based on 95% 

confidence interval and maximum area inundation maps. Fig. 5.7 illustrates the 

importance of uncertainty on real properties which can have implications on flood 

insurance and other decision making processes. Underlying the importance of quantifying 

uncertainty in flood inundation mapping is the complex nature of uncertainties from data 

and models that need more thorough research involving more datasets with wide array of 

issues associated with each uncertain variable in the overall process. The study presented 

in this chapter is just one step in this direction.  

 
 

Fig. 5.7:  Flood inundation extents applied to Google map (Strouds reach) 
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CHAPTER 6. ASSESSMENT OF THE ROLE OF PRIOR AND 

POSTERIOR PDFS IN THE GLUE METHODODLOGY  

 

 

 

6.1.Introduction 

 

 

The generalized likelihood uncertainty estimation (GLUE) methodology is commonly 

utilized for uncertainty estimation in flood inundation mapping, but the subjective 

decisions required for its implementation limit its use. Specifically, the selection of a 

likelihood measure can produce different uncertainty bounds for the flood inundation 

area. Prior and posterior PDFs of the model variables, however, can provide significant 

information to assist with making more appropriate selections. In this chapter, a specific 

range of the model variables which have more influence on the observed inundation is 

called as an “effective range”. The effective range can be determined by consistent 

posterior probability density function (PDF) types regardless of the prior PDF types for 

the model variables. Typically, uncertainty estimation using GLUE is based on the 

datasets defined as behavioral model. However, if the number of behavioral models for a 

cut-off threshold is too small, an uncertainty bound can be roughly estimated. Therefore, 

the objectives of this study involve the following: 1) finding a likelihood function to 

derive robust uncertainty estimation in flood inundation mapping among several 

likelihood functions over all combined datasets generated from a prior PDF assumed as 

normal or uniform; and (2) investigating effective variable ranges for several cut-off 
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thresholds. These objectives are accomplished by applying the GLUE methodology, 

including Monte Carlo simulations with hydraulic modeling and terrain analysis for a 

reach along the White River in Seymour, Indiana (Seymour reach). Among the many 

uncertainty sources, topography, discharge, and Manning‟s n are selected in this study. 

The likelihood measures used in this study are F-likelihood measure (F) based on F-

statistic, W-likelihood measure (W) based on the spatial difference of flood extent 

between the simulations and observations, and E-likelihood measure (E) based on the 

difference in water surface elevations between the simulations and the observations. 

 

 

 

6.2.Methodology 

 

 

The methodology involves the following: 1) generation of random numbers from the 

assumed prior PDFs of the model variables (topography, discharge, and Manning‟s n); 2) 

Monte Carlo simulations with the combined model variables (Table 6.2) selected from 

their assumed prior PDFs; 3) estimation of the effective range of each model variable for 

cut-off thresholds; and 4) comparison of the uncertainty bounds based on the number of 

the selected acceptable datasets. 
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6.2.1. Random number generation for model variables 

 

 

As mentioned previously in section 3.2, the range of uncertainty is determined by a 

RMSE of ± 0.69 m for topography, a 95% confidence interval of rating equation for 

discharge, and Chow‟s classification for Manning‟s n. In the Monte Carlo simulations, 

random values for topography are generated as the percentages change instead of 

absolute values from their prior PDFs. Each cross-section includes multiple Manning‟s n 

values, and the hydraulic modeling for Seymour reach is based on nine cross-sections. If 

individual Manning‟s n values along a cross-section are independently and randomly 

selected, investigating the effect of each Manning‟s n value on the flood inundation 

extent becomes necessary because each Manning‟s n can be considered as a separate 

model parameter. To overcome this problem, just one random percentage for Manning‟s 

n is selected, and then multiplied to the initial Manning‟s n values. For example, if all 

cross-sections have three Manning‟s n values of 0.04 (left bank), 0.06(main channel), and 

0.05 (right bank), a random number of 20% would increase the Manning‟s n values to 

0.048(left bank), 0.072(main channel), and 0.06 (right bank) at all cross-sections to 

represent the change in the initial values. Similarly, if a random value for topography 

indicates a vertical error in a DEM, it is added to the initial elevation. For example, if a 

random number of - 0.1 m is selected for topography, all elevations in the DEM are 

reduced by 0.1 m. For discharge, a generated random number is directly used as a flow 

condition used in HEC-RAS. For example, if a random number of 3000 m
3
/s is 

generated, water surface elevations at all cross-sections are simulated for discharge of 

3000 m
3
/s.   
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Table 6.1: The conditions for random variables generated in a simulation 

Initial 

(variables) 

Modeling Variables 

estimated by Random 

variable (RV)  

Min Max 
No. of 

Chosen RV 
PDFs 

Ni  

Manning‟s n 
N = Ni (1+RV) -0.375 0.375 1 

Uniform, 

Normal 

Di   

Discharge 
D = RV [m

3
/s] 2257 3301 1 

Uniform, 

Normal 

Ti  

Topography 
T = Ti + RV [m] -0.69 0.69 1 

Uniform, 

Normal 

 

 

 

 

6.2.2. Monte Carlo simulations 

 

 

In this study, the Monte Carlo simulations using HEC-RAS and triangular-based 

interpolations are conducted to find the effective ranges for the model variable in the 

GLUE methodology. HEC-RAS is a one-dimensional (1D) hydraulic model based on an 

energy equation and Manning‟s equation; and HEC-RAS can simulate the basic profile 

and the total conveyance for steady and unsteady flow conditions in river channels, 

including floodplains. Some of the literature (Cook and Merwade, 2009) illustrated that a 

2D hydraulic model catches better flood inundation than a 1D hydraulic model. However, 

the use of a 1D model in this study is justified because the main channel and the 

floodplain are treated as a single channel for the observed flow condition for all 

simulations.  

The data for the HEC-RAS model involves the geometric data, flow data, Manning‟s n, 

and boundary conditions. Generally, geometric data in HEC-RAS model is obtained by 
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HEC-GeoRAS, which is an ArcGIS tool that allows extraction of cross- sections by 

reading information from a DEM and a land use map, and exporting this information to 

HEC-RAS. In the HEC-RAS model used for this study, a downstream condition of 

normal depth is used as the boundary condition, and steady flow conditions are assumed 

for a flood event. Water surface elevations from HEC-RAS are then interpolated by using 

a triangle-based linear interpolation (Matlab function “griddata”) (Watson and Philip, 

1984) to get a water surface. A flood inundation map is created by subtracting the 

topography from the water surface. In this study, Monte Carlo simulations are performed 

with random variables selected from a combination of prior PDFs for each variable. A 

total of 5000 simulations are conducted for each combination. Table 6.1 shows the 

conditions of the random variables generated in a simulation for each model variable.  

 

 

 

6.2.3. The effect of prior PDFs in the GLUE methodology 

 

 

In the GLUE methodology, the role of a prior PDF is significant in assessing the 

robustness of distribution for model variables with a posterior PDF based on the 

likelihood measures calculated by model outputs and the observations. However, it is 

difficult to obtain information about the distribution of input data as well as the model 

parameters. Therefore, many applications in flood inundation modeling assume the prior 

PDFs model variables simply to be uniform. This simple assumption for model variables 

might be necessary when conducting very large computations in order to obtain 

behavioral variables. In this study, the model variables are randomly selected from 
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uniform and normal PDFs and then combined for input dataset in the GLUE 

methodology (Table 6.2).  

Table 6.2: The combinations of prior PDFs for model variables 

Case  1 2 3 4 5 6 7 8 

Combination TNDNNN TNDNNU TNDUNN TNDUNU TUDNNN TUDNNU TUDUNN TUDUNU 

 

Model variable is denoted by AB: A indicates a model variable such as topography (T), 

discharge (D), and Manning‟s n (N); B means a prior PDF type of normal (N) and 

uniform (U).  

 

 

A likelihood measure is a key factor in the GLUE methodology because the uncertainty 

bounds can be narrowed or widened by the choice of a particular likelihood measure. 

Among the several likelihood functions proposed in the literatures, inverse error variance 

and Nash and Sutcliffe efficiency are representative likelihood functions, but these 

functions are difficult to apply to non temporal data. Therefore, F-statistic, which 

considers spatial distribution of flood extent, has been used as a likelihood measure in 

flood inundation mapping. An observed flood inundation map can provide the vertical 

water surface elevations (WSE) and spatial flood extent with a DEM. In this study, three 

different likelihood measures are used in the GLUE procedure. These measures include: 

(W) the sum of the absolute errors in inundation width. (Eq. 6.1); (E) the sum of absolute 

errors in the water surface elevation (Eq. 6.2); and a F-statistic that describes the overall 

matching of the model‟s flood inundation area with the model‟s predicted area (Eq. 6.3). 





N

j

oimi WWW
1

,     (6.1) 
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where, Wm,i and Wo represent the i
th

 iteration of the modeled water surface width and 

observed water surface width, respectively for the j
th

 cross-section.  





N

j

oimi EEE
1

,     (6.2) 

where, Em,i and Eo represent the i
th

 iteration of the modeled water surface elevation and 

the observed water surface elevation, respectively for the j
th

 cross-section.  

100
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,iteration i of statistic-F
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where Ao indicates the observed inundation area, Ap refers to the predicted flood 

inundation area, and Aop represents the intersection of both the observed and the 

predicted inundation areas. In this study, the assumption that the observed data did not 

contain any errors allowed a conservative analysis. 

 

 

 

6.2.4. Posterior PDFs and effective range of model variables for cut-off thresholds 

 

 

With a likelihood measure, a cut-off threshold to accept behavioral parameters has an 

impact on deciding the uncertainty bounds. In previous applications using GLUE, a cut-

off threshold is used in finding sets of behavioral variables, but there is no clear definition 

for behavioral models. The term, “behavioral” might not be appropriate without the 

comparison of the prior and posterior PDFs for model variables because the consistency 
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of behavioral models can be validated by robustness of posterior PDF corresponding to 

the prior PDF types.  

Typically, a tight cut-off threshold leads to a small number of acceptable datasets, while a 

relaxed cut-off threshold produces the large number of acceptable datasets. Therefore, 

GLUE needs a systematic procedure to find a proper likelihood measure and threshold in 

defining behavioral models. In this study, the behavioral models are defined by appraisal 

of prior and posterior PDF for model variables. The defined acceptable dataset associated 

with multiple variables involves the ranges for each variable, and these ranges are 

considered as effective ranges for model variables in this study. However, all datasets 

generated in the effective ranges of model variables are not defined as behavioral models 

because uncertainty estimation using GLUE is based on the combination dataset of model 

variables. Conversely, datasets generated outside the effective range can produce the 

behavioral models through MC simulations. For a certain cut-off threshold the number of 

the dataset can affect the uncertainty bound of flood inundation area because the 

uncertainty quantification in GLUE is based on the cumulative density function rescaled 

from estimates of marginal probability for the acceptable dataset. A small number of 

dataset defined as behavioral models can lead to the rough uncertainty bounds, and need 

massive computations.  

For a certain cut-off threshold, the effective range suggested in this study can lead to 

replenishment of deficient acceptable dataset by providing the specific range which has 

more impact on the observations than other ranges. For example, if only 10 datasets from 

1000 simulations are selected as behavioral models for a certain cut-off threshold, the 
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uncertainty bounds using the 10 datasets can be roughly estimated because a small 

number of datasets are selected. Because the effective range estimated from the 1000 

simulations has higher chance to generate behavioral models, more acceptable dataset 

generated from the effective range can supplement the roughly estimated uncertainty 

bounds using those 10 datasets. However, it should be noted that the GLUE methodology 

based on only datasets generated in the effective range can produce an overestimated or 

underestimated uncertainty bound. 

In this study, the effective ranges are estimated by the use of prior and posterior PDFs for 

several cut-off thresholds. The effective range does not exist for all cut-off thresholds. 

For example, if all datasets used in GLUE are defined as behavioral models, there are no 

effective ranges for each variable because the prior and the posterior PDFs of model 

variables are same. In addition, the effective range is not constant for all cut-off 

thresholds, and can be changed for a certain cut-off threshold.   

Eventually, effective range for each model variable in the GLUE methodology is 

determined by comparing a posterior PDF with the prior PDF for several cut-off 

thresholds. For example, if a posterior PDF is normal for a prior PDF of normal 

distribution, and uniform for a prior PDF of uniform distribution, it will be difficult to 

determine the effective ranges from the posterior PDFs of model variables. However, if 

posterior PDFs are normal for prior PDF of normal or uniform distribution, an effective 

range will be determined by ranges of model variables from robust posterior PDFs 

regardless of the prior PDF types. In this study, the effective range is estimated by taking 

the average for the range of the posterior PDFs obtained from 8 combinations of prior 

PDFs.   
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6.2.5. Uncertainty quantification 

 

 

For Each simulation output, W, E, and F likelihood measures are calculated by using Eqs. 

6.1, 6.2, and 6.3, respectively. Uncertainty bounds of flood inundation areas are 

quantified for 100% of W, E, and F likelihood measures. These uncertainty bounds are 

then compared with the results for top 3.5% of E-likelihood measure. In addition, the 

effect of selection of the number of behavioral models on uncertainty quantification for 

top 3.5% of E-likelihood measures (supplemented with dataset from effective range) is 

investigated.  

 

 

 

6.3.Results 

 

 

 

6.3.1. Monte Carlo simulations 

 

 

The results from the Monte Carlo simulations show different scatters corresponding to 

the likelihood measures in the dot plots for the Seymour reach (Fig. 6.1). The dot plots 

generated from uniform prior PDFs are have more scatter compared to that from normal 

prior PDFs (Table 6.2). The scatters of the F-likelihood measure, considering the water 

surface elevation and spatial distribution of flood extents are concentrated in the top for 

all model variables (topography, discharge, and Manning‟s n) (F in Fig. 6.1).  F-

likelihood measures have more scatter for negative uncertainties in for topography and 

Manning‟s n, but the scatter is symmetric for discharge.  In particular, the scatter of F-

likelihood measure for topography is more concentrated at high values for positive 
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uncertainty, but widely spread for negative uncertainty. Concentrated scatter at high 

values for a likelihood measure indicates that the simulations generally match well with 

the observations.   

The dot plots for W-likelihood measure (W) considering only flood widths at nine cross-

sections show layered scatters for all model variables (W in Fig. 6.1).  The horizontal 

parallel layers in the scatters of W-likelihood measure are created by the irregular shape 

of the cross-sections. Specifically, when shape of a cross-section is drastically wide or 

steep at a certain point, a layer will be created. For example, if the shapes of all cross-

sections are perfectly rectangular, W-likelihood measure will be constant in the given 

range of model variables because of no change in the simulated flood extents at cross-

sections.  

E-likelihood measure (E), which is based on only vertical difference between simulated 

and observed water surface elevations, shows different scatter for neative and positive 

uncertainty only for topography (E in Fig. 6.1). The scatters of E-likelihood measure for 

discharge and Manning‟s n are relatively symmetric in comparison with the scatter for 

topography. It is also possible from the scatter plot to guess the prior PDF based on the 

symmetry of the scatter. For example, for a normal prior PDF, the scatter in the dot plot is 

symmetric along a vertical line, with more concentration in the center. On the other hand, 

the scatter plot for a variable with uniform PDF is evenly symmetric. Similarly, a 

symmetric scatter plot indicates relatively less uncertain variable compared to a variable 

that has an asymmetric plot (e.g. topography and Manning‟s n in Fig. 6.1) 
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LM 
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Topography (T) Discharge (D) Manning‟s n (N) 
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DN 
NN 
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DN 
NN 

   

TU 
DU 
NU 

   
LM indicates likelihood measure. 

Fig. 6.1:  Dot plots of model variables (T, D, and N) based on different likelihood 

measures and the combination of the prior PDFs (case 1(TNDNNN) and 

8(TUDUNU)). X-axis indicates change of uncertainty in model variables, and Y-

axis shows the likelihood measures. 
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Table 6.3: Uncertainty bounds based on likelihood measure [unit: km
2
]  

LM 
        Case 

UB*  
1 2 3 4 5 6 7 8 AVG MD* 

F 

Lower 5% 9.83 9.72 9.82 9.66 9.46 9.36 9.45 9.29 9.57 0.21 

Upper 95% 10.89 10.92 10.90 10.92 10.95 10.98 10.96 10.98 10.94 0.04 

Bound 1.06 1.20 1.08 1.26 1.49 1.62 1.52 1.69 1.36 0.25 

W 

Lower 5% 9.83 9.80 9.82 9.78 9.43 9.38 9.42 9.38 9.61 0.22 

Upper 95% 10.90 10.92 10.90 10.92 10.95 10.98 10.97 10.99 10.94 0.03 

Bound 1.07 1.12 1.08 1.14 1.53 1.61 1.55 1.61 1.34 0.25 

E 

Lower 5% 10.32 10.27 10.31 10.25 10.16 10.14 10.14 10.13 10.21 0.08 

Upper 95% 10.87 10.88 10.87 10.89 10.92 10.92 10.92 10.92 10.90 0.02 

Bound 0.55 0.61 0.56 0.64 0.76 0.78 0.78 0.79 0.68 0.10 

UB* means uncertainty bounds 

MD* shows the maximum difference in uncertainty bounds for each likelihood measure 

 

 

 

 

6.3.2. The effect of prior PDFs  

 

The results from GLUE show the uncertainty bounds of flood inundation area based on 

W, E, and F likelihood measures for each case (Table 6.3). The flood inundation areas 

with a 90% uncertainty bound (lower 5% and upper 95%) for the Seymour reach are in 

the range of 9.29 to 10.98 km
2
 for the F-likelihood measure, 9.83 to 10.99 km

2
 for the W-

likelihood measure, and 10.13 to 10.92 km
2
 for the E-likelihood measure. Also, it is 

shown that when all model variables are randomly selected from uniform distribution, 

wider uncertainty bounds are obtained with all the likelihood measures. As a result, the 

E-likelihood measure produced the smallest uncertainty bound with an averaged value of 

0.68 km
2
 and the standard deviation of 0.1 km

2
. This means that the E-likelihood measure 

produced the robust uncertainty bounds regardless of the prior PDF types of model 

variables. Overall, the 90% uncertainty bounds considering prior PDF with several 
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likelihood measures range from 0.55 to 1.69 km
2
. The maximum difference in 

uncertainty bounds is about 11% of the base area (10.57 km
2
). This difference in 

uncertainty bounds is two times larger than the difference found in Chapter 5. From these 

results, the effect of the prior PDF type, including its subjectivity on uncertainty 

quantification is illustrated.  

 

 

 

6.3.3. Posterior PDFs of model variables 

 

 

With likelihood measures, a cut-off threshold plays a critical role in determining posterior 

PDFs. Fig. 6.2 and 6.3 shows the posterior PDFs of the model variables for the top 3.5% 

and 100% of W, E, and F likelihood measures (X-axis is change of uncertainty in model 

variable, and Y-axis indicates likelihood measure values). The posterior PDFs of each 

model variable have different distribution for different cut-off thresholds. Regardless of 

prior PDF combinations, consistent shapes of the posterior PDFs is shown in topography 

for the top 3.5% of F and E likelihood measures, and in Manning‟s n for the top 3.5% of 

W-likelihood measure. However, for top 100% of F, W and E likelihood measures, 

posterior PDFs for 3 model variables are similar to their prior PDFs. Posterior PDFs of 

model variables for 1, 2, 3, 4, 5, 10, 20, and 50% cut-off thresholds is included in 

Appendix.  

Fig. 6.4 shows the ranges of model variables from posterior PDFs based on each 

likelihood measure corresponding to 1, 2, 3, 4, 5, 10, 20, 50, and 100% cut-off thresholds. 

The ranges of all model variables are widened by a relaxed cut-off threshold to include 



87 

 

 

more datasets. Also, the ranges of all model variables based on the F and E likelihood 

measures showed a similar trend with changes in the cut-off threshold. For a cut-off 

threshold tighter than the top 3.5% of the F and E likelihood measures, the range of the 

topography is biased towards positive values. However, the range of topography for the 

W-likelihood measure is symmetric and is close to its initial range, which means that the 

range of topography for the W-likelihood measure is not affected by a cut-off threshold. 

For all likelihood measures (W, E, and F), the thresholds produce very small changes for 

the range of discharge. In the case of Manning‟s n, the range is largely affected by 

thresholds higher than the top 5% of the F and E likelihood measures. However, 

Manning‟s n shows positive bias for thresholds tighter than the top 1% of the W-

likelihood measures. 

 



 

 

Prior PDFs 
F W E 

Topography   Discharge   Manning‟s n Topography   Discharge   Manning‟s n Topography   Discharge   Manning‟s n 
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Fig 6.2: The posterior PDFs of model variables for top 3.5% of W, E, and F likelihood measures.  
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Fig 6.3: The posterior PDFs of model variables for top 100% of W, E, and F likelihood measures. 
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Fig. 6.4: The ranges of model variables based on likelihood measures corresponding to 1, 

2, 3, 4, 5, 10, 20, 50, and 100% cut-off thresholds 

 

 

 

 

6.3.4. Effective range of model variables 

 

 

Based on the posterior PDFs, effective ranges for each model variable are determined by 

considering consistency in the shape of posterior PDFs. As an example for estimating 

effective range, Fig. 6.5 shows eight posterior PDFs of each model variable by taking the 

top 3.5% of the E-likelihood measures for eight prior PDF combinations (Table 6.2).  The 

top 3.5% of E-likelihood measure is selected as a criterion because E-likelihood measure 

produces the smallest difference in uncertainty bounds (Table 6.3), and initial values 

(median value) of model variables in the posterior PDFs are included by top 3.5% of E-

likelihood measure. Eight posterior PDFs for topography is consistently normal for all 

prior PDF combinations. However, in the case of discharge, the posterior PDFs are 

clearly distinguished by the prior PDFs of discharge. The prior and posterior PDFs for 

discharge commonly have normal distributions in cases 1, 2, 5, and 6, and uniform 
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distributions in cases 3, 4 ,7, and 8. Based on this result, it is difficult to obtain any 

information about the distribution of error in discharge from the posterior PDFs because 

posterior PDFs are identical to their prior PDFs. Therefore, the effective range for 

discharge is same to the initial range.  

In the case of Manning‟s n, although there is little difference in shapes of the posterior 

PDFs over all cases, the shapes of all posterior PDFs are close to a normal distribution. 

Table 6.4 shows the effective ranges of model variables for top 3.5% of E-likelihood 

measure. Effective ranges of model variables for top 1, 2, 3, 4, 5, 10, 20, 50, and 100% of 

W, E, and F likelihood measures determined by the same method are shown in Table 6.5. 

With a tighter cut-off threshold, the effective ranges of topography for F and E likelihood 

measures are more clearly determined because topography has the most impact on the 

flood inundation area, and the number of the selected datasets defined as behavioral 

models for a tight threshold are small.   

 

Table 6.4: The effective range of model variables by taking 3.5% of E-likelihood 

measures for the Seymour reach 

 

 Topography [m] Discharge [m
3
/s] Manning‟s [%] 

lower upper lower upper lower upper 

Initial Range -0.69 0.69 2257 3301 -37.5 37.5 

Effective range -0.011 0.69 2257 3301 -36.8 31.6 

 

 

 

  



92 

 

 

Table 6.5: The effective ranges of model variables for thresholds of W, E, and F 

likelihood measures 

Threshold Range 
F W E 

T D N T D N T D N 

1% 
lower 0.265 2257 -37.5 -0.690 2257 -0.1 0.207 2257 -36.2 

upper 0.689 3301 16.1 0.690 3301 35.4 0.666 3301 8.6 

2% 
lower 0.173 2257 -37.5 -0.690 2257 -4.5 0.116 2257 -36.9 

upper 0.689 3301 37.5 0.690 3301 36.6 0.689 3301 14.8 

3% 
lower 0.093 2257 -37.5 -0.690 2257 -7.0 0.024 2257 -36.9 

upper 0.689 3301 37.5 0.690 3301 36.6 0.689 3301 30.4 

4% 
lower 0.047 2257 -37.5 -0.690 2257 -7.0 -0.011 2257 -36.9 

upper 0.689 3301 37.5 0.690 3301 37.2 0.689 3301 34.7 

5% 
lower 0.001 2257 -37.5 -0.690 2257 -7.0 -0.114 2257 -37.5 

upper 0.689 3301 37.5 0.690 3301 37.2 0.689 3301 37.5 

10% 
lower -0.160 2257 -37.5 -0.690 2257 -10.7 -0.240 2257 -37.5 

upper 0.689 3301 37.5 0.690 3301 37.2 0.689 3301 37.5 

20% 
lower -0.286 2257 -37.5 -0.690 2257 -14.5 -0.343 2257 -37.5 

upper 0.689 3301 37.5 0.690 3301 37.2 0.689 3301 37.5 

50% 
lower -0.447 2257 -37.5 -0.690 2257 -24.4 -0.550 2257 -37.5 

upper 0.689 3301 37.5 0.690 3301 37.2 0.689 3301 37.5 

100% 
lower -0.690 2257 -37.5 -0.690 2257 -37.5 -0.690 2257 -37.5 

upper 0.690 3301 37.5 0.690 3301 37.5 0.690 3301 37.5 

           

 
indicates that the effective range has a normal PDF. 

 
Indicates that the effective range has a normal or uniform PDF. 

where, T is topography in meters, D is discharge in cubic meters per second, and N is a 

relative change (%) of Manning‟s n. 
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Prior PDFs   Topography   Discharge  Manning’s n 

TNDNNN 

(Case1) 

 

TNDNNU 

(Case2) 

 

TNDUNN 

(Case3) 

 

TNDUNU 

(Case4) 

 

TUDNNN 

(Case5) 

 

TUDNNU 

(Case6) 

 

TUDUNN 

(Case7) 

 

TUDUNU 

(Case8) 

 
  

Fig. 6.5: The posterior PDFs of model variables by taking top 3.5% of E-likelihood 

measures. Left one is topography, middle on is discharge, and right one is 

Manning‟s n for each likelihood measure. X-axis indicates the range for each 

variable, and Y-axis shows the probability density. 
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6.3.5. Uncertainty quantification  

 

 

Table 6.5 shows the uncertainty bound in the flood inundation area for the top 1, 2, 3.5, 5, 

10, 20, 50, and 100% of E-likelihood measure. As the cut-off threshold is relaxed with a 

low E-likelihood measure, the uncertainty bound of inundation area is wider (Fig. 6.6). In 

particular, change in lower bounds is greater than the change in upper bounds. For top 3.5% 

of E-likelihood measure, the threshold value is 1.173 km
-1

, and 175 datasets are selected 

as behavioral models. Also, the uncertainty bound for top 3.5% of E-likelihood measure 

is 0.037 km
2
, which is about 0.35% of the observed area. This uncertainty bound is 

approximate because it is based on only 175 datasets from a total of 5000 datasets. 

Therefore, it is better to supplement 175 datasets with the dataset from effective range to 

get a more realistic uncertainty bound. 

The uncertainty bound supplemented by using the effective range is compared with the 

uncertainty bounds that are estimated by using 5000 datasets for each of W, E, and F 

likelihood measure for initial ranges with no criteria, and using 175 datasets selected by 

the top 3.5% of E-likelihood measures for initial ranges (Fig. 6.7 and Table 6.7). For the 

effective ranges, the updated prior PDFs are normal for topography and Manning‟s n 

because the posterior PDFs for topography and Manning‟s n are normal. However, the 

posterior PDF for discharge is normal or uniform corresponding to its prior PDF types. In 

this study, a uniform prior PDF for discharge is selected by considering all possible 

uncertainties because when a prior PDF is uniform the uncertainty bounds are generally 

wider. Uncertainty bound based on 175 dataset from initial ranges is supplemented by 

4305 datasets from the effective ranges (e in Table 6.7). In other words, a total of 4480 
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datasets among a total of 10000 simulations (5000 for finding effective range and 5000 

for supplementing datasets) are defined as behavioral models for E-likelihood measure of 

1.172 km
-1

. The comparison of the flood inundation areas is graphically shown in Fig. 6.7. 

The uncertainty bounds produced by GLUE using initial range and no criteria are 0.56 

km
2
 for E-likelihood measure and 1.08 km

2
 for both F and W likelihood measures. 

Uncertainty bound using initial range and top 3.5% of E-likelihood measure is 0.04 km
2
.  

 

In addition, when the datasets are supplemented by the effective range for E-likelihood 

measure greater than 1.172 km
-1

, GLUE produces an uncertainty bound of 0.21 km
2
. 

From the above result, it is clear that the number of dataset used in GLUE affect the 

uncertainty quantification. In addition, the uncertainty bound estimated by using only 

initial ranges is five times smaller than the one estimated by datasets supplemented by 

effective ranges. When considering the base inundation area of 10.57 km
2
 for the 

Seymour reach, the uncertainty bound for the inundation area ranged from 0.4% to 10% 

of the base area (Fig. 6.8).  
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Fig.6.6: Uncertainty bounds according to the thresholds based on E-likelihood measure  

 

 

 

 

Table 6.6: E-likelihood measure values, the number of dataset, and uncertainty bounds 

corresponding to the thresholds 

 

Threshold 

(%) 

E-likelihood 

(km
-1

) 

The number 

of dataset 

Lower 5% 

(km
2
) 

Upper 95% 

(km
2
) 

Bound    

(km
2
) 

1 1.215 50 10.745 10.771 0.026 

2 1.196 100 10.744 10.773 0.029 

3.5 1.173 175 10.743 10.78 0.037 

5 1.156 250 10.742 10.78 0.038 

10 1.095 500 10.741 10.792 0.051 

20 0.879 1000 10.719 10.815 0.096 

50 0.41 2500 10.558 10.844 0.286 

100 0.093 5000 10.31 10.867 0.557 
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Fig. 6.7: Comparison of the GLUE results from initial and efficient ranges. X-axis 

indicates the inundation area in squared kilometer and Y-axis show the CDF.  

 

 

 

 

 

Table 6.7: Uncertainty bounds using initial range and effective range [unit: km
2
] 

 

 

 

Initial Range and  

no criterion 
d) Initial range and  

(E ≥ 1.173 km
-1

)  

e) Effective range 

and (E ≥ 1.173 km
-1

) 
a) F b) W c) E 

Lower 5% 9.82 9.82 10.31 10.74 10.64 

Upper 95% 10.90 10.90 10.87 10.78 10.85 

Bound 1.08 1.08 0.56 0.04 0.21 

Selected dataset* 5000 5000 5000 175 4480 

Total dataset 5000 5000 5000 5000 10000 

The selected dataset* indicates the number of dataset satisfied with a criterion 
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a) F-likelihood measure b) W-likelihood measure c) E-likelihood measure 

   
d) e) f) 

   
g) h) i) 

 

Fig. 6.8: Inundation areas for Seymour reach. 5 and 95 indicate the lower 5% and the 

higher 95% inundations areas, respectively. Min and max show the minimum 

and maximum inundation areas. Obs indicates the observed inundation area. a) - 

c) are inundations areas for each likelihood measure using initial ranges. d) - f) 

are inundation areas based on top 3.5% of E-likelihood measure. g) - i) show the 

inundation area simulated by datasets supplemented from effective range. 
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6.4.Conclusions 

 

 

 The subjectivity in selecting a likelihood measure is illustrated from the dot plots. The 

model variables selected from the normal prior PDF produce more concentrated plot 

than the uniform prior PDF. Therefore, when model variables are randomly selected 

from the normal prior PDF, narrower uncertainty bounds are produced.  

 The uncertainty bounds of the flood inundation area are affected by the prior PDF 

types of the model variables and the type of likelihood measure (W, E, and F). 

However, this study shows that the E-likelihood measure is less affected by the 

combination of prior PDFs for the Seymour reach. Also, this study shows that the 

selection of the prior PDF and the type of likelihood measure both adds uncertainty in 

flood inundation modeling.         

 As more likelihood measures are defined as behavioral models for a relaxed threshold, 

the ranges of model variables in the posterior PDFs are wider. The subjectivity of 

thresholds is illustrated by the range of model variables in their posterior PDFs and 

the distribution shape.   

 With the selection of likelihood measure and threshold, it is illustrated that the size of 

the acceptable datasets to define behavioral models affects the uncertainty 

quantification using the GLUE methodology. A tighter threshold may need massive 

computations to collect sufficient acceptable datasets, and smaller number of datasets 

can lead to a very narrow uncertainty bound. This study shows that the effective 
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range provides a reasonable number of datasets to quantify the uncertainty in flood 

inundation mapping.  
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CHAPTER 7. SYNTHESIS 

 

 

 

7.1.Flood risk management 

 

 

The main goal of flood risk management is to reduce risk from flood. Basic components 

of flood risk consist of hazard, exposure, and vulnerability. Flood hazard means the 

probability of occurrence based on flood frequency at a certain level of magnitude. Flood 

mapping graphically describes the information on the flood hazard including the spatial 

variation and extent of the flood (Noson, 2002). Flood exposure represents the extent of 

properties and activities of humans geographically involved in flood-prone areas (Barroca 

et al. 2006; McEwen et al. 2002). Exposure relates the distance between floodplain and a 

place where there are properties and human activities. Flood vulnerability indicates the 

lack of resistance to flood damaging energy. Therefore, vulnerability is proportional to 

the exposure because if nothing is exposed in flooding, no damage will be done. Flood 

risk can be mathematically estimated as the product of hazard, exposure and 

vulnerability.  

Flood inundation mapping is a basic source in providing information in making a 

decision for flood risk management. The accuracy of the flood inundation map directly 

affects a decision in risk management. In addition, even if the accuracy is reached for a 

certain target level, inaccurate uncertainty analysis for flood inundation map can cause 
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severe consequences resulting from a natural disaster. Decision making in flood risk 

management involves both safety and monetary concerns. Accordingly, decision makers 

need to find an optimal solution that provided maximum safety with minimal cost. In this 

study, safety is related to the accuracy in flood inundation mapping and robust 

uncertainty analysis, and cost is related to reduction of error in data including 

topography, discharge, and Manning‟s n. Therefore, this study for efficient flood risk 

management focuses on: 1) estimation of the uncertainty propagation rate; 2) the 

uncertainty quantification in flood inundation mapping; and 3) assessment of the roles of 

the prior and posterior PDFs in the uncertainty analysis method. 

 

 

 

7.2.Estimation of the uncertainty propagation rate 

 

 

One finding presented in Chapter 4 is that the errors in a model variable can be 

differently propagated into uncertainty in a flood inundation map based on the conditions 

of other variables. It is illustrated that a low flooding condition leads to high uncertainty 

propagation from a single model variable into flood inundation maps, while a high 

flooding condition brings low propagation of error from a model variable through FOA 

sensitivity analysis. These results show that geometric shape of river cross-sections 

affects uncertainty propagations because the magnitude of flood has a close relationship 

with top water surface width and elevation from the shape of valley. However, relative 

sensitivity between two model variables through HSY sensitivity analysis is dependent 

on the fitness between observation and simulation rather than conveyance. Main 
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contributors to uncertainty in flood inundation mapping are topography for the Seymour 

reach, and discharge for Strouds reach.  

7.3.Uncertainty quantification in flood inundation mapping 

 

 

The application of GLUE methodology in this study (chapter 5) shows that the 

uncertainty bound from each variable is non-linearly accumulated to the combined 

uncertainty bound. Unlike expectation that errors in discharge add the most uncertainty, 

in this study, the first ranked uncertain variables are topography for large U shaped cross 

sectional Seymour reach, and discharge for small V shaped cross-sectional Strouds reach. 

The shape of valley can affect flood inundation modeling because it is related to the 

conveyance dependent to top surface width and elevation. However, discharge is still one 

of the major uncertain variables, which is estimated by a stage-discharge rating equation 

including hysteresis with errors in measurement. Accordingly, the uncertainty 

quantification depends on the degree of the difficulty to overcome errors in model 

variables.  

The subjectivity in selecting likelihood measure has small influence in quantifying 

uncertainty bounds for Seymour reach and Strouds reach. Considering base map areas for 

each reach, the difference between uncertainty bounds based on all the likelihood 

measure is less than 5% for both reaches. However, these results cannot be generalized 

for other study reaches because likelihood measures are affected by the nature of the 

flood event, the cross-section shape, the observations, and model variables. In addition, 
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the difference between uncertainty bounds from all likelihood measures for a single 

variable is less than for the combined model variables.  

 

 

 

7.4. The role of posterior PDFs on the uncertainty analysis method 

 

 

The GLUE methodology used in this study is simple and flexible, but involves subjective 

decisions on a likelihood measure and a cut-off threshold. This study (chapter 6) shows 

that the prior PDF types of model variables with the likelihood measures affects 

uncertainty bounds using the GLUE methodology. In addition, a relaxed threshold brings 

ambiguous information between the prior and posterior PDFs, while a very tight 

threshold makes it difficult to estimate uncertainty bounds due to a small number of the 

acceptable dataset. Also, this study shows that when the prior PDF has a uniform 

distribution uncertainty bound of flood inundation areas is wider than when a normal 

distribution.  

One of the findings from this study is that even though subjectivity cannot be completely 

removed from the GLUE methodology, the prior and posterior PDFs for model variables 

can be useful in finding a likelihood measure to derive robust uncertainty bounds, and the 

effective ranges of model variables which have higher chance defined as behavioral 

models in the procedures of the GLUE methodology. Specifically, the combination of 

prior PDFs for model variables is used to find a likelihood measure to obtain the most 

robust one among uncertainty bounds using GLUE. The effective range leads to the 

robust posterior PDFs of model variables for the prior PDF combinations. In this study, it 
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is illustrated that a number of the acceptable dataset affects uncertainty quantification 

using the GLUE methodology. The effective range for a cut-off threshold can be used to 

supplement acceptable datasets in uncertainty quantification based on a small number of 

dataset. Further investigation on this issue will need applications for other sites with 

physically and climatically different characteristics and for other elements arising 

uncertainty in flood inundation mapping. 
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Fig. A.1: The posterior PDFs of model variables for top 1% of W, E, and F likelihood measures.  
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Fig. A.2: The posterior PDFs of model variables for top 2% of W, E, and F likelihood measures. 
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Fig. A.3: The posterior PDFs of model variables for top 3% of W, E, and F likelihood measures. 
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Fig. A.4: The posterior PDFs of model variables for top 4% of W, E, and F likelihood measures. 

  

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

-0.2 0 0.2
0

0.1

0.2

0.3

0.4

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

0.4

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.1

0.2

0.3

-0.2 0 0.2
0

0.1

0.2

0.3

-0.4-0.2 0 0.2
0

0.1

0.2

0.3

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

1
2
0
 



 
 

 

Prior PDFs 
F W E 

Topography   Discharge   Manning‟s n Topography   Discharge   Manning‟s n Topography   Discharge   Manning‟s n 

Case 1 

   

Case 2 

   

Case 3 

   

Case 4 

   

Case 5 

   

Case 6 

   

Case 7 

   

Case 8 

   
Fig. A.5: The posterior PDFs of model variables for top 5% of W, E, and F likelihood measures. 
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Fig. A.6: The posterior PDFs of model variables for top 10% of W, E, and F likelihood measures. 
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Fig. A.7: The posterior PDFs of model variables for top 20% of W, E, and F likelihood measures. 
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Fig. A.8: The posterior PDFs of model variables for top 50% of W, E, and F likelihood measures. 

 

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.1

0.2

-0.2 0 0.2
0

0.1

0.2

-0.4-0.2 0 0.2
0

0.1

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

-0.2 0 0.2
0

0.05

0.1

0.15

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.4-0.2 0 0.2
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

-0.2 0 0.2
0

0.05

0.1

-0.4-0.2 0 0.2
0

0.05

0.1

-0.5 0 0.5
0

0.05

0.1

-0.2 0 0.2
0

0.05

0.1

-0.4-0.2 0 0.2
0

0.05

0.1

-0.5 0 0.5
0

0.05

0.1

-0.2 0 0.2
0

0.05

0.1

-0.4-0.2 0 0.2
0

0.05

0.1

1
2
4
 



 
 

 

 

 

 

 

 

 

 

VITA 

 

 

 

 

 

 

 
  



125 

 

 

 

 

 

 

 

VITA 

 

 

 

Younghun Jung was born in Okcheon, South Korea. He received his Bachelor and Master 

of Engineering Degrees in Civil Engineering from Inha University, Incheon, South Korea 

in 2002 and 2004, respectively. He received his Master of Science degree in Civil and 

Environmental Engineering from Georgia Institute of Technology, Atlanta, United States 

in 2007. He joined the Ph.D. program of Purdue University in January 2008.  


	com_ETDForm9
	ETDForm20
	PhD_thesis_Final(Young).pdf

