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INTRODUCTION 

Motivation for yet another Computational Model of Speech Processing 

A variety of signal processing algorithms have been developed for hearing aids in an attempt to restore speech 
information to individuals with degraded sensory processing. The purpose of this project is to develop an objective 
measure that is sensitive to the amount of information in the altered speech signal in order to better understand the 
perceptual effects of these hearing aid processing strategies and to make predictions for future strategies. Of 
particular interest and where we began our investigation is a class of signal processing algorithms known as 
frequency lowering. We started here because to date very little is understood about how these processed signals are 
coded in the auditory periphery (normal or impaired) or even what constitutes ‘information’ as they are encoded 
further up the auditory system. 

Individuals with hearing impairment have difficulty perceiving high-frequency speech information with 
conventional amplification. As the severity of loss increases, so does the range of frequencies affected. Frequency 
lowering algorithms attempt to recode this inaudible information by shifting high-frequency speech cues to low and 
mid frequency regions where sensory processing is relatively intact. This project initially focused the most popular 
form of frequency lowering – nonlinear frequency compression (NFC) because, unlike other techniques, the nuances 
associated with the algorithm, such as, when and where lowering occurs do not depend on the characteristics of the 
input signal. Therefore, this technique can be more easily replicated in the lab, resulting in a significant amount of 
perceptual data. With NFC, the input spectrum is functionally divided into two parts at a nominal frequency 
designated as the ‘start frequency.’ The spectrum below the start frequency is unaltered whereas the spectrum above 
the start frequency is shifted down in frequency by an amount that depends on the frequency distance of the 
individual spectral components from the start frequency. Spectral components closest to the start frequency undergo 
the least frequency shifting on a linear scale and those furthest from the start frequency undergo the greatest 
frequency shifting (Simpson, Hersbach, & McDermott, 2005). The exact amount frequency shifting and the 
subsequent reduction in bandwidth above the start frequency depends on the nominal ‘compression ratio’ with 
greater ratios corresponding greater frequency shifts (Figure 1). In fact, because NFC is logarithmic, the nominal 
compression ratio is about equal to the reduction in spectral resolution in terms of auditory filters. For example, a 
2.0:1 compression ratio means that information that would normally span two auditory filters in the un-impaired ear 
before processing would only span one auditory filter after processing. 

 

FIGURE 1. The figure on the left shows the spectrum a rippled noise with spectral peaks at the 1/3 octave frequencies before 
processing with nonlinear frequency compression (NFC). In this example, frequencies in a 4500-Hz band from stretching 1800 
Hz (the ‘start frequency’) are shifted down in frequency. The figure on the right shows the same signal after processing with 
NFC. Only the frequencies in the compression band (blue-shaded region) are shifted (red-shaded region); frequencies below are 
unaltered by NFC and frequencies above are filtered off as a byproduct of the processing. 
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It follows that the integrity of information following recoding with NFC is dictated by the start frequency and the 
amount of compression. It also depends on the characteristics of individual speech sounds. For example, prior 
perceptual studies (Alexander, 2012) found that high-frequency speech content can undergo substantial frequency 
compression and still contribute to intelligibility of fricatives. This is likely because frication information is 
spectrally diffuse and is therefore less dependent on precise frequency content. In contrast, alternation of the primary 
formants, which originate at low to mid frequencies (Figure 2), is not as perceptually forgiving and serious 
disruptions in vowel identification, for example, can occur as start frequency decreases. In other words, where the 
compression occurs appears to be much more important that the amount of compression per se. What is needed is an 
index that quantifies the information in speech in a way that is sensitive to the signal alterations introduced by 
algorithms, like NFC, and by sensorineural hearing impairment. 

 
FIGURE 2. The figure on the left shows the spectrogram of the sentence “children like strawberries” as spoken by a female 
talker before processing with NFC. The figure on the right shows the same sentence after processing with NFC, whereby 
frequencies from 1.5-6.0 kHz are shifted down in frequency. It is hypothesized that because the spectral energy of the fricatives 
and stop busts is diffuse that they lose less information following NFC. In contrast, the spectral energy of the vowels and 
semivowels is concentrated in narrow bands at specific formant frequencies; therefore, they are more prone to information loss 
following NFC. For example, formant transitions become flattened following processing with a low start frequency as denoted by 
the asterisks on the figure on the right. 

 
Limitations of Previous Computational Models 

Several measures have been developed to predict speech intelligibility following hearing impairment and 
amplification. For example, the Speech Intelligibility Index, SII (ANSI, 2007) is based on the assumption that 
intelligibility of a speech signal depends on the total information within individual frequency-weighted bands, 
whereby information is determined primarily by the audibility of the dynamic range of speech in each band. 
Decreases in information, presumably associated with cochlear processing (e.g., broadened tuning at high 
presentation levels, upward spread of masking, and severe inner hair cell loss or cochlear ‘dead regions’), have been 
built into the model using correction factors that deweight the information in the appropriate bands. At least one 
proposal (Bentler, Cole, & Wu, 2011) has been made to modify the SII in order to predict intelligibility for users of 
hearing aids with NFC by taking the frequency importance weight from the speech before lowering and then 
assigning audibility based on the frequency region where it is moved. The problem with these models is that they do 
not account for the fact that frequency lowering introduces distortion and that the amount of this distortion will vary 
depending on the input frequencies and the frequency lowering parameters. 

Other measures such the Speech Transmission Index (STI), which is based on the modulation transfer function, 
explicitly try to predict speech intelligibility amidst temporal and non-linear distortions (Bondy, Bruce, Becker, & 
Haykin, 2004). Despite this difference from SII, the STI is not particularly designed to make predictions based on 
underlying auditory mechanisms such as auditory filter broadening and has been shown to be an inferior predictor 
speech information in the presence of certain temporal distortions (Stilp, Kiefte, Alexander, & Kluender, 2010). 
Therefore, for our purposes, these metrics are likely to fail without some sort of modification (Hines & Harte, 2010). 

 
Cochlear Scaled Entropy (CSE) 

Cochlear Scaled Entropy (CSE) offers an attractive starting point for our new model. CSE uses concepts from 
Shannon information theory, which essentially states that information transfer occurs when uncertainty is reduced 
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(in lay terms, ‘when the unknown becomes known’) so that the more unpredictable a system is, the greater the 
potential for information transfer (Shannon, 1948). When formally quantified in terms of bits, the measure of 
uncertainty is ‘entropy.’ Speech is a more or less orderly signal with a lot of redundancy across time and frequency. 
Where signal redundancy is low, it is less predictable and uncertainty/entropy are high. Consequently, entropy can 
be a direct measure of the potential speech information that can be conveyed through a system. In order for entropy 
to be a useful measure of speech information, a conceptual framework of the phenomenological processes involved 
needs to be applied. This conceptual framework can take many forms depending on the level of processing one 
wishes to explore. For speech, this could be at the level of linguistic units such as syllables or whole words 
(Shannon, 1951), at the level of the auditory periphery (e.g., Stilp et al., 2010), or somewhere in between the two 
extremes. In other words, decisions need to be made about the level of processing one wishes to explore and how 
one chooses to represent the processing at that level. These decisions have implications for what exactly is defined 
as uncertain, hence how ‘information’ is manifested (that is, how bits are counted). With respect to bit 
representations at the auditory periphery, the definition of signal uncertainty needs to respect processes involved in 
sensory transduction, with auditory filter tuning being the minimum. 

The first step in the computation of CSE is to create a simplified time-frequency representation of the speech. 
Time is divided into non-overlapping segments (most often 16 ms) and the short-term spectrum is computed. 
Individual spectral components are then grouped into non-overlapping frequency bins corresponding to a single 
ERB (equivalent rectangular bandwidth; Glasberg & Moore, 1990), thereby generating ‘spectral slices.’ Implicit 
with quantifying information at the level of the auditory periphery is the premise that sensory systems are efficient 
information processors that respond only to changes (that which is unpredictable) in the signal across time and 
frequency (Kluender et al., 2003). Therefore, the next step is to characterize the degree to which each spectral slice 
is dissimilar (or unpredictable) from one or more preceding slices (Stilp & Kluender, 2010). Dissimilarity is 
estimated by the Euclidean distance between successive spectral slices, or across a running average of spectral slices 
(most often, 80 ms or 5 slices), and is a proxy for the information-theoretic measure of entropy. 

CSE has been successfully used to explain intelligibility of speech under a variety of temporal distortions, 
including conditions in which measures based on the modulation transfer function fail (Stilp et al., 2010). In 
addition, it has been shown that when groups of spectral slices that have been identified as high CSE are replaced by 
speech-shaped noise that speech intelligibility is significantly degraded and when low CSE spectral slices are 
replaced that speech intelligibility is largely maintained (Stilp & Kluender, 2010). This same study showed that 
vowels and semi-vowels had greater entropy compared to consonants, which is consistent with previous findings 
that demonstrated a superiority of vowels over consonants for speech intelligibility (Kewley-Port, Burkle, & Lee, 
2007). This finding has important implications for how the proposed model, an extension of CSE, is predicted to 
behave with frequency-lowered speech. That is, because CSE utilizes a quasi-logarithmic scale it gives more weight 
to lower frequencies, which often correspond to the formant regions. As a natural formant peak changes frequency 
across time, it transverses several auditory filters, resulting in high entropy. If the extent of this change is reduced by 
frequency lowering, it should have a greater impact on entropy compared to a reduction in the bandwidth of 
frication, which tends to naturally fall in relatively broader high-frequency filters. This influence on entropy would 
be consistent with perceptual findings (Alexander, 2012). 

 
Moving Beyond the Cochlea 

As the name suggests, CSE is a measure of change at the cochlear level of auditory processing. While 
parsimonious, one cannot ignore strong evidence suggesting that speech perception is also shaped by processes 
further up the auditory pathway. Adaptation and suppression are two such phenomena present at the level of the 
auditory nerve. Adaptation is the decrease in the neural firing rate in response to constant stimulation. That is, firing 
rate decreases as entropy decreases since an unchanging stimulus rapidly ceases to be novel. Studies have suggested 
that perception of speech is enhanced because neurons adapt quickly after initial stimulation, thereby making un-
adapted neurons with different characteristic frequencies (CFs) relatively more responsive to onsets (Delgutte, 
2002). This collectively results in a pattern of auditory nerve discharge peaks that correspond to spectro-temporal 
regions rich in phonetic. In other words, adaptation may improve the neural representation of spectral change 
(entropy) between following speech segments (Kluender & Alexander, 2007). 
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Therefore, the aim of this project is to use the framework established by CSE and incorporate influential 
processes from further up the auditory system to develop a measure of speech intelligibility that is sensitive to 
information at the neural level. By using the Zilany et al. (2009) phenomenological model of the cat auditory nerve 
(AN) to describe the time-frequency representation of speech at the level of the inner hair cell-auditory nerve 
synapse, the new entropy measure attempts to capture the effects of adaptation, suppression, and other 
nonlinearities; thereby, allowing one to model the effects of sensorineural hearing loss beyond audibility and simple 
filter broadening. 

 
 

METHODS 

Neural Time-Frequency Representation of Speech 

The Zilany et al. (2009) AN model consists of several modules representing the peripheral auditory structures 
starting at the middle ear all the way to the auditory nerve. Studies have shown that this and previous versions of the 
model can be used to predict AN responses for a wide variety of stimuli spanning the dynamic range of hearing for 
both normal and impaired ears (Bandopadhyay & Young, 2004; Tan & Carney, 2006; Hines & Harte, 2010). An 
advantage for our purposes is that it includes various aspects of peripheral auditory impairment including inner hair 
cell (IHC) and outer hair cell (OHC) dysfunction, and consequences in terms of loss of audibility, loudness growth 
and broadened tuning. In order to account for sensorineural hearing impairment, the constants CIHC and COHC can be 
varied to control the scaling factors for IHCs and OHCs respectively. The specific values CIHC and COHC vary 
depending on the CF and the amount of audiometric hearing loss, with 0 corresponding to total impairment and 1 
corresponding to no impairment. Normative data is used within the model to generate these values for a given 
audiogram. By default, the model assumes that the proportion of audiometric loss attributed to OHC and IHC 
impairment is 2/3 and 1/3, respectively (Bruce, Sachs, & Young, 2003; Zilany & Bruce, 2007; Moore, Glasberg, & 
Vickers, 1999). 

Before processing with the AN model, audio files were passed were through a transfer function for a 
BeyerDynamic DT150 headphone in order to make the input to the model comparable to the signals heard by 
participants in behavioral studies (Figure 3). 

 
FIGURE 3. The 176-tap finite impulse response filter that was used to shape the audio files to simulate the frequency shaping of 
the headphone output by the external ear. 

The filtered audio files were then processed by the AN model and output at the IHC-AN synapse in 
spikes/second was used to generate the neural response for the specified CFs at a 100 kHz sampling rate. CFs were 
sampled at equidistant spaces along the cochlear partition using the Greenwood (1990) function: F=A(10ax – k), 
where F=frequency in Hz, A=165.4, a=0.06, k=0.88 and x=distance in mm. The simulated presentation level, fiber 
spontaneous rate (SR), and values for CIHC and COHC depended on the condition being tested. The final step to 
generating the neural time-frequency representation, the neurogram, involved averaging the simulated neural 
response over manageable time frames (e.g., 5-15 ms). Figure 4 is an example of a neurogram from un-impaired 
medium SR fibers using 5-ms frames for the speech sound /aʃa/ as spoken by a male talker at 60 dB SPL mixed with 
speech-shaped noise at 10 dB SNR. Spike rate is depicted on the Z-axis for a given CF (Y-axis) and time frame (X-
axis). The initial and final vowel formants can easily be visualized in low frequencies and the frication noise 
associated with medial /ʃ/ can be seen in the high frequencies. 
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FIGURE 4. A 3-D neurogram (Y-axis, characteristic frequency in Hz; X-axis, time in secs; Z-axis, spike rate in spikes/sec) from 
medium spontaneous rate fibers for the speech sound /aʃa/ produced by a male talker mixed with speech-shaped noise. 

 
Neural-Scaled Entropy (NSE) 

To compare how the cochleotopic pattern of neural firing changes across time frames, Euclidean distance can be 
computed just as with CSE, but in terms of spike rate. However, for a more ‘pure’ estimate of entropy, the Kullback-
Liebler Divergence (KLD) can be computed, which quantifies how much one probability distribution differs from 
another (Johnson, Gruner, Baggerly, & Seshagiri, 2001; Bandopadhyay & Young, 2004). Using the distribution of 
spike rates across CFs for one time frame as a prior, KLD computes how many bits are needed to code the neural 
firing pattern at another time frame. In other words, KLD quantifies how much information remains once mutual 
information between time frames has been accounted for. Implicit with the computation of KLD is the conversion of 
spike rate to a unit-less relative probability distribution that describes how much potential information there is in the 
spike pattern for a given time frame (Figure 5a). To compute NSE, KLD is measured for each time frame when 
predicted by a set number of prior frames (e.g., a 50-ms window of ten 5-ms frames) in an auto-regressive manner 
(Figure 5b). 

(a)  (b)  

FIGURE 5. (a) A 2-D representation of the neurogram in Fig. 4 but in terms of relative probability (see color bar), that is, 
normalized spike rate for each time frame. The white boxes in (a) indicate regions with the greatest KLD when averaged over 50-
ms windows (ten 5-ms frames) as shown in (b). NSE is not computed until after the first averaging window. 
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With the representation of neural spikes as a series of probability distributions, one can conceptualize the neural 
transfer of information as a process by which higher auditory structures must ‘learn’ which CF generated each spike 
it receives (i.e., uncertainty reduction). An efficient coding strategy is to assume stasis and code only differences. 
That is, if the neural firing pattern changes very little across time, earlier time frames will closely predict later ones 
and entropy (KLD) will be very low. In addition, changes across a limited number fibers like a formant transition 
will have relatively greater entropy than random changes that span a wide range of fibers like frication because 
probabilities across CF change very little with noise. Finally, the greatest entropy might be expected for boundaries 
between vowels and consonants where the distribution (probability) of neural firing can change between a high-CF 
skew and a low-CF skew in a short period as shown in Figure 5. 

 
 

PRELIMINARY FINDINGS 

As a preliminary test of our methods, model data was compared to perceptual data from an experiment involving 
14 listeners with mild to moderate sensorineural hearing loss who identified nonsense syllables that were mixed with 
speech-shaped noise at 10 dB SNR and processed using a variety of NFC parameters (Alexander, 2012). Stimuli in 
the conditions below were subjected to a final stage of multichannel wide dynamic range compression to 
compensate for the loss of audibility and were then low-pass filtered at about 3.3 kHz to simulate a severe 
(uncompensated) high-frequency hearing loss. The control condition was processed with the low-pass filtering, but 
was not processed with NFC. In a 2x3 design, two start frequencies (about 1.6 and 2.2 kHz) were crossed with 3 
input bandwidths (about 5, 7, and 9 kHz). That is, the speech spectrum ranging from the start frequency to the upper 
frequency in the input bandwidth were nonlinearly compressed so that the latter was lowered to 3.3 kHz, the 
maximum amplified frequency. For a fixed start frequency, increases in audible input bandwidth were accomplished 
by increases in the compression ratio. Shown in the second column of Table 1 are the speech intelligibility results 
for stop consonants that were produced in three different vowel-consonant-vowel contexts (/a/, /i/, and /u/) by 2 male 
and 2 female talkers. As can be seen, under these conditions average performance for all the NFC parameters was 
worse than the control, with the worst performance for those conditions that altered formant frequencies the most (a 
1.6 kHz start frequency combined with high compression ratios for the 7 and 9 kHz input BWs). With the 2.2 kHz 
start frequency, the amount of compression made very little difference, likely because the critical formant 
frequencies were either unaltered or altered to a lesser extent. 

 
TABLE 1. Displayed are outcomes for different conditions in which stop consonants were 
processed with nonlinear frequency compression using 2 start frequencies and 3 compression 
ratios that corresponded to a progressively increasing audible input bandwidth (BW). Perceptual 
outcomes are shown in the second column and model data in the remaining columns (see text). 
The last row indicates the amount of variance accounted for by each model (R-squared). 

Condition Perceptual CSE NSE NSE (KLD) 
1.6 kHz Start, 5kHz BW 58.3% 0.78 20.1 0.048 
1.6 kHz Start , 7kHz BW 53.1% 0.68 17.9 0.043 
1.6 kHz Start, 9kHz BW 50.1% 0.65 17.2 0.039 
2.2 kHz Start, 5kHz BW 59.7% 0.74 20.0 0.046 
2.2 KHz Start, 7kHz BW 60.0% 0.70 19.2 0.044 
2.2 KHz Start, 9kHz BW 58.9% 0.68 19.0 0.044 

Low-Pass Control 3.3 kHz 63.7% 0.94 21.6 0.047 
     

R-squared with Perceptual Data 0.55 0.86 0.67 
 

Three models were compared to the perceptual data. For each model, the best matches to the data, which are 
shown in Table 1, were obtained when speech-in-quiet was processed and when it was assumed that cochlear 
function was un-impaired. As of now, including noise and impairment in the models represents a limitation of our 
current methods. Results from the CSE model are shown in column 3. CSE was obtained using the same code as 
Stilp & Kluender (2010), in which Euclidean distance between successive 16-ms spectral slices was measured. For 
comparison, NSE in terms of Euclidean distance (denoted ‘NSE’ in column 4) and KLD (column 5) were also 
computed between successive 16-ms time frames. Fibers with CFs corresponding to 0.25-mm samples along the 
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cochlear partition from about 0.1 to 3.3 kHz (78 total) were included in the computations. NSE was carried out 
separately for fibers with low, medium and high SRs, as prescribed in the Zilany et al. (2009) AN model. The final 
estimate of NSE was a weighted average across fiber types, using 0.61, 0.23, and 0.16 as weights for the high, 
medium, and low SR fibers, respectively, which corresponds to the estimate of their distribution in the cat cochlea 
(Liberman, 1978; Zilany et al.M, 2009). 

For all the models, R-squared for just the three conditions with the 1.6 kHz start frequency was ≥ 0.97, meaning 
that they accurately described the loss of information brought about by increased amounts of low-frequency 
compression. As shown in Table 1, a distinction between the models occurs when trying to account for the 
differences in performance for the 2.2 kHz start frequency. CSE, which models auditory filter tuning only, could 
account a little more than half of the variance in the perceptual data, while NSE (KLD) explained a slightly greater 
proportion, and NSE using Euclidean distance explained the most (over 86%). One reason why the Euclidean 
distance of neural responses does better than KLD in explaining the data for this example might be because KLD 
implicitly normalizes firing rate across time frames, thereby losing potential information conveyed by differences in 
firing rate across time. It remains to be seen whether this superiority holds up in other conditions and for analyses 
involving other phonemes. 

 
 

DISCUSSION 

The purpose of this project was to develop an objective measure, neural-scaled entropy (NSE), that is sensitive to 
the amount of information in the altered speech signal in order to better understand the perceptual effects of different 
hearing aid processing strategies and to make predictions for future strategies. What was presented here represents 
only a start that involved one specific type of frequency lowering. We have perceptual data for other phonemes and 
NFC conditions that need to be modeled (Alexander, 2012). In addition, it remains to be seen how closely the 
models can explain observed differences associated with talker gender, manner of articulation, and different vowel 
defining parameters, such as vowel context for consonant identification and vowel height and tongue advancement 
for vowel identification. Several details about the computation of NSE have yet to be explored, including the effect 
of different duration time frames and the number the recursive comparisons. Furthermore, it is not yet apparent how 
NSE across the different SRs or across time should be considered. Averaging is only one option; other options 
included a more judicious selection of SRs based on presentation level or simply selecting the fibers and/or time 
frames with the greatest NSE, as with a winner-take-all strategy. Finally, as mentioned earlier, we have yet to 
explore why we had difficulty when generating models for noise-contaminated speech and for amplified speech 
presented to a model of the impaired auditory periphery. Previous considerations might be useful in this regard. 
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