Question 1. The following Sage code achieves the desired results. Note that we are using the given formula in class for the probability that no collision occurs. That is,

\[
\Pr[\neg Col(n, k)] = \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right).
\]

Note that the code presented is for \(n = 10,000\). Simply repeat with \(n = 100\) for that case. Next, the following plots were created with the data generated by the Sage code. These figures were generated with the \texttt{tikz} package along with the \texttt{pgfplots} package. Note that \(n = 10,000\) has too many data points for \LaTeX{} to process. So it is truncated at \(k = 1,000\), which is fine since the probability is very close to 0.
reset() # resets all variables in the environment

n = 10000
X = [0] # stores x-values for plot
Y = [1] # stores y-values for plot

y = (1 - (1/n)) # values for k = 1
X.append(1)
Y.append(y)
k_0 = 0 # for computing k0
k_1 = n+1 # for computing k1

calculates all values for the probability of no collision
for k in range(2,n+1):
 X.append(k)
 y = y * (1-(k/n))
 Y.append(y)

for k in range(0,n+1): # calculates k0
 if Y[k] >= 99/100:
 if k+1 >= k_0:
 k_0 = k+1

for k in range(n, 0, -1): # calculates k1
 if Y[k] <= 1/100:
 if k+1 <= k_1:
 k_1 = k+1

prints desired values with k0 and k1 for given n
print "(n,k_0)_={"n","n","k_0","} ; k_0^2/_n_={"n","k_0","^2/n\\nprint "(n,k_1)_={"n","k_1","} ; k_1^2/_n_={"n","k_1","^2/n\\n
prepares data for output to a file
st1 = "x_y\r\n"
for k in range(0,1001):
 st1 = st1 + str(X[k]) + " " + str(RR(Y[k])) + " \r\n"

writes data to file for use in LaTeX
o = open('n10000.txt','w')
o.write(st1)
o.close()
Question 2. Here is a solution for question 2.

(a) We describe the following security game between an adversary \mathcal{A} and an honest challenger \mathcal{H}:
1. Adversary \(\mathcal{A} \) chooses two messages \(m^{(0)} \) and \(m^{(1)} \) of length \(n \) on which they wish to be challenged. \(\mathcal{A} \) sends the messages to \(\mathcal{H} \).

2. Honest challenger \(\mathcal{H} \) picks a uniformly random bit \(b \sim \{0, 1\} \), samples secret key \(sk \sim \text{Gen}(1^\lambda) \), where \(\lambda = n \). \(\mathcal{H} \) picks random \(m \sim \mathcal{M} \), samples \(c \sim \text{Enc}_{sk}(m^{(b)}) \) and \(d \sim \text{Enc}_{sk}(m) \). \(\mathcal{H} \) sends the tuple \((c, m, d) \) to \(\mathcal{A} \).

3. \(\mathcal{A} \) replies with a bit \(\tilde{b} \in \{0, 1\} \).

4. \(\mathcal{H} \) outputs bit \(z \), where \(z = 1 \) if and only if \(b = \tilde{b} \).

Adversary \(\mathcal{A} \) wins the security game if and only if \(z = 1 \).

\(\text{(b)} \) We show that the one-time pad encryption scheme is completely insecure for this definition. That is, any adversary \(\mathcal{A} \) can predict the bit \(b \) with probability 1. For simplicity, all messages are over \(\{0, 1\}^n \).

Let \(\mathcal{A} \) be any adversary that takes any two distinct \(n \)-bit messages \(m^{(0)} \) and \(m^{(1)} \). \(\mathcal{A} \) sends these messages to \(\mathcal{H} \). \(\mathcal{H} \) samples \(b \sim \{0, 1\} \) and \(sk \sim \text{Gen}(1^\lambda) \), where \(\lambda = n \). \(\mathcal{H} \) picks random \(m \sim \mathcal{M} \). Since this is one-time pad, \(c = m^{(b)} \oplus sk \) and \(d = m \oplus sk \). \(\mathcal{H} \) sends \(\mathcal{A} \) \((c, m, d) \).

Now, \(\mathcal{A} \) has \((c, m, d) \). Since this is one-time pad and \(\mathcal{A} \) knows that \(d \sim \text{Enc}_{sk}(m) \), \(\mathcal{A} \) can easily compute

\[
d \oplus m = (m \oplus sk) \oplus m = sk
\]

And thus, \(\mathcal{A} \) gets \(sk \) and can compute

\[
c \oplus sk = (m^{(b)} \oplus sk) \oplus sk = m^{(b)}
\]

So \(\mathcal{A} \) gets \(m^{(b)} \) and simply compares it to their two messages and sends the bit \(\tilde{b} = b \) to \(\mathcal{H} \). Thus, with probability 1, \(\mathcal{A} \) predicts the bit \(b \). So the advantage of \(\mathcal{A} \) is exactly \(1/2 \). Thus, one-time pad is completely insecure for this definition.