A & AE 517: UNSTEADY AERODYNAMICS
PROF. ALINA ALEXEENKO

Day & Time: M, W 4:30 - 5:45 pm Room: ARMS 3115

A. A. Alexeenko (U-lek-se'-en-ko). Novosibirsk State University BS '97, MS '99 in Math; Penn State PhD '03 in Aerospace Engineering; USC WiSE scholar 2004-05. Assistant professor of AAE at Purdue since August '06.
E-mail: alexeenk@ecn.purdue.edu
Phone: (765)496-1864 Office: ARMS 3231
Hours: Fridays 10 am – 12 noon or by appointment

Recommended Texts:

Prerequisites: AAE334 or equivalent.

Objectives: Review of inviscid fluid dynamics. Linearized flow theory; indicial and harmonic responses; panel methods for unsteady airfoils and wings. Simple applications to dynamic simulation and aeroelastic stability. Nonlinear theory for transonic flow; introduction to time dependent numerical methods.

Grading:
Homework 40% Midterm 30 % Final Project 30%

Homework

There will be about 8 homework assignments. Some will be paper-and-pencil solution of problems, others will be computer assignments. I recommend using Matlab (available at all computer labs on campus), but you can use any programming language (Java, C, Fortran).

Exam: Midterm exam the week of October 5 - 9. Closed books, open notes.

Course Projects:
Timeline for course projects: project proposal due after October break; progress report due first week of November. Project presentations during the last week of classes. Teams of up to two. Select a problem that is interesting to you and is related to unsteady aerodynamics.
Course Outline

I. Review and Introduction of Basic Concepts: indicial response, harmonic response, aerodynamic damping, static and quasi-steady approximations, aerodynamic transfer functions.

II. Review of Inviscid Fluid Dynamics
 Euler's Equation
 1. Material Derivatives
 2. Vorticity
 3. Potential Flows: Bernoulli's equation; nonlinear wave equation
 4. Boundary Conditions

III. Incompressible Potential Flow
 1. Classical Hydrodynamics: apparent mass forces
 2. Vortex Effects in 2D
 3. Linearized Aerodynamics:
 - Thin wings
 - Separation of steady and unsteady effects
 - 2D airfoils:
 - Indicial response – the Wagner Problem
 - Harmonic response – Theodorsen function
 - Dynamic system calculations
 - Numerical solution methods
 - Planar wings: unsteady panel methods in 3D

IV. Linearized Compressible Flow
 1. The reduced wave equation
 2. Planar wings in simple harmonic motion
 - Subsonic flow: modal method, panel methods
 - Supersonic flow: Mach box techniques

I. Transonic Flow
 1. Transonic non-linearities: small disturbance equation
 2. Shock waves
 3. Numerical solution methods