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ABSTRACT 

 

Liuying Du. M.S.C.E., Purdue University, May 2016. Characterizing the Impact of 

Climate and Land Use Change on Blue and Green Water over the Ohio River Basin, U.S. 

Major Professor: Venkatesh Merwade. 

 

Impacts of climate and land use change on the overall water availability can be quantified 

in terms of long-term trends in surface and subsurface hydrologic fluxes. This study 

presents the spatio-temporal characterization of Blue Water (BW) and Green Water (GW) 

dynamics during the period of 1935 to 2014 in the Ohio River Basin (ORB). The 

combined and relative contributions of climate and land use changes to BW and GW 

dynamics are also quantified. The Soil and Water Assessment Tool (SWAT) is used to 

simulate hydrologic components, and trend analyses (Mann-Kendall and Theil-Sen tests) 

are performed on the model outputs to detect the trend and magnitude of trends in BW 

and GW at three different levels, namely the entire basin, regional, and sub-basin levels. 

Precipitation increase and land use change from agriculture to forest are detected as the 

dominant indicators of climate and land use change in ORB. As a result, BW and GW in 

the entire basin has increased due to the combined effects of climate and land use change, 

but sub-basin and regional results reveal a distinctive spatial pattern. GW has increased 
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significantly in the upper and lower parts of the basin, which can be related to the 

prominent land use change in those areas; while BW has increased significantly only in 

the lower part, likely being associated with the notable precipitation change there. 

Climate change influences BW significantly, but relatively nominally on GW, whereas 

land use change increases GW remarkably, but has an opposing effect on BW. These 

results help to understand the collective influence of natural and anthropogenic impacts 

on hydrologic responses in the ORB, and thereby provide useful information for future 

water security and planning.
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CHAPTER 1. INTRODUCTION 

 Background 1.1

Climate and land use changes such as global warming, extreme weather events, and 

urbanization are occurring at an unprecedented rate (Asselen & Verburg, 2013; 

Goldewijk, 2001; Meehl et al., 2007; Stocker et al., 2014), and have great impacts on 

global and regional hydrologic fluxes (Allen et al., 1998; Eshleman, 2004). This kind of 

hydrologic change challenges conventional water resources planning and management. In 

order to have a better understanding of hydrologic changes, many researchers have tried 

to quantify the individual or combined effects of climate and land use change on water 

resources (Gupta et al., 2015; Mishra et al., 2010; van Roosmalen et al., 2009). These 

studies have reported significant hydrologic changes due to climate or land use change. 

Current studies are primarily focused on conventional blue water (BW) stored in rivers, 

lakes, reservoirs, or aquifers, which is estimated to contain nearly one third of the total 

available fresh water (Falkenmark & Rockström, 2006). The remaining two-thirds of the 

total fresh water, known as green water (GW), is stored in soils and plants and circulates 

within the water cycle through evapotranspiration (ET) feedbacks (Falkenmark, 1995). 

By definition, BW is the sum of surface runoff and deep aquifer recharge; GW is the sum
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 of actual ET and soil moisture. BW is critical for domestic and industrial water 

consumption, whereas GW plays a key role in vegetation growth, and consequently in 

crop production (Falkenmark & Rockström, 2006; Rockström et al., 2009). Quantitative 

assessment of BW helps to manage domestic and industrial water supply and provide 

information for the probabilities of extreme events such as floods and droughts; 

understanding the change of GW helps to improve agricultural productivity and solve the 

world hunger problem. Therefore, it is necessary to identify the spatio-temporal pattern of 

BW and GW and correlate them to climate and land use change. 

 Literature Review 1.2

Several studies have assessed BW and GW availability by using large scale models. For 

example, Schuol et al. (2008), Faramarzi et al. (2009), and Abbaspour et al. (2015) 

modelled the availability and spatial distribution of BW and GW in Western Africa, Iran, 

and Europe, respectively. Some studies analyzed the impact of historical/future climate 

change on BW and GW resources by assuming a constant land use pattern. For instance, 

Abbaspour et al. (2009) assessed the future impact of climate change on BW and GW in 

Iran by using Canadian Global Coupled Model (CGCM) and Soil and Water Assessment 

Tool (SWAT), and Chen et al. (2014) did similar analysis in the large-scale basins in 

China with the use of Atmosphere-Ocean General Circulation Models (GCMs) and a 

hydrological model named MPI-HM. Zang and Liu (2013) analyzed the BW and GW 

trends in the Heihe River Basin in China using historical precipitation data, but no clear 

relationship between BW and GW trends and climate change was stated. 
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Although some studies have looked at the spatio-temporal distribution of BW and GW in 

China with the application of SWAT, they assumed constant land cover over a long 

historical period, and did not correlate such spatio-temporal pattern to climate and land 

use change. Zang et al. (2012) assessed the spatio-temporal distribution of BW and GW, 

but they did not correlate such spatio-temporal pattern to the change of climate and land 

use.  Zuo et al. (2015) analyzed the spatial distribution of  BW and GW and their average 

seasonal patterns by assuming constant land use pattern. Zhang et al. (2014) performed 

the spatio-temporal analysis of BW and GW in the Headwater of Yellow River Basin, 

China, but they did not consider land use change. 

While other studies focused on the impacts of land use change on BW and GW, they did 

not explicitly separate the noise of climate variation/change from the impacts of land use 

change on long-term BW and GW dynamics. For example, Glavan et al. (2013) 

investigated the influences of the historical land use change over 200 years on BW and 

GW in two Slovenian Mediterranean catchments by using current climate condition. 

Jewitt et al. (2004) used two hydrological models, ACRU and HYLUC, to study BW and 

GW dynamics under nine simulated land use scenarios in the Luvuvhu Catchment, South 

Africa. Liu et al. (2009) quantified the effects of historical land cover change on BW and 

GW in Laohahe Catchment in China by using a semi-distributed hydrological model, but 

the resultant BW and GW changes included climate influences only.  

A restricted number of studies attempted to model and quantify the combined and 

individual influence of climate and land use change, but their outcomes are limited by a 
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variety of assumptions. For example, Li et al. (2009) quantified the impacts of land use 

change and climate variability on BW and GW components (runoff, soil water and ET) in 

Heihe catchment in China, but the 20-year study period was too short to make a 

conclusion about any climate change. Xu (2013) used the ratio of annual GW to annual 

precipitation as an index to assess GW under the influence of climate and land use 

change in a drainage area, but he excluded deep aquifer and root zone soil water contents 

from GW. 

 Research Objectives 1.3

Although many studies focused on the BW and GW dynamics, their findings are limited 

to some extent because they did not separate the relative contributions of climate and land 

use change to BW and GW. These limitations give less practical value to future water 

resources prediction and management. Therefore, this study intends to provide a 

comprehensive understanding about the influence of long-term climate and land use 

change on the spatio-temporal patterns of BW and GW in a large basin. First, historical 

climate and variable land use data are employed in the models to simulate BW and GW 

fluxes closer to reality. Second, in addition to the combined effects of climate and land 

use change, their individual contributions are quantified by isolating the land use 

variables from the combined influence. Furthermore, the spatio-temporal analysis helps 

identify the regions for further focal analysis where BW or GW is sensitive to climate or 

land use change. 
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The objectives of this study are to:  (1) analyze the spatio-temporal pattern of BW and 

GW in the study area under historical climate and land use changes from 1935 to 2014 at 

three levels (the whole basin, region, and sub-basin levels), and (2) quantify the relative 

contributions of climate change or land use change to BW and GW variability. These 

objectives are accomplished by choosing Ohio River Basin (ORB) as the study area 

because of the prominent changes in climate and land use, and its agricultural, industrial 

and domestic importance. The Soil and Water Assessment Tool (SWAT) is adopted for 

the hydrologic simulation, and trend analyses are performed using Mann-Kendall and 

Theil-Sen tests.  

 Thesis Organization 1.4

This thesis is organized in six chapters. Chapter 1 presents research background, research 

objectives, and an outline of this thesis. Chapter 2 presents a brief description of study 

area and the input data for SWAT modeling. Chapter 3 presents the methodology used 

for hydrologic simulation, statistical analysis, and the separation of climate and land use 

effects. Chapter 4 presents the results of observed climate and land use change, BW and 

GW spatio-temporal patterns, and relative contributions of climate and land use effects 

on BW, GW and their components (total water yield, deep aquifer recharge, ET, and soil 

water content) in the basin scale. Chapter 5 discusses the results in this study, and 

attempts to explore the differences within the context of previous studies. The uncertainty 

and limitation of this study are also discussed in Chapter 5. Chapter 6 presents the 

summary and conclusions for this study.
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CHAPTER 2. STUDY AREA AND DATA INPUT 

 Introduction 2.1

Since this study focuses on the spatio-temporal impacts of climate and land use change 

on BW and GW in a large scale basin, the Ohio River Basin (ORB) is used as the study 

area because of the prominent change in climate and land use. The ORB land use, which 

consists mainly of agricultural, forest and urban areas, has experien ced extensive 

conversion from agricultural area to forests due to conservation reserve program since the 

1940s (Tayyebi et al., 2015). Historical climate data in ORB also shows a significant 

increasing trend in precipitation.  

In addition, ORB has great importance in agricultural, industrial, and domestic water 

supply. The northwestern portion of ORB is within the Western Corn Belt (WCB), one of 

the most agriculturally intensive areas of USA, accounting for more than 50% of total 

corn and soybean production in the country (Schnitkey, 2013).  In addition to agriculture, 

ORB serves drinking water for about 10% of the population and produces about 20% of 

the electricity for the entire USA. Given that BW is important to domestic and industrial 

water supply and that GW is essential for agricultural productivity, the evaluation of BW 

and GW availability under prevalent climate and land use changes in ORB holds great 

significance.
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 Study Area 2.2

Ohio River is the largest tributary of Mississippi River by discharge and flows 981 miles 

from Pittsburgh, Pennsylvania to Cairo, Illinois. The drainage area of ORB is 491,000 

km
2
, covering the entire or part of total 11 states (Fig. 2.1). Located between 34°N and 

41°N latitude and 77°W and 89°W longitude, ORB’s eastern extent lies in the Blue Ridge, 

Valley and Ridge, and Appalachian Plateaus provinces; the central portion includes the 

Interior Low Plateaus, and reaches the Coastal Plain province in the west.

 

Figure 2.1 Study Area and Weather Station Location 
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The topography, land use and climate in ORB vary gradually from east to west. The 

elevation in the ORB ranges from 30 m above sea level in the flat western parts to 1,745 

m in the hilly eastern areas, and the elevation in the east is generally higher than that in 

the west. The slope also increases from the northwest to the southeast. ORB was 

historically covered by forest, and due to its flat topography and low elevation, the 

predominant land use in the western parts has been developed into agriculture at the 

beginning of the study period (1940), while the eastern part remains forestry. However, at 

the end of the study period (2010), a large portion has been transformed into second-

growth forest in response of the conservation reserve program established around 1940 

(Tayyebi et al., 2015). Urban area keeps increasing in ORB, but the change in urban area 

is still relatively small.  

The climate of ORB is temperate in the north and humid continental temperate in the 

southeast (O'Donnell et al., 2000). In winter, the monthly mean temperature varies from -

7°C to 10°C and in summer from 24°C to 28° C (White et al., 2005). According to the 

climate data during the study period (1935-2014), annual precipitation for the entire basin 

ranges from 840 mm/year to 1484 mm/year. The annual maximum and minimum 

temperature vary from 16.6°C to 20.0 °C and 2.5°C to 7.3°C, respectively. The annual 

precipitation increases slightly from the southeast to the northwest due to higher 

elevations in the southeast. Snow accumulation is significant in the north and 

Appalachians (White et al., 2005). 
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 Input Data 2.3

Creation of the SWAT models requires topography, soil texture, land use and climate 

data, and calibration and validation of the SWAT models needs observed streamflow data. 

Digital elevation model (DEM) data at 30 m spatial resolution is extracted from U.S. 

Geological Survey’s (USGS) National Elevation Dataset (NED). For the soil data, this 

study uses the 1:250,000 scale State Soil Geographic Data (STATSGO) directly from the 

SWAT 2012 database. Five historical land use maps, one for each decade during 1935 to 

1985, are obtained from the Human-Environment Modeling and Analysis (HEMA) 

Laboratory, Department of Forestry and Natural Resource at Purdue University (Tayyebi 

et al., 2015). The historical land use maps have four land cover classes: forest and 

rangeland, agriculture, urban and other land use (e.g. wetland/barren). For the remaining 

three decades of the study period (1985-2014), 30 m land use maps are obtained from 

USGS’s National Land Cover Dataset (NLCD) 1992, 2001 and 2011.  The original 

NLCD land use maps are then reclassified into the same classes as in the historical land 

use maps.  

The climate data are obtained from the National Climatic Data Center (NCDC) for 112 

weather stations that are nearly uniformly distributed within the basin, providing total 

daily precipitation, average daily maximum and minimum temperature records which 

cover the entire period of simulation (Fig.2.1). The other climate components, like solar 

radiation and relative humidity, are developed through the internal weather generator in 

SWAT. The weather data for each sub-basin are assigned automatically in SWAT using 
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the closest weather station. The daily observed streamflow data required for calibration 

and validation are obtained from USGS’s gauge stations (Fig.2.2). There are more than 

60,000 USGS gauge stations in ORB, but very few of them have the complete streamflow 

records from 1935 to 2014. In addition, as this study does not consider reservoir 

management, many available USGS streamflow gauge stations along the main channel of 

the Ohio River are not selected in order to minimize the influence of existing dams/locks 

in model calibration. The site information for calibration and validation is listed in table 

2.1. 
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Figure 2.2 Calibration and Validation Station Location 
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Table 2.1 Calibration and Validation Sites Information 

USGS Site Name Site Number Latitude Longitude 

ALLEGHENY RIVER AT FRANKLIN, PA 03025500 41°23'22" 79°49'14" 

ALLEGHENY RIVER AT PARKER, PA 03031500 41°06'02" 79°40'53" 

MONONGAHELA RIVER AT ELIZABETH, PA 03075070 40°15'44" 79°54'05" 

MUSKINGUM RIVER NEAR COSHOCTON OH 03140500 40°14'54" 81°52'23" 

KANAWHA RIVER AT CHARLESTON, WV 03198000 38°22′17″ 81°42′08″ 

SCIOTO RIVER AT HIGBY, OH 03234500 39°12'44" 82°51'50" 

LICKING RIVER AT CATAWBA, KY 03253500 38°42'37" 84°18'39" 

GREEN RIVER AT MUNFORDVILLE, KY 03308500 37°16'10" 85°53'17" 

WABASH RIVER AT MONTEZUMA, IN 03340500 39°47'33" 87°22'26" 

WABASH RIVER AT MT. CARMEL, IL 03377500 38°23'54" 87°45'23" 

LITTLE WABASH RIVER AT CARMI, IL 03381500 38°03'40" 88°09'35" 

OHIO RIVER AT METROPOLIS, IL 03611500 37°08'51" 88°44'27" 
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CHAPTER 3. METHODOLOGY 

 Introduction 3.1

This chapter presents the methodology for the BW and GW simulation, trend analysis, 

and quantifying the relative contributions of climate and land use effects. The model 

mechanism and setup of Soil and Water Assessment Tool (SWAT) are first described in 

Section 3.2 and 3.3. Sequential Uncertainty Fitting Version 2 (SUFI-2) in SWAT-CUP is 

used for model calibration and validation. Mann-Kendall test and Theil-Sen approach are 

used to detect the trend and magnitude of the trend line, respectively. Finally, the method 

for separating climate and land use effects are briefly described in Section 3.6.  

 Model Description 3.2

SWAT has been widely used to analyze BW and GW in large-scale basins (>100,000km
2
) 

(Faramarzi et al., 2013; Zang et al., 2012; Zhang et al., 2014; Zuo et al., 2015). SWAT is 

a semi-distributed, conceptual model to simulate hydrologic and chemical processes in a 

basin scale over long time scales. SWAT incorporates a number of different physical 

processes within a watershed, including climate, hydrology, chemical and nutrient 

transport, sediment transport, land cover and practice management, and water resources 

management. In this study, SWAT is adopted to simulate hydrologic fluxes because of its 
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good performance in large-scale models, computational efficiency, and wide-spread 

application in simulating BW and GW.  

In general, SWAT simulates watershed physical processes based on daily water balance 

in soil content and routing phase through the watershed (Neitsch et al., 2011). The water 

balance equation in SWAT is presented below (Neitsch et al., 2011): 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

               Equation 3.1 

Where 𝑆𝑊𝑡 is the final soil water content (mm H2O), 𝑆𝑊0 is the initial soil water content 

on day i (mm H2O), t is the total number of simulated days, 𝑅𝑑𝑎𝑦 is the amount of 

precipitation on day i (mm H2O), 𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff on day i 

(mmH2O), 𝐸𝑎 is the amount of ET on day i (mm H2O), 𝑤𝑠𝑒𝑒𝑝 is the amount of water 

entering the vadose zone from the soil profile on day i (mm H2O), and 𝑄𝑔𝑤 is the amount 

of return flow on day i (mm H2O). 

 Model Setup 3.3

This study utilizes the ArcSWAT 2012 interface to set up SWAT for simulating BW and 

GW fluxes. The original DEM, soil, and land use data are resampled to a 90 meter 

horizontal resolution to keep the model computational time in ArcSWAT reasonable. The 

entire ORB is divided into 125 sub-basins by using a flow accumulation threshold of 0.5% 

basin area (2500 km
2
). Since ORB has a large drainage area, and in order to keep the 
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computational time of the models within a practical limit, the sub-basins are not further 

divided into multiple Hydrologic Response Units (HRUs). Instead, dominant land use, 

soil type, and slope classes are used to represent the typical geospatial character of a 

particular sub-basin (Winchell et al., 2010). This leads to the assumption that the 

simulated hydrologic variable over a particular sub-basin is representative of the average 

condition of the whole sub-basin. Considering the elevation differences across the basin, 

the slope is classified into three classes: 0-4%, 4-10%, and >10%. In this study, SCS 

Curve Number method is selected for surface runoff generation, Penman-Monteith 

equation is selected to compute potential evapotranspiration (PET), and Variable Storage 

method is selected for channel routing simulation (Neitsch et al., 2011).  

To analyze BW and GW availability due to combined and separated impacts from 

climate and land use change, two SWAT configurations are created in this study. In the 

first configuration, eight decadal SWAT models are created using historical climate and 

land use data to study the combined effects of land use and climate change. This model 

configuration is named ‘variable climate-variable land use’ for this study. In this 

configuration, the study period from 1935 to 2014 is first divided into eight 10-year 

periods and each SWAT model simulates one of the eight periods by using historical 

climate and land use data corresponding to that period. For each model, the first year is 

used as the warm-up period so that the influence of initial condition can be excluded. To 

separate the impact of climate and land use change, a scenario where the land use remains 

constant, but climate varies as the historical data is created. This configuration is named 
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as ‘variable climate-steady land use’ for this study, and this hypothetical model has the 

input of 1940’s land use and variable weather input over the study time span. 

 Tile Drainage 3.4

As a predominantly agricultural region, ORB has artificial subsurface drainage (tile 

drainage) in nearly 30 % of its areas (Jaynes & James, 2007).The function of tile drainage 

is to maintain the productivity of poorly drained soils. Tile drainage is very important to 

hydrologic balance because tile drains intercept percolating waters and route them 

directly to surface waters (Green et al., 2006). Considering the density and importance of 

tile drainage in ORB, the tile drainage system is simulated in the SWAT model. Most of 

the tile drainage in the northern part of the United States was installed between 1870 and 

1920 and between 1945 and 1960 (Zucker & Brown, 1998).  In the absence of 

information on historical tile drainage installation, tile drains are assumed to be installed 

for the entire basin at the beginning of the study period, and the percentage of tile 

drainage keeps constant throughout the study period. Previous studies assumed tile 

drainage to be installed in ‘somewhat poorly-drained’, ‘poorly-drained’, and ‘very 

poorly-drained’ soils (Boles, 2013). However, in order to maintain the reported 

percentage of total drainage area (about 30%), tile drains are only included in the model 

in agriculture land with ‘poorly-drained’ and ‘very poorly-drained’ soils. In SWAT, four 

parameters are needed to simulate the tile drains: DEP_IMP, depth to impermeable layer 

(mm), DDRAIN, depth of surface drain (mm), TDRAIN, time to drain soil to field 

capacity (hour), and GDRAIN, drain tile lag time (hour). Based on previous studies (Du 
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et al., 2005; Rahman et al., 2014; Singh et al., 2005), DEP_IMP is set to 1200 for ORB, 

DDRAIN is set to 1000, TDRAIN is set to 24, and GDRAIN is set to 48. 

 Model Calibration, Parameterization, and Validation 3.5

3.5.1 Calibration Method 

The calibration and validation process is conducted using Sequential Uncertainty Fitting 

Version 2 (SUFI-2) in SWAT-CUP (Abbaspour, 2013). Rather than specifying a set of 

best-fit parameters, SUFI-2 aims to find a good parameter range with the view of the 

uncertainty issues on parameters, including conceptual modeling uncertainty, input 

uncertainty, and parameter uncertainty. SUFI-2 adopts two indicators to measure the 

goodness of model performance: P factor and R factor (Abbaspour et al., 2004). P factor 

refers to the percentage of measured data within the 95% prediction uncertainty (95PPU) 

band of the cumulative output distribution.  R factor is the ratio of the 95PPU band width 

to the standard deviation, or the “thickness” of the 95PPU envelop. The range of P factor 

is 0 to 1, and the higher P factor is, the more observed data is bracketed in the 95PPU. In 

general, a well calibrated model should bracket most of the observed data and has a 

narrow prediction uncertainty band. Abbaspour et al. (2015) suggest that P factor > 0.75 

and R factor <1.5 is adequate for discharge. 

In this study, the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) is 

used as the objective function to evaluate the goodness of model performance. The KGE 

function is defined as (Gupta et al., 2009): 



18 

 

 

1
8
 

KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2               Equation 3.2 

β = 𝜇𝑠 𝜇0                                                Equation 3.3⁄  

γ =
𝜎𝑠 𝜇𝑠⁄

𝜎𝑜 𝜇𝑜⁄
                                               Equation 3.4 

Where 𝑟 is the linear regression coefficient between the simulated and observed value, 𝜇 

is the mean value, 𝜎 is the standard deviation, and s and o denotes simulated and 

observed values, respectively.  

As multiple gauge stations are adopted for calibration/validation, the agreement between 

observed and simulated data for the entire basin is estimated following the approach 

shown by Abbaspour et al. (2015): 

 𝐾𝐺𝐸′ = ∑ 𝑤𝑖(𝐾𝐺𝐸𝑖)
𝑛
𝑖=1                                   Equation 3.5 

Where i denotes the streamflow gauge stations used in calibration and w is the weight 

assigned for each station; n is the total number of gauge stations involved in the 

observation datasets. Thus, KGE calculated for individual sets of observed and simulated 

streamflow hydrographs are aggregated into KGE' and it is maximized towards an 

optimal solution. Here, equal weights are assigned to every gauge station (𝑤𝑖 =1/n). The 

assignment of weights is subjective, and it may affect the outcome of the optimization 

exercise by SUFI-2. In addition to KGE, Nash Sutcliffe Efficiency (NSE) and Percent 
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Bias (PBIAS) are also calculated to evaluate the goodness-of-fit between the observed 

and simulated streamflow. 

3.5.2 Calibration Procedure 

This study uses a general approach to calibrate large-scale distributed models (Abbaspour 

et al., 2015). The models are first built by ArcSWAT with different sets of data input and 

then run without any calibration. The default model outputs are then compared with the 

observed data by KGE (Table 3.1). KGE' ranges from 0.43 to 0.55 for uncalibrated 

decadal models, and the results suggest a mediocre performance by the default models. 

Given the performance of the default models, it is necessary to calibrate the models using 

SUFI-2. 

The daily streamflow observed data of nine USGS gauge stations from 1935 to 2014, 

which are uniformly distributed in ORB, are used for model calibration.  For the eight 

models simulating ‘variable climate-variable land use’, the first year is chosen as the 

warm-up period, and the remaining nine years is used for calibration. For the ‘variable 

climate-steady land use’ configuration, the model is calibrated for 1935-1944 with a five 

year warm-up period (1935-1939), and then the parameters are manually adjusted for a 

better match of the observed streamflow over 80 years (1935-2014). 
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Table 3.1 KGE for Uncalibrated Models 

 
Model Period 

Calibration 

Location 

1935-

1944 

1945-

1954 

1955-

1964 

1965-

1974 

1975-

1984 

1985-

1994 

1995-

2004 

2005-

2014 

3031500 0.29 0.32 0.24 0.31 0.32 0.36 0.55 0.44 

3140500 0.42 0.7 0.64 0.53 0.61 0.62 0.69 0.6 

3075070 0.49 0.62 0.6 0.66 0.62 0.61 0.62 0.59 

3234500 0.32 0.25 0.1 0.09 0.05 0.21 0.27 0.6 

3198000 0.62 0.46 0.42 0.39 0.35 0.41 0.61 0.46 

3253500 0.36 0.39 0.29 0.26 0.33 0.45 0.35 0.4 

3377500 0.68 0.79 0.75 0.72 0.69 0.72 0.72 0.74 

3381500 0.44 0.79 0.6 0.56 0.56 0.6 0.51 0.65 

3308500 0.29 0.32 0.3 0.44 0.56 0.48 0.52 0.46 

KGE' 0.43 0.52 0.44 0.44 0.45 0.50 0.54 0.55 

Before the calibration starts, a total number of 14 parameters is selected, involving 

surface, subsurface, and channel hydrologic responses. The initial ranges for these 

parameters are shown in Table 3.2. The selection of parameters and their initial ranges 

are based on the review of existing literature and prior knowledge of the study area 

(Kumar et al., 2009; Larose et al., 2007; Rajib & Merwade, 2015), as well as suggestions 

from model developers (Abbaspour et al., 2015; Neitsch et al., 2011).  
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After the parameters and ranges are selected, a maximum of three batch iterations (500 

iterations for each batch) are executed to find the best set of parameters which maximize 

the objective function (KGE in this study). After each set of iteration, the parameter range 

is narrowed to their best values. Then, successive iterations are performed by taking the 

updated parameter range from the previous iteration as input. 

Table 3.2 SWAT Calibration Parameters 

No. 
Parameter 

Name 
Description

1
 

Scale of 

Variation 
Adjustment

2
 

Initial 

Rage 

1 CN2 
Curve Number, moisture 

condition II 
HRU x 

-0.2 – 

0.2 

2 CH_K2 
Channel Hydraulic 

Conductivity, mm/hr 
Watershed = 

5.0 – 

100.0 

3 CH_N2 
Main Channel Manning’s 

n 
Watershed = 

1.01– 

0.15 

4 CANMX 
Maximum Canopy 

Storage, mm 
HRU = 

0.0 – 

25.0 

5 SURLAG 
Surface Runoff Lag 

Coefficient, days 
Watershed = 

0.05 – 

24.0 

6 ESCO 
Soil Evaporation 

Compensation Factor 
HRU = 

0.01 – 

1.0 

7 EPCO 
Plant Uptake 

Compensation Factor 
HRU = 

0.01 – 

1.0 

 

                                                 
1 Source: Neitsch et al. (2011) 
2 Type of change applied over the existing parameter value: ‘x’ means the original value is multiplied by 

the adjustment factor, ‘=’ means the original value is replaced by a value from the range, ‘+’ means a value 

from the range is added to the original value. 
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8 SOL_AWC 

Available Soil Water 

Capacity, mmH20 per mm 

of soil 

HRU 
x 

 

-0.15 – 

0.15 

9 SOL_K 
Saturated Hydraulic 

Conductivity, mm/hr 
HRU x 

-0.15 – 

0.15 

10 ALPHA_BF 
Baseflow Recession 

Constant, days 
Watershed = 

1.01– 

1.0 

11 REVAPMN 

Re-evaporation (Upward 

Diffusion) Threshold, 

mm 

Watershed = 
0.01 – 

500.0 

12 GW_DELAY Groundwater Delay, days Watershed + 
-10.0 – 

10.0 

13 GWQMN 

Threshold Groundwater 

Depth for Return Flow, 

mm 

Watershed = 
0.01 – 

5000.0 

14 GW_REVAP 
Groundwater Re-

evaporation Coefficient 
Watershed = 

0.02 – 

0.2 

 Trend Analysis 3.6

This study uses the Mann-Kendall test (MK; Mann (1945) and Kendall (1948)) to detect 

the monotonic trends of simulated data. Based on the MK result, the Theil-Sen approach 

(TS; Sen (1968)) is used to determine the slope of the trend line. 

3.6.1 Mann-Kendall Test 

MK is a rank based, nonparametric trend test popular in both hydrologic and climatologic 

studies (Hamed, 2009; Hamed & Rao, 1998; Lettenmaier et al., 1994). MK does not 

require the data to follow a specific statistical distribution, which may not always hold 
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true for hydrologic or climate time series. Therefore, MK is used in the study to detect the 

trends in simulated annual average values of precipitation, temperature, BW and GW. 

Hydro-climatic time series often have significant serial correlations (autocorrelations), 

and thus will affect the accuracy of MK results. For example, positive serial correlation in 

a time series increases the probability for MK to detect a significant trend (Von Storch, 

1999; Yue et al., 2002). Therefore, apart from the classical MK, three modified MK tests 

are commonly used in trend analysis (Kumar et al., 2009). In MK test with trend-free pre-

whitening method (Yue et al., 2002), the time series is judged whether to pre-whiten or 

not by the lag-one autocorrelation coefficient. If the autocorrelation exists, the time series 

is detrended using non-parametric TS slope. The second modified MK test considers all 

the significant autocorrelation structures in a time series, and a modified variance is used 

to calculate MK statics (Hamed & Rao, 1998). The last modified MK test, including the 

presence of long term persistence (Hurst phenomenon), uses a modified variance which is 

obtained from Hurst coefficient to calculate MK statics (Hamed, 2008). 

Before performing the MK test, tests about autocorrelation and partial autocorrelation 

coefficient versus lag time on BW, GW, temperature, and precipitation time series are 

first computed (Fig. 3.1; Fig. 3.2; Fig. 3.3; Fig. 3.4; Fig. 3.5). As most of the vertical 

spikes in Figures 3.1-3.5 are within the horizontal band for the time series, the influence 

of serial correlation is not significant, so the classical MK test is selected in this study.  
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Figure 3.1 Autocorrelation for Annual Precipitation 

0 5 10 15

-0
.2

0
.2

0
.6

1
.0

Lag (Year)

P
re

c
ip

it
a

ti
o

n

Autocorrelation

5 10 15

-0
.2

0
.0

0
.2

Lag (Year)

P
re

c
ip

it
a

ti
o

n

Partial Autocorrelation



25 

 

 

2
5
 

 

Figure 3.2 Autocorrelation for Annual Minimum Temperature 
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Figure 3.3 Autocorrelation for Annual Maximum Temperature 
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Figure 3.4 Autocorrelation for BW 
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Figure 3.5 Autocorrelation for GW 
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sgn(𝑥𝑗 − 𝑥𝑖) = {

  1    𝑥𝑗 > 𝑥𝑖

  0    𝑥𝑗 = 𝑥𝑖

−1  𝑥𝑗 < 𝑥𝑖

                              Equation 3.3 

x is the observation data in a time series.  

In MK test, the null hypothesis is that no trend exists in the time series. MK statistics S 

or τ indicate the direction of the trend: a positive value indicates an increasing trend and 

vice versa. The p value indicates the significance level to reject the null hypothesis. In 

order to interpret the results from MK test, three significance level criteria are used based 

on p-values, including (i) p>0.1, (ii) 0.1>p>0.01 and (iii) p<0.01, respectively, to signify 

the trend as not significant (NS), significant (S) and very significant (VS) . 

3.6.2 Theil-Sen Test 

The TS approach is a non-parametric regression method based on the MK statistic, and 

the slope determined by TS is an estimator of the magnitude of trends. In this study, TS is 

used to estimate the total changes in precipitation, temperatures, BW, and GW. The upper 

and lower bound of 95% confidence interval in TS is also calculated to evaluate the 

coverage of slope. The TS slope β is calculated by: 

β = median [
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
]       for all 𝑖 < 𝑗                       Equation 3.4 

 Separation of Climate and Land Use Change Impacts 3.7

The relative impacts of climate and land use change on BW and GW are quantified using 

an approach similar to the one proposed by Li et al. (2015). This approach is based on 
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three assumptions: (1) climate and land use changes are the only two factors affecting the 

spatio-temporal trends in BW and GW, (2) climate and land surface processes are 

independent, and (3) in the SWAT model, constant land use and variable climate data do 

not influence the sensitivity and uncertainties of SWAT parameters. Based on the outputs 

from the first configuration of ‘variable climate-variable land use’, the differences of 

average annual values in BW and GW between two discrete periods can be expressed by 

the following equations: 

∆𝐵𝑊 = 𝐵𝑊2014 −  𝐵𝑊1935                                        Equaiton 3.5 

∆𝐺𝑊 = 𝐺𝑊2014 − 𝐺𝑊1935                                       Equation 3.6  

Where ∆GW and ∆BW are the total change of GW and BW between initial and final year 

responding to both climate and land use change; indices 1935 and 2014 correspond to the 

initial (1935) and final (2014) year of comparison.  

By using the second configuration of ‘variable climate-steady land use’, the change in 

average annual BW and GW due to climate change (∆𝐵𝑊𝐶/∆𝐺𝑊𝐶) can be calculated by 

the following equations:  

∆𝐵𝑊𝐶 = 𝐵𝑊2014
′ − 𝐵𝑊1935

′                                      Equation 3.7 

∆𝐺𝑊𝐶 = 𝐺𝑊2014
′ − 𝐺𝑊1935

′                                     Equation 3.8 
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Where 𝐵𝑊′ and 𝐺𝑊′ represent the average annual BW and GW values under the 

configuration of ‘variable climate-steady land use’; indices 1935 and 2014 correspond to 

the initial (1935) and final (2014) year of comparison. 

By comparing the BW and GW changes between the first and second configuration, the 

change values of BW and GW due to land use change (∆𝐵𝑊𝐿/∆𝐺𝑊𝐿) can be obtained by 

the following equations:  

∆𝐵𝑊𝐿 = ∆𝐵𝑊 − ∆𝐵𝑊𝐶                                         Equation 3.9 

∆𝐺𝑊𝐿 = ∆𝐺𝑊 − ∆𝐺𝑊𝐶                                       Equation 3.10 

Thus the relative contributions of climate and land use impacts on BW and GW change 

can be obtained by the following equations: 

𝜑𝑏𝐶 = ∆𝐵𝑊𝐶 (|∆𝐵𝑊𝐶| + |∆𝐵𝑊𝐿|)⁄                          Equation 3.11 

𝜑𝑔𝐶 = ∆𝐺𝑊𝐶 (|∆𝐺𝑊𝐶| + |∆𝐺𝑊𝐿|)⁄                          Equation 3.12 

𝜑𝑏𝐿 = ∆𝐵𝑊𝐿 (|∆𝐵𝑊𝐶| + |∆𝐵𝑊𝐿|)                          Equation 3.13⁄  

𝜑𝑔𝐿 = ∆𝐺𝑊𝐿 (|∆𝐺𝑊𝐶| + |∆𝐺𝑊𝐿|)                          Equation 3.14⁄  

Where 𝜑𝑏𝐶 and 𝜑𝑔𝐶 are the percentage of BW and GW change due to climate change, 

respectively, and 𝜑𝑏𝐿 and 𝜑𝑔𝐿 are the percentage of BW and GW change due to land use 

change, respectively. 
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CHAPTER 4. RESULTS 

 Introduction 4.1

In this chapter, a general assessment of climate and land use change in ORB is first 

presented based on historical climate and land use data during the 80 year study period 

(1935-2014). With the evaluation of calibrated model performance against observed 

streamflow data, the spatio-temporal trends of BW and GW change under ‘variable 

climate-variable land use’ configuration are presented at the basin, regional, and sub-

basin levels. Finally, the relative contributions of climate and land use change to BW and 

GW are evaluated by comparing the ‘variable climate-variable land use’ configuration 

and the ‘variable climate-steady land use’ configuration. 

 Land Use and Climate Change 4.2

4.2.1 Land Use Change 

Figure 4.1 shows the percentage of land use change from both historical and dominant 

land use maps between 1935 and 2014 in ORB. The 1940’s historical land map shows 

that agriculture covered 55% of areas in the ORB, while forest and urban area covered 35% 

and 7% of the area, respectively. By the 2010’s, the percentage of agriculture decreased 

to 37%, while the portion of forest and urban area increased to 51% and 10%, 

respectively. The urban area has increased from 7% to 10%,  which is relatively small 

compared to the change in forest area, which has increased by 
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16%. Therefore, the influence of urban change on BW and GW can be considered 

negligible compared to that from the increase in forest cover, and the overall land use 

change impact on BW and GW in ORB can be considered as the conversion of land from 

agriculture to forest. Compared with the historical land use maps, the portion of forest 

area at the end of the study period in SWAT dominant land use and the portion of 

agriculture area at the beginning of the study period are higher. Meanwhile, the portion of 

urban area in SWAT dominant land use is lower throughout the simulation period. 

Nevertheless, the dominant land use maps in SWAT have the same trends of decreasing 

agriculture area, increasing forest area, and negligible urban area change. 

 

Figure 4.1 Percentage of Land Use from Historical and SWAT Maps 

 

Figure 4.2 shows the change of dominant land use in SWAT throughout the study period. 

In the 1940’s, as the major type of land use, most agricultural sub-basins were in the 

northwest. In the next few decades, the proportions of both forest and urban land 

increased by partially replacing the agricultural areas. Specifically, the forest cover 



34 

 

 

3
4
 

expanded from the southeast to the center of the basin. Overall, nearly one third of the 

sub-basins in ORB have experienced land use change throughout the study period, most 

of which occurred in the northeast and southwest regions along the Ohio River. 

 

Figure 4.2 Land Use Maps from 1940s to 2010s 
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4.2.2 Climate Change 

The average annual precipitation for ORB shows a significant increasing trend through 

MK test (Figure 4.3). Accordingly, the average annual precipitation, as estimated by TS 

test, has increased by 78.1 mm from 1935 to 2014, which means that the precipitation in 

2014 is about 8% higher than that in 1935 (Table 4.1). Nevertheless, prominent 

fluctuations from the trend line throughout the study period are indicative of persistent 

climate variability in ORB. 

Table 4.1 Climate Change Based on TS Result with 95% Confidence Interval 

 

Precipitation (mm) TMAX (°C) TMIN (°C) 

Change Based on TS Slope 78.1 -1 0.4 

95% Confidence Interval (42.0,118.2) (-0.7,-1.3) (0.2,0.7) 
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Figure 4.3 MK Test for the Average Annual Precipitation
3
 (mm yr

-1
) 

As for temperature, average TS slope shows the annual maximum temperature has 

dropped by 1 °C from 1935 to 2014, while the annual minimum temperature has 

increased by 0.4 °C (Figure 4.4; Table 4.1). The decreasing annual maximum temperature 

and increasing annual minimum temperature indicates that the day time is cooler and the 

night time is warmer in ORB. Despite a narrower fluctuation between maximum and 

minimum temperature, no clear trend is visible in daily average temperature. An absence 

                                                 
3 Tau is the Kendall rank correlation coefficient (τ). NS means not significant in MK test; S means 

significant at p<0. 1; VS means significant at p<0. 01. 
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of trend in daily average temperature suggests that the primary effect of climate on the 

hydrologic processes in ORB is due to the significant increasing trend in precipitation. 

 

Figure 4.4 MK Test for Annual Maximum, Mean, and Minimum Temperature
4
  

The spatio-temporal pattern of annual precipitation in each sub-basin is obtained by 

comparing the average value in the last thirty years of study period (1985-2014) to that in 

the first thirty years (1935-1964) (Fig. 4.5). Overall, the precipitation has increased 

remarkably in most sub-basins, which is analogous to the overall precipitation increase in 

                                                 
4 Tau is the Kendall rank correlation coefficient (τ). NS means not significant in MK test; S means 

significant at p<0. 1; VS means significant at p<0. 01. 
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the entire basin. Specifically, the precipitation has increased notably in the whole 

northwest and in most of the northeast, while a slight decrease in the middle and southern 

regions is also noticeable. 

 

Figure 4.5 Annual Precipitation Change in Sub-basin Scale 

4.2.3 Regional Characterization 

Based on the spatial characterization of sub-basin scale land use and precipitation 

distribution shown in Figures 4.2 and 4.5, the entire basin can be divided into three 
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regions: upper, middle, and lower (Fig. 4.6). This figure identifies the sub-basins which 

have experienced either land use or precipitation change or both. In general, the land use 

change in the both upper and lower regions is substantial, while the precipitation increase 

in the lower region is relatively extensive than that in the upper region. On the contrary, 

neither land use nor precipitation change can be generalized in the middle region. Details 

of land use and climate changes in regional scale are shown in Table 4.2, validating the 

rationale behind this regional sub-division of the ORB. 
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Figure 4.6 Regional Division Based on Climate and Land Use Change 
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Table 4.2 Regional Comparison of Climate and Land Use Change in ORB 

 

Upper region Middle Region Lower Region 

Land use change
5
 41% 15% 35% 

Precipitation 

change 

Decreased 15% 29% 3% 

No change 29% 48% 16% 

Slightly increased 46% 19% 78% 

Highly increased 9% 3% 4% 

 Model Evaluation 4.3

As mentioned in section 3.4, the simulated daily streamflow is compared with the 

observed data at nine gauge stations for model calibration, and another three gauge 

stations for validation (Fig. 2.2). The goodness-of-fit scores (KGE, NSE and PBIAS) 

from calibration and validation under the configuration of ‘variable climate-variable land 

use’ from 1935 to 2014 are summarized in Table 4.3. Comparing the goodness-of-fit 

scores (KGE) between calibrated and uncalibrated models from 1935 to 2014, KGE has 

increased from 0.48 to 0.63 (Table 4.4) after calibration. Except for Site 3075070, where 

KGE score decreases from 0.60 in uncalibrated models to 0.55 in calibrated models, KGE 

scores have increased in all other sites. In general, the performance of SWAT models is 

                                                 
5 Indicates "any" change in land use that took place during 1935-2014 (example: agriculture transforming 

into forest, urban or vice versa). 
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fairly satisfactory for ORB, except for a few high flow events, which can be attributed to 

the limitation of SWAT in simulating high flows (Kumar et al., 2009; Rajib & Merwade, 

2015). Furthermore, as this study focuses more on annual average flows rather than 

peak/low flows, SWAT simulated results are sufficient for further analysis. Table 4.5 

provides the optimized parameter values for all models in this study. 

Table 4.3 Goodness-of-Fit Scores for Calibration and Validation Sites 

Calibration locations 
KGE NSE PBIAS 

3031500 0.63 0.66 -16 

3075070 0.55 0.53 -12 

3140500 0.72 0.63 -6 

3198000 0.54 0.51 -9 

3234500 0.71 0.5 8 

3253500 0.48 0.39 3 

3308500 0.54 0.45 -16 

3377500 0.85 0.79 1 

3381500 0.65 0.69 6 

Validation locations 
 

3340500 0.69 0.6 -7 

3025500 0.54 0.48 -15 

3611500 0.75 0.76 -8 
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Table 4.4 Comparison of KGE between Uncalibrated and Calibrated Models 

Location 

KGE 

Uncalibrated 

Models 

Calibrated 

Models 

3031500 0.35 0.63 

3075070 0.60 0.55 

3140500 0.60 0.72 

3198000 0.47 0.54 

3234500 0.24 0.71 

3253500 0.35 0.48 

3308500 0.42 0.54 

3377500 0.73 0.85 

3381500 0.59 0.65 

Overall 0.48 0.63 

Table 4.5 Best Estimates of Calibrated Parameters 

Parameter Best parameter estimates 

 
1935-

1944 

1945-

1954 

1955-

1964 

1965-

1974 

1975-

1984 

1985-

1994 

1995-

2004 

2005-

2014 

CN2 0.03 0.04 -0.02 0.06 0.04 0.05 0.03 0.04 

CH_K2 39.2 84.16 39.67 49.02 84.15 85.3 51.94 53.5 

CH_N2 0.03 0.15 0.07 0.04 0.15 0.15 0.12 0.13 

CANMX 1.67 14.13 10.63 7.08 14.12 14.12 14.69 14.69 

SURLAG 13.07 12.76 12.08 12.25 12.76 12.76 17.89 17.89 

ESCO 0.69 0.88 0.86 0.94 0.88 0.96 0.76 0.76 

EPCO 0.17 0.46 0.55 0.4 0.46 0.34 0.44 0.44 

OV_N -0.004 -0.06 -0.08 -0.002 -0.06 -0.07 -0.06 -0.06 

SOL_K -0.04 0.07 -0.05 0.03 0.07 0.07 0.11 0.11 

ALPHA_BF 0.63 0.62 0.55 0.73 0.62 0.65 0.79 0.79 

REVAPMN 116.11 366 170.01 141.31 366 187.75 133.6 133.61 

GW_DELAY -1.34 -4.43 4.15 -4.57 -4.43 -4.5 -3.01 -3.01 

GWQMN 232.01 1002.5 82.5 400.67 1002.5 982.55 542.5 542.5 

GW_REVAP 0.04 0.02 0.09 0.08 0.02 0.02 0.03 0.03 
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 Trend Analysis in Sub-basin Scale 4.4

The MK test results at the sub-basin level provide the trends of change in GW and BW 

and associated significance levels as shown in Figures 4.6 and 4.7. Nearly two thirds of 

the sub-basins in ORB have experienced GW increase, and 49 sub-basins have very 

significant increasing trends (Fig.4.7).Approximately half sub-basins have experienced 

BW increase, and 13 sub-basins have very significant increasing trends (Fig.4.8). In the 

northwestern and middle northeastern region of ORB, most sub-basins show significant 

increasing trends in GW. The sub-basins in middle and very eastern ORB do not show 

any detectable GW change, whereas the southern sub-basins show decreasing GW trends 

over time. The spatial distribution of GW trend is more prominent than that of BW. 

Nevertheless, most significant increasing trends in BW are clustered in the northwestern, 

middle, and northeastern part of ORB. Decreasing trends of BW are widely distributed in 

the whole basin, and the proportion of sub-basins without clear trend in BW is slightly 

higher throughout ORB compared to the proportion in GW. 
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Figure 4.7 MK Test for GW in the Sub-basin Scale
 6

 

                                                 
6 Colors represent decreasing or increasing trends, where darker color indicates higher tau (τ) value; arrows 

represent the significance level. "–": trend not significant, "↑": significant increase (p<0.1), "↑↑": very 

significant increase (p<0.01), "↓: significant decrease (p<0.1), and "↓↓": very significant decrease (p<0.01). 
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Figure 4.8 MK Test for BW in the Sub-basin Scale
 7

 

The spatial patterns of BW and GW in the sub-basin scale reveal that both BW and GW 

changes are caused by the combined effects of climate and land use. BW trends are 

dominantly affected more by precipitation change, whereas land use change has more 

impact on GW trends. For example, significant change of trends (either increasing or 

decreasing) in GW (p<0.01) is found in the sub-basins with land use changes, such as in 

                                                 
7 Colors represent decreasing or increasing trends, where darker color indicates higher tau (τ) value; arrows 

represent the significance level. "–": trend not significant, "↑": significant increase (p<0.1), "↑↑": very 

significant increase (p<0.01), "↓: significant decrease (p<0.1), and "↓↓": very significant decrease (p<0.01). 
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the southwest and northeast. Specifically, among the 43 sub-basins with land use change, 

35 show very significant increasing trends in GW (Fig. 4.6; Fig. 4.7).  

For some of the sub-basins in the southern portion of both middle and upper regions, 

where no significant land use change has been detected, the decrease in precipitation is 

likely the main driver for the decreasing trend in GW (Fig. 4.6). Similarly, in most of the 

northeastern sub-basins where precipitation has increased noticeably but little land use 

change happens there, BW trends have also increased remarkably (Fig. 4.6; Fig. 4.8). 

However, some of the sub-basins in the northeast with increased precipitation and 

noticeable land use changes show a decrease or no trend in BW. In these areas, increased 

precipitation and land use change (agriculture to forest) may be counteracting with each 

other so no significant trend exists in BW. 

In summary, BW increases in most sub-basins where precipitation has also increased; on 

the other hand, GW decreases in the sub-basins where land use change is not obvious but 

precipitation decreases. As a result, it could be inferred that in ORB precipitation change 

has a positive correlation with both BW and GW. That is, precipitation increase in ORB 

leads to the increase in both BW and GW, although the extent of impacts on GW is 

smaller. Similarly, land use change from agriculture to forest in the majority of sub-

basins has caused an increase in GW, but a decrease in BW. These findings are further 

ascertained in terms of the relative effects of climate and land use change in the next 

section. 
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 Trend analysis in Basin and Regional Scale 4.5

For the entire basin, the annual average values of both GW and BW have increased 

during the study period (Fig. 4.9 and Fig. 4.11; Table 4.6). According to the average TS 

slope, GW has increased by 27.3 km
3
 through the entire period, and the volumetric 

increase is 8% of the total GW volume in 1935. This trend is very significant according 

to the MK test (p<0.01). The 95% confidence interval from TS test is also shown in 

Figure 4.11. Although BW has increased by 15 km
3 

according to the TS result, which 

accounts for 9% of the total BW values in 1935, the MK test suggests that this increasing 

trend is not significant (p>0.1). 

 

Figure 4.9 MK Test with TS Slope for BW and GW in the Basin Scale
 8

 

                                                 
8 Tau is the Kendall rank correlation coefficient (τ). NS means not significant in MK test; S means 

significant at p<0. 1; VS means significant at p<0. 01. 
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Figure 4.10 and Table 4.6 present the trend analysis results for three regions separately. 

First, the middle region shows the least change in both BW and GW trends, which can be 

related to the invariable land use and climate in this region. Contrary to the other two 

regions, BW in the middle region is slightly decreasing as the precipitation over 78% of 

its area shows either decreasing or unchanged trends. The lower region shows the most 

significant increasing trends in both BW and GW in response to the pronounced change 

in both land use and climate: GW has increased by 12.78 km
3
 with a very significant MK 

trend (p<0.01), and BW has increased by 11.22 km
3
 with a significant MK trend (p<0.1). 

Similarly in the upper region, along with the prominent land use changes, GW has 

increased by 7.7 km
3
 with a significant MK trend (p<0.1). The upper region also shows 

an insignificant increasing trend in BW in response to the relatively smaller changes in 

precipitation in this region compared to that in the lower region. 
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Figure 4.10 MK Test with TS Slope for BW and GW in the Regional Scale 
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Table 4.6 Volumetric Magnitudes of BW and GW Changes
9
 

(km
3
) 

Entire Basin Upper Region Middle Region Lower Region 

GW BW GW BW GW BW GW BW 

Total Change 27.3* 15 7.7
+
 5 4.53 -0.64 12.78* 11.22

+
 

Figure 4.11 shows the volumetric magnitudes of BW and GW change at the basin and 

regional levels based on the average TS slope with 95% confidence interval. Hollow 

points indicate the volumetric changes of BW and GW from average TS slope, which are 

the volumetric values used for further separation of climate and land use effects. The dark 

blue lines show 95% confidence intervals of total BW and GW change due to both 

climate and land use change, and the light blue lines show 95% confidence intervals of 

BW and GW change due solely to climate change. Except in the middle region, both BW 

and GW have increased in two different configurations. Excluding the insignificant 

change in the middle region, BW change due to combined effects is generally smaller 

than the change solely due to climate effects. The increase in GW due to climate change 

is relative small compared to the increase in BW, but the total increase of GW due to the 

combined effects is pretty large. This indicates that climate change has a more substantial 

impact on BW than GW, and land use change leads to a decrease in BW but an increase 

in GW.  

                                                 
9 "*": significant at p<0.01, "+": significant at p<0.1. 
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Figure 4.11 Volumetric Magnitudes of BW and GW with Confidence Interval 

 Relative Contributions of Climate and Land Use Change 4.6

The method to quantify the relative contributions of climate or land use effects on BW 

and GW are discussed in Section 3.6. The results in Table 4.7 show that the land use 
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change has caused 89% of the increase in annual GW values throughout the entire basin. 

At the regional scale, land use change alone has led to decreases in BW values by 34% 

and 23% in the upper and lower regions, respectively. However, due to the combined 

effect of precipitation increase and forest regrowth, the overall BW has increased slightly. 

The slight decrease in precipitation in the middle region has led to a decrease in BW and 

GW by 63% and 8%, respectively. The land use change in this region is responsible for 

most of the GW increase (92%). Nevertheless, the contributions of climate and land use 

change in the middle region are unclear because neither climate nor land use change is 

significant in this region.  
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Table 4.7 Relative Contributions to BW and GW
10

 

 (km
3
) Total 

Change 

Change 

by 

Climate 

Climate 

Impacts 

Land 

Use 

Impacts 

Entire 

Basin 

GW 27.3* 2.91 11% 89% 

BW 15.0 20.9
+
 78% (-)22% 

Upper 

Region 

GW 7.7
+
 1.12 15% 85% 

BW 5.00 10.14 66% (-)34% 

Middle 

Region 

GW 4.53 -0.43
+
 (-)8% 92% 

BW -0.64 -1.60 (-) 63% 38% 

Lower 

Region 

GW 12.78* 3.11
+
 24% 76% 

BW 11.22
+
 16* 77% (-)23% 

Accordingly, the relative contributions of climate and land use change to BW and GW in 

Table 4.7 further support the major results derived from previous sections that climate 

change can affect both BW and GW. Climate change has a more pronounced effect on 

BW, whereas land use change in ORB has a stronger influence on the GW dynamics. 

Table 4.6 shows the relative impacts of climate and land use change on the individual 

components of BW and GW, including total water yield, deep aquifer recharge, soil water 

content and ET over the entire ORB. Land use change is responsible for the increase in 

                                                 
10 "*": significant at p<0.01, "+": significant at p<0.1. Negative sign (-) means that resultant impact leads to 

a decrease. 
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ET and deep aquifer recharge by 99% and 55%, respectively, and it also leads to a 

moderate decrease in soil water content (31%) and a slight decrease in total water yield 

(15%). Climate change, or precipitation change in this study, is responsible for the 

substantial increase in soil water content (69%), total water yield (85%), and deep aquifer 

recharge (45%), but it has little influence on ET (1%). 

Table 4.8 Relative Contributions to Each Water Component of BW and GW
11

 

(km
3
) Total 

Change 

Change 

by 

Climate 

Climate 

Impacts 

Land 

Use 

Impacts 

Total Water Yield 17.23 21.06
+
 85% (-)15% 

Deep Aquifer 

Recharge 

0.87
+
 0.39

+
 45% 55% 

Soil Water 4.22
+
 7.61* 69% (-)31% 

Actual 

Evapotranspiration 

14.73
+
 -0.12 (-)1% 99% 

 

                                                 
11 "*": significant at p<0.01, "+": significant at p<0.1. Negative sign (-) means that resultant impact leads to 

a decrease. 
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CHAPTER 5.  DISCUSSION 

The results from this study as presented in Chapter 4 show that the combined effects of 

climate and land use change has led to increasing BW and GW trends in ORB from 1935 

to 2014. Climate change has a more substantial effect on BW, but a relatively small 

impact on GW. Land use change from agriculture to forest increases GW remarkably, but 

decreases BW. In this chapter, the results from this study are further discussed within the 

context of previous studies. In addition, the uncertainties and limitations of this study are 

also included. In Section 5.7, a general future forecast of BW and GW is presented based 

on previous studies on future climate and land use change in ORB. 

 Climate Impacts on BW 5.1

In this study, the effect of climate on BW or GW primarily refers to the change in 

precipitation because annual average temperature change is not significant in ORB. If the 

effect of land use is excluded, precipitation increase will raise the soil moisture store 

level and consequently increase the runoff volume. With more water available to vadose 

zone, groundwater flow and thereby deep aquifer recharge will increase. For the entire 

basin, an 8% increase of precipitation leads to an 11% increase in BW. This result is 

generally consistent to the result of previous study on 1337 basins throughout the USA
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 that a 1% change in precipitation results in a 1.5-2.5% change in runoff 

(Sankarasubramanian & Vogel, 2003). Although the effects of temperature changes are 

not considered in this study, previous studies suggest both temperature and precipitation 

are critical to both BW and GW (Abbaspour et al., 2009; Fu et al., 2007; Jha et al., 2004; 

Legesse et al., 2003; van Roosmalen et al., 2009). According to Fu et al. (2007), an 

increase in streamflow due to precipitation increase is weakened by average temperature 

increase. In addition, despite insignificant change in average temperature, the rising 

minimum temperature may still impact hydrologic responses in the northeastern part, 

more specifically in terms of volume and timing of snow melt, thereby increasing the 

surface runoff to some extent.  

 Climate Impacts on GW 5.2

Despite the overall GW increase in ORB, climate has opposing impact on soil water 

content and ET. Specifically, climate change increases soil water content, but has little or 

negative effect on ET. The influence of climate on soil water content is consistent with 

findings from previous studies that report increasing precipitation increases the water 

content in unsaturated soils. However, unlike this study, some previous studies report a 

positive correlation between precipitation and ET (Claessens et al., 2006; Gosain et al., 

2006; Li et al., 2009).  

As is known, ET is dominated by potential evapotranspiration (PET) and precipitation, 

and the amount of ET is strictly limited by the minimal value of the two factors. On 

possible reason might be that most of the previous BW and GW studies focus on arid or 
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semi-arid areas (Abbaspour et al., 2009; Faramarzi et al., 2013; Li et al., 2009), where ET 

is largely limited by the amount of available water. The amount of ET in those regions is 

very sensitive to precipitation increase. On the contrary, the amount of annual PET is 

close to or even smaller than annual precipitation in ORB, so ET is governed by PET 

even though precipitation has increased. The weak correlation between precipitation 

increase and ET increase has also been found in Illinois River Basin (Niemann & Eltahir, 

2005), where the climate is similar to that in ORB. 

 Land Use Impact on BW 5.3

The characteristic land use change in ORB during the study period is the conversion from 

croplands to forests, and it accounts for the slight decrease in BW, especially the total 

water yield. Compared with agricultural vegetation, trees generally have deeper roots and 

hence have higher plant-available water capacity, which determines the ability of plants 

to draw water from soils (Zhang et al., 2001). As a result, these second-grown trees 

extract more rainfall than crops do, decreasing surface runoff and ground water recharge 

in the wet periods, and decreasing the content of soil moisture in the dry seasons.  

Although the results show an increase in deep aquifer recharge, the reported change is 

based on the simulated output for the specific study period. In reality, change in deep 

aquifer storage is a much slower process. Besides, the model result does not consider the 

detail input of aquifers’ geologic characteristics. Therefore, the change of deep aquifer 

recharge might be overestimated in this study. 
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 Land use impact on GW 5.4

A great portion of GW increase comes from land use change. As mentioned in Section 

5.3, forests can extract more rain water for transpiration than crops, which thereby 

increases GW flow (ET) and decrease GW storage (soil water content). Although land 

use change is largely responsible for GW change and partially for BW change in this 

study, the effects of land use change on BW and GW at a basin level might be 

underestimated due to the compensating effects in a complex catchment (Fohrer et al., 

2001). The complex interactions between different vegetation types weaken land use 

effects in a large and complex catchment compared to the effects in a small and uniform 

vegetated catchment. Fohrer et al. (2002) document that the land use type from forests to 

crops (barley in his study) reduces the ET to 69% with the exclusion of the compensating 

effects, but this reduction is offset in a catchment scale. ET increase due to land use 

change is about 5% of the overall ET in the basin scale, and the increase may be larger in 

the sub-basin scale. 

 Uncertainty Analysis 5.5

Three kinds of uncertainties will be discussed in this section: the uncertainty from data 

input, from model concept and from statistical analysis. In this study, 112 weather 

stations are selected in a manner such that each of the 125 sub-basins has one station 

within or at the proximity of its respective boundary, maintaining a uniform spatial 

distribution of stations over the entire ORB. Nevertheless, the resultant precipitation 

fields can be very uncertain because on average every weather station covers 4383 km
2 

of 
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the study area. In addition, input topography, soil and land use data used in this study 

have 90 m horizontal resolution, and such coarse resolution also adds uncertainty to the 

overall model results. 

Model uncertainty usually comes from model structure and parameters. Model structure 

uncertainty can come from some unknown activities in a watershed which are not 

considered in the model, or some simplifications of the processes. Although the 

calibration results from this study are acceptable based on commonly used performance 

measures such as KGE and NS, use of a limited number of stream locations for 

calibration in such a large basin can introduce equifinality problem. Similarly, only 

streamflow is calibrated and validated in this study, which leads to uncertainties in the 

output of ground water, ET, deep aquifer recharge, and total water yield. Finally, in order 

to quantify contributions of climate change and land use changes, this study assumes that 

constant land use does not influence the sensitivity and uncertainties of SWAT 

parameters. However, as SWAT is not a truly physics based model, keeping land use 

constant may lead to a change in SWAT parameters.  

It should be noted that although the relative contributions of climate and land use effects 

have been quantified in terms of percentage, there is considerable uncertainty in the 

values. Despite the confidence intervals shown in Figure 4.10, the upper and lower 

bounds of volumetric changes are not considered when the relative contributions are 

calculated. Furthermore, since the confidence level of total BW change due to climate 

and land use effects in the basin level overlaps with the interval due solely to climate 
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effect, the statistical difference of BW change between the two configurations is not 

distinguished. The impact of land use change on BW might be overestimated. Therefore, 

the relative contributions of climate and land use effects on BW in the basin scale should 

be considered conservatively. 

 Limitations 5.6

Many of the past studies on large scale BW and GW dynamics assume a constant land 

use over a long time period of simulation (Abbaspour et al., 2009; Chen et al., 2014; 

Zang & Liu, 2013). With the use of time-varying land use in SWAT simulation, the 

current study offsets the aforementioned limitation and hence, the modeled outputs are 

expected to be more representative of the actual hydrologic responses. However, certain 

limitations still exist in this study. 

First, reservoir management is not considered due to the lack of operation data over the 

entire 80 years. In addition, the existence of dams/locks restricts the usage of many 

available USGS streamflow gauge stations along the main channel of the Ohio River in 

model calibration. Although the calibration results are quite satisfactory, a limited 

number of stream locations for calibration in such a large basin introduces the problem of 

equifinality. Furthermore, only streamflow is calibrated and validated due to the lack of 

data in soil water content, ground water, and ET, which increases the uncertainties 

associated with BW and GW simulated outputs.  
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Second, the accuracy of SWAT model is affected by the coarse resolution of data and 

model simplification. A 90m horizontal resolution for raster grids and a 2,500 km
2
 

critical source area threshold is reasonable for such a large basin, but still such a coarse 

resolution is not sufficient for further detailed analysis. As this study uses sub-basin 

rather than HRU as the smallest unit of simulation, many of the complex interactions 

among hydrologic fluxes is averaged out, which might lead to imprecise assessment of 

climate, land use, BW and GW change. Although HRU-scale simulation could represent 

the spatial heterogeneity more accurately, it would cost great computational resources 

and time for such a large scale model.  

Third, using the same spatial coverage of artificial subsurface (tile) drainage over the 

entire period of simulation since 1935 does not represent the gradual change in tile 

drainage over time, but the effect of tile drainage over the calculated volumetric change 

in long-term BW and GW may be minimal. This study doesn’t consider agricultural 

operations such as plant growth and tillage, which could influence surface runoff, 

infiltration, and soil water content by changing soil porosity and surface roughness 

(Moussa et al., 2002).  

Finally, despite daily simulation, this study presents results based only on average annual 

values. However, more detailed characterization with seasonal change pattern and trend 

analysis would provide a thorough understanding of the overall dynamics of BW and GW 

in ORB. 
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 Future Forecast 5.7

Future change of BW and GW are expected to be different from historical trends because 

of different future climate and land use change. The temperature in ORB is expected to 

rise due to global warming (Stocker et al., 2013). Although the overall future 

precipitation trend remains unclear, increasing precipitation extremes are bound to 

influence hydrologic process in ORB. It is estimated that in 2050, urban areas for ORB 

will reach 11.83% while the respective portion of agriculture and forest will decrease to 

35.8% and 47.6% (Tayyebi et al., 2015). The combined effects of future climate and land 

use changes probably will lead to a further increase in BW but a decrease in GW. 

However, further studies are necessary in order to quantify the future patterns of BW and 

GW in ORB.
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CHAPTER 6. SUMMARY AND CONCLUSION 

This study performs a spatio-temporal characterization of climate and land use change 

impacts on the Blue Water (BW) and Green Water (GW) availability in the Ohio River 

Basin (ORB). Total nine SWAT models are created under the ‘variable climate-variable 

land use’ and 'variable climate-steady land use' configurations in order to quantify the 

combined as well as the relative impacts of climate and land use change in altering the 

dynamics of BW and GW over a 80 year period (1935-2014). The following conclusions 

can be drawn from this study. 

First, precipitation increase and land use change from agriculture to forest are detected as 

the dominant indicators of climate and land use change in ORB, respectively. While land 

use and climate changes are evident in the upper (upstream) and lower (downstream) 

regions during the 80 years of study, the middle region is least impacted in terms of both 

climate and land use. 

Second, under the combined influence of climate and land use (variable climate-variable 

land use) model configuration, the annual values of BW and GW over the entire basin 

have increased by 15 km
3 

and 27.3 km
3 
from 1935 to 2014, respectively. The lower 

region exhibits maximum changes, where the increasing trends for both BW and GW are
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found statistically significant in response to the pronounced change both in land use and 

climate. Similarly, in conjunction with the prominent land use changes in the upper 

region, GW has increased significantly. BW is found to have increased there as well, but 

the trend of change is not significant, which corresponds to the relatively smaller changes 

in precipitation amount in the upper region compared to that in the lower region. 

Similarly, least changes in both BW and GW are observed in the middle region due to the 

unclear climate and land use change there.  

Finally, by separating the individual contributions of climate and land use change in the 

'variable climate-steady land use' model configuration, a causal relationship is deduced 

showing that land use change in ORB generally has a stronger impact on the dynamics of 

GW, while climate change affects both BW and GW but it is more sensitive to BW. 

Overall, this study identifies the areas or regions within ORB that have experienced 

major changes in the spatio-temporal dynamics of BW and GW as a consequence of 

prevailing climate and land use changes. The sub-basin scale spatial variability and 

sensitivity analysis presented here will help to initiate management strategies suitable for 

specific regions. Relative impacts of climate and land use change in changing the 

dynamics of BW and GW in this study will allow policymakers to take the mitigating 

measures in a more efficient and targeted way depending on whether climate change or 

land use change is the governing factor for a region of interest. Although the paper 

reveals the spatio-temporal pattern of changes in BW and GW over a considerable time 

length of past records (1935-2014), evaluation of their plausible future variability using 
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different climate model and land use projections deserves high priority, considering the 

basin’s overall socio-economic importance. Until then, the findings from this study can 

be adopted as the baseline reference for future water security research and planning. 
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