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ABSTRACT 

Author: Lyu, Zhenglyu. MSCE 

Institution: Purdue University 

Degree Received: August 2018 

Title: Comparing the Effectiveness of Rain Barrels and Detention Ponds on Peak Flow Reduction 

in a Semi-Urban Watershed 

Major Professor: Venkatesh Merwade 

 

Rain barrels are useful for stormwater management where conditions of on-site space are limited 

for retrofitting techniques. This paper aims at determining the scope of the effectiveness of rain 

barrels on reduction of direct runoff peak flow and volume. The Sugar Creek Watershed in the 

northwest of Illinois is simulated with a historical storm and design storms of 2-, 10-, 25-, 50-, and 

100-year return periods for three different scenarios: only rain barrels, only detention ponds, and 

the combination of these two. For a storm with the return period less than 3 years, harvesting all 

rainfall volume received by rooftops, rain barrels are sufficient for flood control. In individual 

design to achieve the same flood control goal, compared with detention ponds, desired number of 

rain barrels need to harvest 10% to 15% more of the runoff volume of 2- to 100-year storms, and 

occupy up to 0.22% larger surface area of the watershed in case of a 100-year storm and as low as 

0.13% less for a 5-year storm, which are 0.18 km2 and 0.11 km2, respectively. In combined design 

of capacity number of rain barrels with detention ponds, the overall combined area is slightly larger 

than the area of detention ponds in individual design, but the area of detention ponds in combined 

design is greatly reduced by more than 67% compared with the area of detention ponds in 

individual design. 
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1. INTRODUCTION 

 Introduction 

Global modernization has resulted in city expansion in terms of urban area and population which 

poses challenges for urban stormwater management. City development inevitably increases the 

imperviousness of land and transforms large amounts of agricultural land and wetland into urban 

or built-up land, which has detrimental effects on hydrology (Harbor, 1994; Moscrip and 

Montgomery 1997; Shuster, 2005). In surface hydrology, adverse effects include an increase in 

runoff volume and peak discharge, and decrease in time of concentration; in subsurface hydrology, 

they include a decrease in infiltration and baseflow recharge. Excess direct runoff in cities has 

higher magnitude and likelihood of flooding compared with agricultural lands. Conventional 

approaches, man-made structures, including detention ponds and reservoirs, are designed for peak 

flow reduction, but have adverse effects on water quality and ecology (Coffman, 2000; 

Damodaram et. al., 2010). These disturbances of pre-development conditions necessitate the 

requirement for more efficient and adaptive stormwater management tools for urban areas 

(Ghimire, 2016). 

Low-Impact-Development (LID) has gained public attention recently, as an innovative approach 

to manage stormwater. The fundamental principle of LID is to minimize the influence of post-

development and mimic the hydrology of pre-development natural conditions. (USEPA 2000a). 

Prince George’s County in Maryland was the one of the first counties to implement LID, where 

different actions were taken to reduce impervious area; utilize natural water channels that can be 

adapted for paving, curb, gutter, pipe system (Coffman, 2002).  Current LID practices include rain 

gardens, rain barrels, green roofs, porous pavements, etc. Many studies have focused on the 
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advantages of porous pavement and rain gardens (e.g., Dietz, 2007; Davis, 2008; Roy-Poirier et 

al., 2010; DeBusk and Wynn 2011).  

Rain barrels are connected with rooftop areas via downspouts, which route overflowing rainfall to 

rain gardens or urban drainage networks; they are cheap, easy to install, and can be implemented 

and managed more flexibly in highly developed urban area. Frequent emptying of a rain barrel is 

necessary, because a single rain barrel which fills up quickly during a storm event has a marginal 

impact on the reduction of rainfall volume, which requires high level and scale of participation 

and execution of residents to achieve the expected performance on watershed-scale scenario. In 

addition to serving as a stormwater control practice, a rain barrel can be used by homeowners for 

gardening, which further place restrictions on outright implementation and utilization of rain barrel 

for water quality must also be accounted for (Jennings, 2013). 

Earlier studies on LID often examined the improvement of post-development hydrology at garden 

scale and lot scale using a single storm, including frequency storms, and continuous storms. Gilroy 

and McCuen (2009) used 1- and 2-year design storms to examine reduction on peak flow rate and 

runoff volume at the scale of a single-family and commercial lots by implementing stormwater 

harvesting practices. A study in Cleveland Heights, Ohio showed that one rain barrel with the 

capacity of 189 L modeled on a 14 m2 garden would produce total retrospective reduction on 

annual roof runoff volume by 3.2%, 2.1%, and 1.4%, for the 1-, 2-, and 3-day barrel-emptying 

frequencies (Jennings et al., 2013). Although results show N×189 L rain barrel or N×14 m^2 would 

enhance the runoff reduction by a factor of N, it only tested the maximum effect of rain barrels 

when N=4.  

A study by the District of Columbia Water and Sewer Authority concluded significant long-term 

reduction of combined sewer overflow (CSO) is impractical. Despite strong verbal and written 
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recommendation for the implementation, in reality, 284-L rain barrels were each emptied 2.7 times 

per month, which was far below the recommended instruction to empty after each rainfall. Overall, 

30% of residents were dissatisfied with overall rain barrel performances. (Trieu et al., 2001). 

Recently, more studies have shifted from lot scale to watershed scale, from a single event to 

continuous events, from a single LID practice to the combination of several practices. The LID 

effectiveness for flood control was assessed at watershed scale for 30 years by using different 

scenarios, e.g. combination of different LID practices and various implementation rate; results 

showed the combination of implementation level of 50%-100% porous pavements and 100% rain 

gardens was the most effective for mitigating flood events in the Sugar Creek Watershed 

(Ahiablame and Shakya 2016).  

Distributed hydrologic models, e.g. in SWMM (Huber and Dickson, 1988; Rossman, 2004), 

PCSWMM (James et al., 2010; Rossman, 2008), MUSIC (Wong et al., 2002), and SUSTAIN 

(USEPA 2009), have been developed to simulate the effects of on-site LID practices on hydrology 

and water quality. Distributed hydrologic models are data-intensive which use node-link drainage 

network to route node component (individual sub-catchment) through drainage component 

(channels, sewers). Lumped hydrologic models, e.g. in HEC-HMS (USACE 2000), L-THIA-LID 

(Hunter et al., 2010; Engel and Ahiablame, 2011), are not broadly adopted in current researches 

on LID modeling, which simulate catchments in a lumped approach by aggregating the effects of 

practices in one parameter (Elliot 2007; Ghimire 2016). While distributed modeling of LID 

practices is more accurate, it is prone to higher cost and thus impractical for long-term evaluation. 

Lumped models provide a preliminary demonstration of the benefits of LIDs before more elaborate 

modeling. Therefore, scaling up the modeling of LID practices from lot scale to watershed scale 
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is important to accurately representing LID practices at watershed scale (Ahiablame and Engel, 

2012). 

Previous researches into the effectiveness of rain barrels adopted either a constant storage or 

limited choices of commercially available storage to simulate their impact on runoff peak flow 

(e.g. Ahiablame and Shakya 2016; Litofsky and Jennings 2014). A study showed water harvesting 

facilities, e.g. rain barrels and rain gardens, can effectively reduce flooding for storms with small 

rainfall intensity, but are incapable of mitigating storms with high magnitude (e.g. Damodaram et 

al., 2010). However, the best stormwater management plan varies with the specific watershed, 

which need to take into consideration both the cost and efficiency factors. 

 Problem Statement and Objectives 

Previous studies on rain barrels used barrels with a single constant storage, or adapted rain barrels 

with several commercially available storage volumes to determine their effect on runoff peak flow 

and volume. Furthermore, it was found that rain barrels are impractical to achieve flood reduction 

in the long term, but can be useful for reducing runoff peak for a single storm event.  Rooftops are 

the primary source for rain barrels to harvest rainfall and the effectiveness of rain barrels is 

restricted by the rooftop surface area. Because a rooftop can only direct the amount of rainfall it 

receives, just increasing the number of barrels per house will not achieve the expected reduction 

in storm water volume if not enough water is received by the rooftops. Thus, there is a need to 

determine how many rain barrels are really needed to store all the rooftop water, and whether these 

barrels are sufficient to produce any reduction in the streamflow volume and peak flow rate. In 

addition, the performance of rain barrels in conjunction with other traditional storm water control 

practices, e.g., detention ponds, needs to be explored.  
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This study aims to explore the effectiveness of rain barrels on stormwater management through 

the following objectives: 

1. Quantify the change in runoff hydrograph in terms of volume and the peak flow by 

implementing incremental rain barrel storage per building. 

2. Determine the required number of rain barrels and their effectiveness to maintain 

acceptable flow rate for an historical event and frequency storms with different return periods. 

3. Compare the difference of the required storage volume and the surface area between rain 

barrels at household scale and detention ponds at community scale as to achieve the same flood 

mitigation objective. 

4. Determine the effect of the combinative design of rain barrels and detention ponds in terms 

of the change of minimum required surface area in comparison with results from individual designs 

of detention ponds or rain barrels. 

The study objectives are accomplished by using an urban watershed in central Illinois, which 

covers two cities and has high percentage of developed land use. The role of the effectiveness of 

rain barrels and other storm water reduction measures are simulated by using Hydrologic 

Engineering Center’s Hydrologic Modeling System (HEC-HMS), a commonly used hydrologic 

modeling software for historical and frequency storms. 

 Thesis Organization 

This thesis is divided into five chapters. This chapter introduces previous researches on rain barrels 

and sets up objectives for this study. The second chapter gives a description of the study area and 

an overview of the data used in this study. The third chapter explains the modeling of rain barrels 

and detention ponds in HEC-HMS, and an overview of the scenarios used to examine and compare 
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their effects. The fourth chapter presents and discusses model results. The fifth chapter gives a 

summary of this study and provides opportunities for future work. 
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2. DATA AND STUDY AREA 

 Study Area 

The City of Normal-Sugar Creek Watershed (HUC 071300090701) is located in central Illinois 

covering the two major cities of Normal and Bloomington, referred to SCW below (see Figure 

2.1). The total drainage area of SCW is 85.14 km2 with one streamflow gage at its outlet (Sugar 

Creek near Bloomington, IL) and one rainfall gage at its centroid (Bloomington Waterworks). This 

watershed is selected based on its land cover of diverse types, from highly developed residential 

area to grassland and ponds, and the readily availability of all required data for hydrologic 

modeling. The highest percentage of land use in the watershed is low-intensity residential use at 

43%, followed by high-intensity residential area at 38%, and agricultural use at 12%. Soils are 

dominated by Hydrologic Soil Group C, which has moderately low infiltration potential (see 

Figure 2.2). The average total percentage of impervious area is 40%. The average monthly 

precipitation varies between 50 mm in February and 112 mm in May, which accounts for 5% and 

11% for total annual precipitation. 

 Data 

To develop a hydrologic model used for this study, geospatial data are processed in ArcMap 10.3.1 

using HEC-GeoHMS, and then imported in to HEC-HMS. A HEC-HMS model is calibrated using 

historical rainfall and streamflow data. Address points in the study area are used to set different 

scenarios for the number of rain barrels per individual building, and calculate the total storage 

volume of rain barrels in each sub-basin. 
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Figure 2.1 Study Area with Sugar Creek Boundary and Gage Locations 

 

The 30-m horizontal resolution Digital Elevation Model (DEMs) are used for this study and 

obtained from the National Map Viewer in 2017. The DEM for the study area is reconditioned by 

using the stream network from the National Hydrography Dataset (NHD). The Gridded Soil 

Survey Geographic (gSSURGO) Database are used to obtain hydrologic soil groups (HSG) 

information, and the National Land Cover Database (NLCD) 2011 are used in this study to get the 

30-m resolution land cover and impervious surface area percentage data. (Figure 2.2) 

Historical 15-min streamflow data are obtained from the United States Geological Survey’s 

streamflow gauge at Sugar Creek Near Bloomington, IL (USGS 05580950). Similarly, historical 

15-min precipitation data are obtained from Fairbury Waterworks Station, which is located about 
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50 km northeast of the SCW centroid. Frequency precipitation data, which are used to generate 

frequency storms in HEC-HMS, are obtained from Precipitation Frequency Data Server 

maintained by NOAA. Building information in Normal and Bloomington city is obtained from 

McLean County GIS Consortium, which contains information on individual building address in 

point features (see Figure 2.3). 

 

Figure 2.2 DEM, Imperviousness, Land Use, and Soil of Study Area 
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Figure 2.3 Address Points in Study Area 
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3. METHODOLOGY 

This chapter includes information regarding the tools and scenarios to simulate and compare the 

effect of rain barrels and detention ponds in HEC-HMS. 

 Methodology Overview 

This study examines the suitability of rain barrels to impact direct runoff for a single storm event. 

In past studies, the number and storage volume of rain barrels selected were limited per house and 

fixed in case of various storm events, which does not provide full potential of rain barrels on direct 

runoff control. In order to investigate the scope of the event-specific flood reduction that rain 

barrels can achieve, a methodology is developed in HEC-HMS for SCW to include three models: 

only rain barrels (RB-based), only detention ponds (DP-based), and a combination of rain barrels 

and detention ponds (RB-DP-based). Because HEC-HMS does not specifically simulate the effect 

of rain barrels, reservoirs are used to simulate this effect. In this study, the goal of flood control is 

to reduce the peak flow at the outlet of watershed below acceptable level. In summary, the 

methodology is divided into five steps: (1) create and calibrate a basic HEC-HMS model without 

reservoirs using a selected historical storm event; (2) create a RB-based model and determine the 

scope of the effectiveness of rain barrels on peak flow reduction for a historical event and different 

design storms and compare their surface areas; (3) create a DP-based model and determine the 

minimum required surface area of detention ponds for individual design storms; (4) create a 

combined model for rain barrels and detention ponds (RB-DP-based) and determine the minimum 

required surface area in case of individual design storms; (5) compare the results of the basic, RB-

based, DP-based and RB-DP-based models. 
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 HEC-HMS Overview 

HEC-HMS is a rainfall-runoff modelling software developed by the US Army Corps of 

Engineering’s Hydrologic Engineering Center, which uses different methods to simulate different 

hydrologic processes. The Loss methods in HEC-HMS compute the loss of rainfall volume due to 

infiltration. The Transform methods transform excess precipitation into direct runoff. The 

Baseflow methods compute the portion of baseflow in streamflow. The Route Methods route the 

flow from each sub-basin through open channels towards watershed outlet. 

 HEC-HMS Modeling 

3.3.1 Data pre-processing 

Hydrologic Engineering Center’s Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) is 

a Geographic Information System (GIS) extension that pre-processes geospatial data to create a 

HEC-HMS model. In this study, a DEM is pre-processed to delineate the stream network and 

create the basic HEC-HMS model. Considering that rain barrels are simulated using a reservoir 

for each sub-basin in the watershed, 7% of total watershed area is chosen as the stream delineation 

threshold to create nine sub-basins, which is a manageable number for manual input of storage-

discharge relationships. Table 3.1 shows the characteristics of sub-basins. 
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Table 3.1 Characteristics of Sub-basins 

Sub-basin 
Sub-basin Area 

(km2) 

Number of houses 

per sub-basin 

House Density 

(1/km2) 

W100 9.17 3674 400.9 

W110 16.20 9458 583.7 

W120 15.46 3155 204.1 

W130 23.99 10000 416.9 

W140 0.99 782 790.5 

W150 3.29 1706 518.1 

W160 0.10 5 51.4 

W170 8.34 6086 730.0 

W180 7.60 3220 423.7 

Sum 85.14 38086 447.4 

3.3.2 HEC-HMS calibration 

In this study, the basic HEC-HMS model is calibrated using a historical storm event. To calibrate 

a model for good prediction accuracy, the selection of an eligible storm is crucial. It is 

recommended by Viessman et al. (1989, p.186) that an ideal storm for calibrating a hydrologic 

model should meet the following criteria: (1) A simple-storm structure, resulting in well-defined 

hydrograph with distinct peaks; (2) Uniform temporal rainfall distribution over the whole rainfall 

event; (3) Uniform spatial rainfall distribution over the entire watershed; and (4) Direct runoff 

volume in range of 0.5 to 1.75 in. It is not easy to meet the criteria due to the missing records and 

the malfunction of gages. In this study, historical data dating back to last 30 years are used to pick 

an eligible storm event, and the event on May 12, 1990 meets the standards. The characteristics of 

this event including the rainfall histogram and streamflow hydrograph are presented in Table 3.2 

and Figure 3.1. 
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Table 3.2 A Selected Storm Event for Calibration 

Date 

Observed Rainfall Data Observed Runoff Data 

Precipitation 
Maximum 

intensity  

Storm 

duration 

Runoff 

Volume 

Peak 

Discharge 

(in) (in/15min) (hr) (min) (ac-ft) (in) (cfs) 

May 12, 

1990 
0.8 0.4 2 45 1771.3 1.01 2370 

 

 

Figure 3.1 Rainfall Histogram and Streamflow Hydrograph on May 12, 1990 

 

In this study, the basic HEC-HMS model is created by using the SCS CN method for accounting 

rainfall losses, Clark Unit Hydrograph method to transform excess rainfall to direct runoff, and 

Muskingum method to route flow in open channels. Baseflow is not incorporated because rain 

barrels can only impact direct runoff, and baseflow existing in the observed streamflow data was 

separated using the recursive digital filter method within the Web-based Hydrologic Analysis Tool 

(WHAT) (Eckhardt 2005; Kyoung et al., 2005; Ahiablame et al., 2016). The Clark Unit 

Hydrograph method is chosen because it has parameters related to time of concentration and 

storage, which can simulate the effect of the low-slope topography and depression storage in SCW. 
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The calibrated basic HEC-HMS model provides a good prediction of direct runoff in Sugar Creek 

Watershed, indicated by the Nash–Sutcliffe coefficient of 0.86. The average values of calibrated 

parameters are listed in Table 3.3. 

Table 3.3 Average Calibrated Parameters 

Loss Method: SCS Curve Number 

Initial  

Abstraction 

Curve  

Number  
Imperviousness 

  82.06 25.82 

Transform Method: Clark SUH 

Time of  

Concentration (hr) 

Storage  

Coefficient (hr) 

2.90 0.43 

Routing: Muskingum 

Muskingum  

K 

Muskingum  

X 

Number of  

sub-reaches 

0.35 0.40 1 

 

3.3.3 Incorporating rain barrels in HEC-HMS 

HEC-HMS cannot simulate the distributed effect of rain barrels, which are small on-site LID 

practices. Therefore, the representation of rain barrels is achieved by aggregating the effect of total 

rain barrels in the form of a reservoir (RB-reservoir) for each sub-basin in HEC-HMS as shown in 

Figure 3.3 (B), in comparison to the no-reservoir model in Figure 3.2 (A). The initial storage of 

each RB-reservoir before each simulation is set to zero. 
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(A) No-reservoir HEC-HMS Model 

 

 (B) RB-based HEC-HMS Model  

Figure 3.2 HEC-HMS Models 

3.3.4 Effect of rain barrels on a historical event 

The National Weather Service has defined different flood warning stages for each United States 

Geological Survey’s (USGS) gauge in the United States, and it regularly produces forecasts for 

each station to identify whether the stage is at safe level or requires action related to flooding.  

Accordingly, the streamflow gauge at the SCW outlet (USGS number: 05580950; SUGAR 

CREEK NEAR BLOOMINGTON, IL) has its action stage at the gage height of 7 ft (discharge at 

1985.7 cfs), and flood stage at 11 ft (discharge at 3652 cfs) as shown in Figure 3.3. In this study, 

all HEC-HMS models are aimed at reducing peak discharge below the action flood stage at the 

SCW outlet. 
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(http://water.weather.gov/ahps2/hydrograph.php?wfo=ilx&gage=bmii2&hydro_type=2) 

 

Figure 3.3 Flood Stage at Sugar Creek (IL) Near Bloomington 

 

The effectiveness of rain barrels is evaluated by incremental number of rain barrels assigned per 

building in the study area. The rain barrel used in this study is assumed as 1.22 m high and has the 

storage volume of 340 L. Considering that rainfall draining from a rooftop can only fill up a limited 

number of rain barrels, it is necessary to determine the capacity number of rain barrels per building 

for the storm. The volume of rainfall received by rooftops varies depending on rooftop area, 

rainfall intensity, and duration. In this study, the rooftop area of an individual building is assumed 

as 139.35 m2. Thus, for the storm event on May 12, 1990, the rainfall volume received by a rooftop 

is equivalent to eight 340-L rain barrels covering a footprint of 2.3 m2.  

Reservoir modeling in HEC-HMS requires the input of a storage-discharge relationship. The 

storage for each RB-reservoir is computed by summing up the storage volume of all rain barrels 

http://water.weather.gov/ahps2/hydrograph.php?wfo=ilx&gage=bmii2&hydro_type=2
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in each sub-basin using Equation 3.1. The storage-discharge relationship is then developed by 

assuming a broad-crested weir using Equation 3.2. The weir length is the square root of the RB-

reservoir surface area which is the footprint of total rain barrels in a sub-basin; the weir crest height 

is the same as the height of a rain barrel, which is 1.22 m. It is assumed that rain barrels will not 

be emptied during the storm and water will overflow after the barrel is full. 

 

𝑅𝐵 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 𝑆𝑖𝑛𝑔𝑙𝑒 𝑅𝑎𝑖𝑛 𝐵𝑎𝑟𝑟𝑒𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑎𝑖𝑛 𝑅𝑎𝑟𝑟𝑒𝑙𝑠 𝑝𝑒𝑟 𝐻𝑜𝑢𝑠𝑒 

× 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑜𝑢𝑠𝑒𝑠 𝑖𝑛 𝑎 𝑆𝑢𝑏𝑏𝑎𝑠𝑖𝑛                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1 

 

𝑄 = 𝐶𝑏𝑐𝑤 × 𝐿 × 𝐻3 2⁄                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2 

where:  

Q = discharge, m3/s (ft3/s) 

Cbcw = broad-crested weir coefficient, 1.44 – 1.70 (2.61 – 3.08), metric system (U.S. Customary) 

L = broad-crested weir length, m 

H = height of the water above weir crest, m 

The adopted broad crested weir coefficient is 1.7 (metric system). 

3.3.5 Effect of Rain Barrels on Design Storms 

After investigating the effectiveness of rain barrels on a historical storm event, the same RB-based 

model is used to investigate the effectiveness of rain barrels in case of design frequency storms. 

Frequency storms data for SCW are obtained from the NOAA Precipitation Frequency Storm 

Server. In this study, 24-hour duration frequency storms with 5-min intensity and return period of 

2, 5, 10, 25, 50, and 100 years are selected for input of meteorological data into HEC-HMS. To 

validate the peak discharge simulated in basic HEC-HMS model using data from NOAA, observed 
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annual maximum discharge series at the SCW outlet are used to perform flood frequency analysis 

using Log Pearson Type III distribution as shown in Table 3.4. Comparison shows simulated 

hydrograph in HEC-HMS using data from NOAA is of peak discharge far higher than the result 

from the analysis of Log Pearson Type III distribution. Therefore, the precipitation data of design 

frequency storms from NOAA are modified by multiplying with different factors to make the basic 

HEC-HMS model produce hydrographs with peaks close to the result of Log-Pearson Type III 

flood frequency analysis; the precipitation data of the design storms used in this study are presented 

in Table 3.5. 

Table 3.4 Log-Pearson Type III Flood Frequency Analysis 

USGS 05580950 (period of record 1975 - 2016) 

Return Period Skew Coefficient Discharge 

(years) K (-0.196) Q (cfs) 

2 0.032 2509 

5 0.849 3597 

10 1.258 4307 

25 1.681 5189 

50 1.947 5834 

100 2.181 6466 

200 2.392 7096 
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Table 3.5 Design Frequency Storms 

(precipitation in inch) 

       Return 

                  Period  

Duration  

 

2 5 10 25 50 100 

5-min: 0.22 0.27 0.29 0.31 0.32 0.33 

15-min: 0.43 0.51 0.55 0.58 0.60 0.61 

60-min: 0.70 0.88 0.97 1.07 1.13 1.18 

2-hr: 0.84 1.03 1.15 1.28 1.37 1.45 

3-hr: 0.89 1.11 1.24 1.39 1.49 1.58 

6-hr: 1.05 1.30 1.46 1.64 1.76 1.87 

12-hr: 1.21 1.49 1.66 1.86 1.98 2.10 

24-hr: 1.39 1.70 1.89 2.12 2.30 2.48 

 

The effectiveness of rain barrels on frequency storms is evaluated by comparing the results 

between simulations using desired number and capacity number of rain barrels per house. The 

desired number is the number of rain barrels needed to keep the surface water level below action 

flood stage; the capacity number is the number of rain barrels that can actually be filled up during 

a specific storm. Table 3.6 shows the capacity number and the desired number of rain barrels per 

house and their respective footprint for the storm event on May 12, 1990. It is assumed that rain 

barrels will not be emptied during a storm and the water will overflow after barrels are full. The 

outflow structure of a RB-reservoir in the case of design frequency storms is a broad-crested weir 

with the weir height same as the height of a rain barrel, and the reservoir storage is calculated by 

summing up the total rain barrel storage in each sub-basin (Equation 3.1). If the peak runoff 

discharge rate routed through RB-reservoirs is above action flood level, then a new simulation is 

performed using larger reservoir storage volume, which is achieved by increasing reservoir surface 

area. For each frequency storm, once the simulated peak runoff discharge is reduced to below 
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action flood stage, the minimum reservoir surface area and the equivalent desired number of rain 

barrels per house are recorded. 

Table 3.6 Capacity Number of Rain Barrels and Footprint per Building 

Storm Frequencies 0.5 0.2 0.1 0.04 0.02 0.01 

Storm Return Period (year) 2 5 10 25 50 100 

Number of RB 45 51 56 66 78 93 

Footprint (m2) 12.6 14.2 15.7 18.4 21.8 26.0 

3.3.6 An alternative rainfall harvesting practice – detention pond 

As the rooftop area limits the rainfall volume that can be harvested in rain barrels, only using the 

capacity number of rain barrels may be insufficient for flood control. Thus, an alternative rainfall 

harvesting practice – detention pond – is designed to achieve the flood reduction goal. Detention 

ponds can be implemented as small on-site storage tanks, or as large regional facilities for a sub-

basin. Regional detention ponds outperform on-site ponds, in terms of lower maintenance and 

better peak flow control (Hartigan 1986). 

In this study, the goal of designing detention ponds is to determine their total minimum surface 

area to achieve flood control goal without causing roadway overtopping in case of individual 

design frequency storm. In previous section, reservoirs in HEC-HMS model were set up to mimic 

the behavior of overflowing barrels. Thus, a RB-reservoir only releases outflow when the water 

level rises above the rain barrel height. In this section, detentions ponds are also modeled as broad-

crested reservoirs (referred to as DP-reservoir) with crest height equal to the height of a rain barrel, 

but the storage-discharge relationship of a DP-reservoir is different from a RB-reservoir. A DP-

reservoir may have outlet structures that allow outflow below the crest height at different rate. The 

initial storage of each DP-reservoir before each simulation is set to zero. 
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Figure 3.4 Diagram of Detention Pond-based HEC-HMS model 

 

An individual detention pond is designed for each sub-basin except for one that has a very small 

area and contributes very little runoff (W160 in Figure 3.4). A detention pond consists of an 

impoundment area, a principle spillway, and an emergency spillway. A principle spillway consists 

of a riser and culvert. A riser is a structure upstream of a reservoir which has the shape of a cylinder 

with an open top and orifices opening on lateral surface area at different height, which can control 

the flow through it by acting as a weir or an orifice. A culvert is a conduit that route the water from 

the riser to the downstream of a reservoir. The design of a multi-stage riser is frequently adopted, 

which allows water flow at different flow rate at different height. However, the design of a multi-

stage riser is based on a single-stage riser. The mechanism of a single-stage riser is the fundamental 

hydraulics for orifices, weirs, and culverts. 

In this study, the design discharge for the outlet of each sub-basin in DP-based model is the 

weighted assignment of the acceptable discharge at the outlet of the watershed according to the 

weight of the natural peak discharge of the outlet of each sub-basin in the no-reservoir model. 

There are six design storms used in this study, and each design storm is simulated with no-reservoir 
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model to obtain its set of design discharges for the outlet of each sub-basin in the DP-based model. 

For each detention pond, a culvert is designed with the capacity to route the design discharge, 

which is preceded by one or several multi-stage risers to regulate the flow. The design of the culvert 

capacity is performed using the HY-8 program, which is suggested by the Land Development 

Handbook Third Edition (Dewberry, 2008), and the design of multi-stage riser is performed in 

Excel. 

3.3.7 Combined effect of rain barrels and detention ponds 

In order to explore the combined effect of rain barrels and detention ponds in terms of total surface 

area in case of design frequency storms, a HEC-HMS model is developed in which the flow from 

each sub-basin is first routed through a RB-reservoir, and then routed through a DP-reservoir, as 

shown in Figure 3.5. The idea is to use capacity number of rain barrels to set up the behavior of 

RB-reservoirs and then design a unique elevation-storage-discharge relationship for each DP-

reservoir to continue the task of peak flow reduction which is partially achieved by RB-reservoirs. 

Design storms, including 100-, 50-, 25-, 10-, and 5-year storm, are used to determine the total 

minimum surface area of rain barrels and detention ponds to reduce peak flow at the outlet of the 

watershed under acceptable level. For each design storm, risers and culverts of each detention pond 

are designed individually because the design discharges vary with sub-basins. 
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Figure 3.5 Diagram of Combination of Rain Barrels and Detention Ponds 
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4. RESULTS AND DISCUSSION 

 Introduction 

This chapter explains the results of the study on the effectiveness of rain barrels on the reduction 

of peak flow and runoff volume, and compares the minimum required surface area of rainfall 

harvesting pratices between RB-based, DP-based, and RB-DP-based models. The first part of this 

chapter presents the results of the RB-based model that explores the scope of the effectiveness of 

rain barrels on storms with different rainfall characteristics, e.g. a historical event and several 

design frequency storms. The second part of this chapter explains the results of the DP-based 

model which determines the minimum required surface area of detention ponds to cope with 

different design frequency storms. The third part is the set of results of the RB-DP-based model, 

which is a combination of rain barrels and detention ponds; the total minimum required surface 

area of rain barrels and detention ponds are presented and compared with the results from the RB-

based and DP-based models. 

 Effectiveness of Rain Barrels on a Historical Event and Design Storms 

The effectiveness of rain barrels during the storm event on May 12, 1990 is evaluated by assigning 

an incremental number of rain barrels per building in the study area. Results on the historical storm 

are presented in terms of the peak flow change, and the percentage of runoff volume that is stored 

in the RB-reservoir in each sub-basin. The effectiveness of rain barrels on design frequency storms 

is evaluated by comparing the results of using the capacity number and the desired number of rain 

barrels. Results on design frequency storms are presented in two ways: the capacity and the desired 

number of rain barrels of each design storm, their surface area per house, and their individual effect 

on hydrographs. 
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4.2.1 On a historical event: peak discharge decrease 

Figure 4.1 shows the effect of the incremental quantity of rain barrels on the runoff peak flow for 

the event on May 12, 1990. In Figure 4.1, it can be observed that the runoff peak discharge does 

not show any noticeable decline until the number of rain barrels per house reaches above four, 

with a reduction of approximately 20 cfs. Starting with four rain barrels per house, with an 

increment of 2 in each simulation, it can be observed that the peak rate decreases very little before 

8 rain barrels per house and shows a steady decline around 60 cfs with 10 and more rain barrels 

per house. For peak flow to be reduced to below action flood stage, 14 rain barrels per building 

are desired. However, based on the characteristics of the storm, and assuming that an individual 

rooftop area is 139.35 m2, only 8 rain barrels can be filled up by the rainfall volume received by a 

rooftop, which only reduces the peak flow by 100 cfs as shown in Figure 4.2. 

 

Figure 4.1 Hydrograph of May 12, 1990 with Incremental Number of Rain Barrels 
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Figure 4.2 Peak Discharge Change with Incremental Number of Rain Barrels 

 

4.2.2 On a historical event: runoff volume stored in rain barrels 

Rain barrels control the outflow by storing excess runoff volume. Thus, it is important to analyze 

the behavior of the reservoir storage representing rain barrels (RB-reservoir) when peak flow is 

reduced. Although the desired performance of 16 rain barrels cannot be achieved, it can be used 

to demonstrate this behavior. Table 4.1 shows the RB-reservoirs inflow and outflow volume, and 

the peak and final percentage of the runoff volume stored in reservoirs, in the scenario of 16 rain 

barrels assigned per house. At the outlet of SCW without RB-reservoirs, the peak flow rate and 

direct runoff volume are 1708 cfs and 893 ac-ft, respectively. By assigning 16 rain barrels per 

house, the peak flow rate can be reduced by 318 cfs, and the total runoff volume that the rain 

barrels in SCW are needed to harvest is 176.1 ac-ft. The average peak and final percentage of the 

runoff volume stored in RB-reservoirs are 19.72% and 18.81%, which are 176.1 and 168.0 ac-ft, 

respectively; the difference might be due to infiltration and evaporation. It is also noted that, for 
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sub-basin W160, its RB-reservoir’s inflow volume is equal to outflow volume. By comparing the 

house density of sub-basin W160 with other sub-basins, it is found that, for a sub-basin with low 

house density, rain barrels have negligible impact on runoff volume. 

Table 4.1 Statistics of RB-Reservoirs for the Storm on May 12, 1990 (16 RB per House) 

Reservoir #  

(Sub-basin) 

Reservoir 

Inflow 

Volume 

(ac-ft) 

Reservoir 

Outflow 

Volume 

(ac-ft) 

Peak 

Reservoir 

Storage 

(ac-ft) 

Peak 

Storage 

Percentage 

Final 

Storage 

Percentage 

House 

Density  

(1/km2) 

Reservoir 1  

(W100) 
92.5 76.3 16.8 18.16% 17.51% 401 

Reservoir 2  

(W110) 
173.6 131.9 43.1 24.83% 24.02% 584 

Reservoir 3  

(W120) 
130.1 116.2 15.4 11.84% 10.68% 204 

Reservoir 4  

(W130) 
260.6 216.5 46.7 17.92% 16.92% 417 

Reservoir 5  

(W140) 
12.5 9.0 3.5 28.00% 28.00% 791 

Reservoir 6  

(W150) 
37.4 29.9 7.7 20.59% 20.05% 518 

Reservoir 7  

(W160) 
1.2 1.2 0 0.00% 0.00% 51 

Reservoir 8  

(W170) 
105.9 79.0 28.0 26.44% 25.40% 730 

Reservoir 9  

(W180) 
79.2 65.0 14.9 18.81% 17.93% 424 

4.2.3 On design storms: scope of the effectiveness of rain barrels 

The effectiveness of rain barrels in case of different design storms is investigated by comparing 

the results of the simulations using the desired number and the capacity number of rain barrels 

separately. Figure 4.3 presents the comparison of the desired number and the capacity number of 

rain barrels per house for individual design storms and their footprint per house. For instance, for 

a 1% storm (a storm with the return period of 100 years), the RB-reservoirs representing desired 

number of rain barrels (D-RB-reservoirs) can be translated into 156 rain barrels per house. 
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However, in practice, only 96 rain barrels per house can be filled up during a 1% (100-year) 

frequency storm. Thus, the desired peak flow reduction cannot be achieved; the same is true for a 

2% (50-year), 4% (25-year), 10% (10-year), and 20% (5-year) storm. As the storm frequency 

increase, the gap between the desired number and the capacity number of rain barrels narrows 

down. For a 50% (2-year) storm, the capacity number of rain barrels achieves lower peak flow 

than that of the desired number. Furthermore, a smooth interpolation shows that the capacity 

number meets the desired number of rain barrels at frequency of 33% (a 3-year storm) where the 

number and the footprint of rain barrels per house are 49 and 14 m2, respectively. Thus, for a storm 

with return period less than 3 years, harvesting all rainwater volume received by rooftops, rain 

barrels can provide enough reduction on peak flow to maintain safe discharge rate at the outlet of 

SCW. 

However, for storms with return periods longer than 3 years, stormwater management cannot rely 

exclusively on rain barrels; it is necessary to consider other stormwater management practices. 

 

Figure 4.3 Number and Footprint of Capacity and Desired Rain Barrels Scenarios 
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Figure 4.4 shows the hydrographs of the design storms simulated with the desired number and the 

capacity number of rain barrels per house separately. As storm frequency decreases, the gap of 

peak flow rate between scenarios using the capacity number and the desired number of rain barrels 

widens, but the acceleration slows down. From a 2% (50-year) to a 1% (100-year) storm, without 

rain barrels, the peak flow rate increases from 5834 to 6466 cfs; by harvesting all rainfall volume 

received by rooftops in rain barrels, rain barrels make peak flow rate increase from 3887 to 3932 

cfs. 
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Figure 4.4 Hydrographs of Design Frequency Storms with Rain Barrels 
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 Effectiveness of Detention Ponds on Design Storms 

The effect of detention ponds on design storms is tested on the DP-based model for each design 

storm individually. The goal is to design detention ponds wherever sub-basins need them, to reduce 

the peak flow at the outlet of the watershed to below the flood discharge. Results from the DP-

based model are compared with the results from the RB-based model of desired number of rain 

barrels, which are analyzed from two perspectives: design storms, and detention ponds. From the 

perspective of each design storm, the peak percentage of its runoff volume that needs to be stored 

in detention ponds to achieve the flood control goal is compared with the peak percentage if the 

desired number of rain barrels are used to achieve the same goal. From the perspective of detention 

ponds, the minimum surface area of all detention ponds in Sugar Creek Watershed that needs to 

be occupied by detention ponds to achieve the flood control goal is compared with the area that is 

needed by desired number of rain barrels. 

4.3.1 Runoff Volume stored in Detention Ponds 

To compare the difference of the required storage volume between rain barrels and detention ponds 

to achieve same flood control goal, it is necessary to determine the peak percentage of runoff 

volume of each design storm that needs to be harvested in rain barrels or in detention ponds.  

It is natural that a longer-return-period storm generates larger-volume runoff and requires the 

rainfall harvesting practices to store more of the runoff volume to achieve the flood control goal. 

However, the storage requirements of rain barrels and detention pond are different. As shown in 

Figure 4.5, rain barrels need to harvest 15% more runoff volume of a 2-year storm than detentions 

ponds, 12% more of a 4-year storm, and around 10% more of a 10-, 25-, 50-, and 100-year storm. 

Although the desired number of rain barrels per house exceeds the capacity number of rain barrels, 

this comparison shows the intrinsic difference in the required storage volume between rain barrels 
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and detention ponds, assuming that the rooftops are large enough and place no restriction on the 

desired performance of rain barrels on harvesting rainfall volume. 

 

Figure 4.5 Comparison of Peak Storage Percentages 

4.3.2 Surface Area of Detention Ponds 

In addition to the comparison of the differences of the peak percentage of runoff volume of each 

design storm that is stored in rain barrels or detention ponds, the differences in the surface area 

requirements between both rainfall harvesting practices for each design storm are also explored. 

Figure 4.6 shows the percentages of the surface area of SCW that are needed to be occupied by 

the desired number of rain barrels or detention ponds to control individual design storms. It can be 

observed that detention ponds need up to 0.22% smaller surface area of SCW than rain barrels in 

case of a 100-year storm, and as low as 0.13% less for a 5-year storm, which can be interpreted as 

smaller surface area by 0.18 km2 and 0.11 km2, respectively. 
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Figure 4.6 Comparison of Surface Area Percentages 

 Combinative Effect of Rain Barrels and Detention Ponds on Design Storms 

The combinative effect of capacity number of rain barrels with detention ponds is evaluated using 

the RB-DP-model. The results are presented in terms of the reduction of the quantity and surface 

area of detention ponds in the combinative scenario compared with detention ponds in the 

individual scenario. 

4.4.1 Reduction in the number of detention ponds 

Not all outflow routed through a RB-reservoir representing capacity number of rain barrels (C-

RB-reservoirs) bears flooding risk on the sub-basin downstream. Thus, for the outlet of a sub-

basins with safe discharge rate after being routed through a C-RB-reservoir, the design of a DP-

reservoir is not necessary. Only those sub-basins that still bear hazardous discharge rate after being 

routed through a C-RB-reservoir needs to be complemented with a DP-reservoir immediately 

downstream. Inclusion of a DP-reservoir following a C-RB-reservoir applies to: for a 5-year storm, 
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sub-basin W110; for a 10-year storm, sub-basin W110 and W130; for a 25-year storm, sub-basin 

W110, W120, and W130; for a 50 or 100-year storm, sub-basin W100, W110, W120, and W130. 

4.4.2 Reduction in the Total Surface Area 

In Figure 4.7, the minimum total surface area of the combinative design of capacity number of rain 

barrels and detention ponds to maintain safe discharge rate at the outlet of SCW is compared with 

the area of the individual design of desired number of rain barrels or detention ponds. Results in 

Figure 4.7 show that the total area of the combinative scenario is mostly larger than the area of the 

detention ponds in the individual design, e.g. 0.0319 km2 (2.3%) larger for a 100-year storm, 

0.0348 km2 (2.9%) larger for a 50-year storm, 0.0201 km2 (2.0%) larger for a 25-year storm, 

0.0106 km2 (1.4%) smaller for a 10-year storm, and 0.0351 km2 (6.4%) larger for a 5-year storm. 

In addition, the combinative scenario results in a significant reduction in the surface area of 

detention ponds, excluding rain barrels, compared with the detention ponds in individual design, 

that is, 0.96, 0.7964, 0.6811, 0.6075, and 0.5055 km2 smaller, by 69.4%, 67.2%, 68.2%, 80.1%, 

92.6%, for a 100-, 50-, 25-, 10-, and 5-year storm, respectively. In addition, as storm frequency 

increases, a decreasing gap appears between the total area of combinative scenario and the area of 

desired rain barrels in individual design. The combinative scenario of capacity number of rain 

barrels and detention ponds needs 0.153, 0.1421, 0.1388, 0.1299, and 0.0777 km2 smaller total 

area than the individual design of desired number of rain barrels, for a 100-, 50-, 25-, 10-, and 5-

year storm respectively. 
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Figure 4.7 Area Comparison of Individual and Combinative Scenarios  
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5. SUMMARY AND CONCLUSION 

 Summary 

Rain barrels, as a component of Low Impact Development (LID), can control urban stormwater in 

terms of reduction on runoff volume and peak flow rate. An overflowing rain barrel stores rainfall 

volume inside its storage, and releases outflow after it is full. The resulting discharge hydrograph 

has a different shape. In this study, the discharge hydrograph at the outlet of the watershed, without 

any rain barrels, features one peak. When rain barrels are included, the rising limb of the resulting 

hydrograph changed, featuring multiple low peaks. However, if the watershed is simulated through 

detention ponds with proper outlet structure that drains water constantly at different surface water 

level, the resulting hydrograph has a smooth rising limb with one limb. 

The contributing factor to the difference in the shape of hydrograph from the rain barrel-based and 

the detention pond-based model is the inability of overflowing rain barrels to release low flow and 

the expedited time gap from low flow to high flow. By contrast, designed detention ponds with 

proper outlet structures allow outflow even at low discharge rate and drains water out completely 

eventually, which also can actively control the peak outflow rate below acceptable level. Thus, the 

minimum required storage volume of detention ponds is smaller than that of rain barrels; the peak 

percentage of the runoff volume of 2- to 100- year storms that detention ponds are needed to 

harvest is 10% to 15% smaller than that of the desired number of rain barrels. The total surface 

area of the watershed that is needed to be occupied by detention ponds in case of 5- to 100-year 

storms is 0.13% to 0.22% smaller compared with the area of desired number of rain barrels. 

Overflowing rain barrels have certain but limited effect on peak flow reduction because the size 

of rooftop area restricts the achievement of desired performance. Rainwater volume falling on 

rooftops determines the effective storage volume of rain barrels. The maximum reduction on 
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runoff peak flow is assessed by storing all rainfall received by rooftops inside rain barrels. In the 

study area, for a storm with the direct runoff peak flow at 1700 cfs, rain barrels at capacity can 

reduce peak flow rate by 100 cfs; for a 100-year storm, rain barrels at capacity can reduce peak 

flow rate from 6466 cfs to under 4000 cfs.  

As rain barrels only use its storage volume to store runoff volume and indirectly reduce peak flow 

rate, detention ponds aim at releasing allowable peak flow rate by temporarily storing inflow that 

exceed outflow capacity and will finally drain out all runoff volume. The final storage of rain 

barrels has negligible change from its peak storage, but the final storage of detention ponds will 

eventually decrease to zero, which inevitably elongates the base time. The timing of emptying rain 

barrels should be chosen wisely as to not pose additional threat to flood control. 

For the overall design of rainfall harvesting facilities, rain barrels should be designed as the 

complementary storage facilities in addition to detention ponds. Considering that 10% to 15% 

larger storage volume and 0.13% to 0.22% (0.18 km2 and 0.11 km2, respectively) larger surface 

area are needed for rain barrels to achieve the same stormwater management goal as detention 

ponds do in case of 2- to 100-year storms, rainfall harvesting facilities should feature a higher 

proportion of rain barrels and a lower proportion of detention ponds in a high-density residential 

area, and a lower proportion of rain barrels and a higher proportion of detention ponds in a low-

density residential or agricultural area.  

The combinative design of rain barrels at capacity number with detention ponds results in a 

substantial reduction in the surface area of detention ponds, compared with the detention ponds in 

the individual design, by 0.51 km2 and 0.96 km2, that is, 69.4% and 92.6%, for a 5- and 100-year 

storm, respectively. However, the total area of the combinative design is not much different from 

the area of detention ponds in the individual design; in most cases, the area of the combinative 
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design is larger, e.g. 0.201 km2 (2%) larger for a 25-year storm, and 0.0351 km2 (6.4%) larger for 

a 5-year storm, but for a 10-year storm, 0.0106 km2 (1.4%) smaller. 

Along with city development, the city size expands and the center moves. A detention pond that 

was in rural area when designed might become the new center for business or residential area. The 

retrofitting of rain barrels shows that more public land could be restored from detention ponds by 

the addition of rain barrels assigned to individual buildings in the watershed. However, the number 

of rain barrels per building needed to control a 2-year storm is 32; thus, an aboveground or 

underground storage tank, in lieu of 32 rain barrels, would be more practical. 

 Limitations 

This study did not differentiate between residential or commercial buildings, or include the 

emptying of rain barrels, or the distributed on-site modeling of rain barrels. Future work will delve 

into scenarios of the combination of rain barrels with other LID practices designed specifically for 

buildings of different uses. It is also important to use a distributed hydrologic model that allows 

configuration of distinctive time delay of the emptying of rain barrels based on their spatial 

location. Continuous modeling should be adopted for evaluating long-term effectiveness of rain 

barrels using coarser time-scale data and simulated with larger time step, e.g. HEC-HMS 

continuous modeling using SMA method (Chu 2009), or SWAT modeling (Seo 2017).  

In this study, the lumped approach to modeling the effect of all rain barrels in a sub-basin assumes 

a reservoir with a broad-crested weir which has a weir length calculated as the square root of the 

total surface area of all rain barrels. However, if the four sides of the square are used as the weir 

length, the outflow approximation of rain barrels can be improved. 
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