Hardness of Computing the Biclique Partition Number

Alexander R. Block

March 6, 2017
Introduction

- Biclique Partition Number (in short, bp)
Introduction

- Biclique Partition Number (in short, bp)
 - Minimum number of *bicliques* needed to partition the edges of a graph G, denoted $bp(G)$
Introduction

- Biclique Partition Number (in short, bp)
 - Minimum number of bicliques needed to partition the edges of a graph G, denoted $bp(G)$
 - Note that G can be any graph
 - Bicliques are complete bipartite graphs, denoted $K_{n,m}$
Introduction (Examples)

K_4
Introduction (Examples)

\[K_4 = K_{1,3} + K_{1,2} + K_{1,1} \]
Introduction (Examples)

\[K_4 = K_{1,3} + K_{1,2} + K_{1,1} \]
Introduction (Examples)

\[K_4 = K_{1,3} + K_{1,2} + K_{1,1} \]

\[K_{2,2} = K_{2,1} + K_{1,1} \]
Introduction

- Graham and Pollak introduced the biclique partition number in 1972 in the context of network addressing and graph storage problems [GP71, GP72]
Graham and Pollak introduced the biclique partition number in 1972 in the context of network addressing and graph storage problems [GP71, GP72]

Introduced an extremely prolific research area in Mathematics
Graham and Pollak introduced the biclique partition number in 1972 in the context of network addressing and graph storage problems [GP71, GP72]

Introduced an extremely prolific research area in Mathematics

Graham-Pollak Theorem: $\text{bp}(K_n) = (n - 1)$. All proofs are algebraic and no purely combinatorial proof is known [GP72, Tve82, Pec84, Vis08, Vis13]
Graham and Pollak introduced the biclique partition number in 1972 in the context of network addressing and graph storage problems [GP71, GP72]

Introduced an extremely prolific research area in Mathematics

Graham-Pollak Theorem: $bp(K_n) = (n - 1)$. All proofs are algebraic and no purely combinatorial proof is known [GP72, Tve82, Pec84, Vis08, Vis13]

- Showed $bp(G) \geq \max\{n_+(A(G)), n_-(A(G))\}$ [Witsenhausen, 1980s]
- Known that $n_-(A(K_n)) = (n - 1)$
- Can partition K_n into $(n - 1)$ stars
 - A star is a biclique of the form $K_{1,i}$ for some positive integer i
Applications of Biclique Partition

- Graham and Pollak that a problem on loop switching in networking is equivalent to partitioning a multigraph, yielding their celebrated result [GP71, GP72, Tai13]

\[
\text{INPUT: } n, r, k \in \mathbb{N} \text{ with } k \leq r \leq n
\]

\[
\text{MINIMIZE: size of } \mathcal{F} := \{ f_i : [n] \rightarrow [r] \}
\]

\[
\text{CONSTRAINT: } \forall K \subseteq [n] \text{ with } |K| = k, \exists i \text{ such that } f_i|_K \text{ is injective}
\]

Asking for unique \(i\) and \(r = k = 2\) asks for \(bp(K_n)\)

Connections to the nondeterministic state complexity of finite automata, namely used as a lower bound method [GH06]

Plays a role in analysis of HLA reaction matrices used in biology [NMW A78]
Applications of Biclique Partition

- Graham and Pollak that a problem on loop switching in networking is equivalent to partitioning a multigraph, yielding their celebrated result \([GP71, GP72, Tai13]\)
- Has applications for \textit{perfect hashings} \([Tai13]\)

\[
\begin{align*}
\text{INPUT: } n, r, k \in \mathbb{N} \text{ with } k \leq r \leq n \\
\text{MINIMIZE: size of } \mathcal{F} := \{f_i : [n] \to [r]\} \\
\text{CONSTRAINT: } \forall K \subseteq [n] \text{ with } |K| = k, \exists i \text{ such that } f_i|_K \text{ is injective}
\end{align*}
\]

- Asking for \textit{unique} \(i\) and \(r = k = 2\) asks for \(bp(K_n)\)
Applications of Biclique Partition

- Graham and Pollak that a problem on loop switching in networking is equivalent to partitioning a multigraph, yielding their celebrated result \([\text{GP71, GP72, Tai13}]\)
- Has applications for \textit{perfect hashings} \([\text{Tai13}]\)

\[
\begin{align*}
\text{INPUT:} & \quad n, r, k \in \mathbb{N} \text{ with } k \leq r \leq n \\
\text{MINIMIZE:} & \quad \text{size of } \mathcal{F} := \{ f_i : [n] \to [r] \} \\
\text{CONSTRAINT:} & \quad \forall K \subseteq [n] \text{ with } |K| = k, \exists i \text{ such that } f_i|_K \text{ is injective}
\end{align*}
\]

- Asking for \textit{unique} \(i\) and \(r = k = 2\) asks for \(bp(K_n)\)
- Connections to the nondeterministic state complexity of finite automata, namely used as a lower bound method \([\text{GH06}]\)
Applications of Biclique Partition

- Graham and Pollak that a problem on loop switching in networking is equivalent to partitioning a multigraph, yielding their celebrated result [GP71, GP72, Tai13]
- Has applications for perfect hashings [Tai13]

\begin{tabular}{|l|}
\hline
INPUT: \(n, r, k \in \mathbb{N} \) with \(k \leq r \leq n \) \\
MINIMIZE: size of \(\mathcal{F} := \{ f_i : [n] \to [r] \} \) \\
CONSTRAINT: \(\forall K \subseteq [n] \) with \(|K| = k \), \(\exists i \) such that \(f_i|_K \) is injective \\
\hline
\end{tabular}

- Asking for unique \(i \) and \(r = k = 2 \) asks for \(\text{bp} (K_n) \)
- Connections to the nondeterministic state complexity of finite automata, namely used as a lower bound method [GH06]
- Play a roll in analysis of HLA reaction matrices used in biology [NMWA78]
Applications of Biclique Partition

- A relaxation: \(\text{bp}_t (G) \), a covering of edges with at most \(t \)-bicliques
Applications of Biclique Partition

- A relaxation: $bp_t(G)$, a covering of edges with at most t-bicliques
 - Examined by Noga Alon [Alo97]
Applications of Biclique Partition

- A relaxation: $\text{bp}_t(G)$, a \textit{covering} of edges with at most t-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with $G = K_n$, $\text{bp}_t(G)$ is equivalent to finding the max number of boxes in \mathbb{R}^n that are t-neighborly
Applications of Biclique Partition

- A relaxation: \(bp_t (G) \), a *covering* of edges with at most \(t \)-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with \(G = K_n \), \(bp_t (G) \) is equivalent to finding the max number of boxes in \(\mathbb{R}^n \) that are \(t \)-neighborly
 - Also showed that \(bp_t (K_n) \geq \Theta (tn^{1/t}) \)
Applications of Biclique Partition

- A relaxation: $bp_t(G)$, a covering of edges with at most t-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with $G = K_n$, $bp_t(G)$ is equivalent to finding the max number of boxes in \mathbb{R}^n that are t-neighborly
 - Also showed that $bp_t(K_n) \geq \Theta(t n^{1/t})$

- Wyner’s common information $J(R_A, R_B)$:
 - Minimum (amount of) leakage that kills the possibility of key agreement
Applications of Biclique Partition

- A relaxation: \(\text{bp}_t (G) \), a covering of edges with at most \(t \)-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with \(G = K_n \), \(\text{bp}_t (G) \) is equivalent to finding the max number of boxes in \(\mathbb{R}^n \) that are \(t \)-neighborly
 - Also showed that \(\text{bp}_t (K_n) \geq \Theta (tn^{1/t}) \)

- Wyner’s common information \(J(R_A, R_B) \):
 - Minimum (amount of) leakage that kills the possibility of key agreement
 - \(\min H(L) \) such that \(I(R_A, R_B|L) = 0 \)
Applications of Biclique Partition

- A relaxation: \(\text{bp}_t (G) \), a covering of edges with at most \(t \)-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with \(G = K_n \), \(\text{bp}_t (G) \) is equivalent to finding the max number of boxes in \(\mathbb{R}^n \) that are \(t \)-neighborly
 - Also showed that \(\text{bp}_t (K_n) \geq \Theta (tn^{1/t}) \)

- Wyner’s common information \(J(R_A, R_B) : \)
 - Minimum (amount of) leakage that kills the possibility of key agreement
 - \(\min H(L) \) such that \(I(R_A, R_B | L) = 0 \)
 - Bicliques are useless for KA (because 0 mutual information)
Applications of Biclique Partition

- A relaxation: $bp_t(G)$, a *covering* of edges with at most t-bicliques
 - Examined by Noga Alon [Alo97]
 - Showed that with $G = K_n$, $bp_t(G)$ is equivalent to finding the max number of boxes in \mathbb{R}^n that are t-neighborly
 - Also showed that $bp_t(K_n) \geq \Theta(tn^{1/t})$

- Wyner’s common information $J(R_A, R_B)$:
 - Minimum (amount of) leakage that kills the possibility of key agreement
 - $\min H(L)$ such that $I(R_A, R_B|L) = 0$
 - Bicliques are useless for KA (because 0 mutual information)
 - Roughly corresponds to the *biclique partition number*

- Close connections to communication complexity and circuit lower bounds [HS12, NW95, Raz92]
Finding **bp is Hard**

- Suppose we are given a (bipartite) graph G
Finding **bp is Hard**

- Suppose we are given a (bipartite) graph G
- Does there exist a biclique partition of G of size k?
Finding \textbf{bp} is Hard

- Suppose we are given a (bipartite) graph G.
- Does there exist a biclique partition of G of size k?
- The problem is NP-Complete for both bipartite and general graphs [Orl77, Cio05]
Finding bp is Hard

- Suppose we are given a (bipartite) graph G
- Does there exist a biclique partition of G of size k?
- The problem is NP-Complete for both bipartite and general graphs [Orl77, Cio05]
- We show a proof for bipartite graphs and another for general graphs.
Finding \text{bp} is Hard

- Suppose we are given a (bipartite) graph G
- Does there exist a biclique partition of G of size k?
- The problem is NP-Complete for both bipartite and general graphs [Orl77, Cio05]
- We show a proof for bipartite graphs and another for general graphs.
- Proof for bipartite graphs is a reduction from the \textit{vertex clique problem}

\begin{tabular}{|l|}
\hline
\textbf{GIVEN}: Graph G with $V(G) = \{v_1, \ldots, v_n\}$ \\
\textbf{DETERMINE}: Fewest number of cliques which include all of $V(G)$ \\
\hline
\end{tabular}

- Proof for general graphs is a reduction from the \textit{vertex cover problem}
Proof of NP-Completeness of bp for bipartite graphs

- Suppose we are given a G in the instance of the \textit{vertex clique problem} described before and we want to answer the following question

<table>
<thead>
<tr>
<th>GIVEN: Bipartite graph G</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETERMINE: Fewest number of bicliques which partition a subset $H \subseteq E(G)$</td>
</tr>
</tbody>
</table>
Proof of NP-Completeness of \textbf{bp} for bipartite graphs

- Suppose we are given a G in the instance of the \textit{vertex clique problem} described before and we want to answer the following question

\begin{center}
\textbf{GIVEN:} Bipartite graph G
\textbf{DETERMINE:} Fewest number of bicliques which partition a subset $H \subseteq E(G')$
\end{center}

- Construct $G' = (L, R, E')$ with $L = \{x_1, \ldots, x_n\}$, $R = \{y_1, \ldots, y_n\}$ and $E' = \{(x_i, y_i): \forall i\} \cup \{(x_i, y_j): (v_i, v_j) \in E(G)\}$
Proof of NP-Completeness of \textbf{bp} for bipartite graphs

- Suppose we are given a G in the instance of the \textit{vertex clique problem} described before and we want to answer the following question:

 \begin{itemize}
 \item \textbf{GIVEN:} Bipartite graph G
 \item \textbf{DETERMINE:} Fewest number of bicliques which partition a subset $H \subseteq E(G')$
 \end{itemize}

- Construct $G' = (L, R, E')$ with $L = \{x_1, \ldots, x_n\}$, $R = \{y_1, \ldots, y_n\}$ and $E' = \{(x_i, y_i): \forall i\} \cup \{(x_i, y_j): (v_i, v_j) \in E(G)\}$
- Let $H' = \{(x_i, y_j): i = 1, \ldots, n\}$ be the set of edges to be covered.
Proof of NP-Completeness of \textbf{bp} for bipartite graphs

- Suppose we are given a G in the instance of the \textit{vertex clique problem} described before and we want to answer the following question

\begin{center}

\framebox{\begin{minipage}{0.9\textwidth}
\textbf{GIVEN:} Bipartite graph G \\
\textbf{DETERMINE:} Fewest number of bicliques which partition a subset $H \subseteq E(G')$
\end{minipage}}
\end{center}

- Construct $G' = (L, R, E')$ with $L = \{x_1, \ldots, x_n\}$, $R = \{y_1, \ldots, y_n\}$ and $E' = \{(x_i, y_i): \forall i\} \cup \{(x_i, y_j): (v_i, v_j) \in E(G)\}$
- Let $H' = \{(x_i, y_j): i = 1, \ldots, n\}$ be the set of edges to be covered.
- Any clique C in G which includes v_i induces a biclique in G' which includes the edge (x_i, y_i).

Proof of NP-Completeness of \(\text{bp} \) for bipartite graphs

- Suppose we are given a \(G \) in the instance of the *vertex clique problem* described before and we want to answer the following question:

\[
\begin{align*}
\text{GIVEN:} & \quad \text{Bipartite graph } G \\
\text{DETERMINE:} & \quad \text{Fewest number of bicliques which partition a subset } H \subseteq E(G')
\end{align*}
\]

- Construct \(G' = (L, R, E') \) with \(L = \{x_1, \ldots, x_n\} \), \(R = \{y_1, \ldots, y_n\} \) and \(E' = \{(x_i, y_i): \forall i\} \cup \{(x_i, y_j): (v_i, v_j) \in E(G)\} \)
- Let \(H' = \{(x_i, y_j): i = 1, \ldots, n\} \) be the set of edges to be covered.
- Any clique \(C \) in \(G \) which includes \(v_i \) induces a biclique in \(G' \) which includes the edge \((x_i, y_i)\).
- If \(C' \) is a biclique of \(G' \) which includes edges \((x_{j_1}, y_{j_1}), (x_{j_2}, y_{j_2}), \ldots, (x_{j_k}, y_{j_k})\), then by construction it must be the case that \(\{v_{j_1}, \ldots, v_{j_k}\} \) is a clique in \(G \).
Proof of NP-Completeness of \textbf{bp} for bipartite graphs

- Suppose we are given a G in the instance of the \textit{vertex clique problem} described before and we want to answer the following question:

GIVEN: Bipartite graph G

DETERMINE: Fewest number of bicliques which partition a subset $H \subseteq E(G')$

- Construct $G' = (L, R, E')$ with $L = \{x_1, \ldots, x_n\}$, $R = \{y_1, \ldots, y_n\}$ and $E' = \{(x_i, y_i) : \forall i\} \cup \{(x_i, y_j) : (v_i, v_j) \in E(G)\}$

- Let $H' = \{(x_i, y_j) : i = 1, \ldots, n\}$ be the set of edges to be covered.

- Any clique C in G which includes v_i induces a biclique in G' which includes the edge (x_i, y_i).

- If C' is a biclique of G' which includes edges $(x_{j_1}, y_{j_1}), (x_{j_2}, y_{j_2}), \ldots, (x_{j_k}, y_{j_k})$, then by construction it must be the case that $\{v_{j_1}, \ldots, v_{j_k}\}$ is a clique in G.

- So the minimum number of cliques that cover all vertices in G is equal to the minimum number of bicliques of G' needed to cover the edges in H'.
Proof of NP-Completeness of \(bp\) for general graphs

- Suppose we are given a graph \(G\) and need to find a vertex cover of size \(k \leq |V(G)|\)
Proof of NP-Completeness of bp for general graphs

- Suppose we are given a graph G and need to find a vertex cover of size $k \leq |V(G)|$
- Transform G into G' by replacing every edge with a path of 3 edges
Proof of NP-Completeness of bp for general graphs

- Suppose we are given a graph G and need to find a vertex cover of size $k \leq |V(G)|$
- Transform G into G' by replacing every edge with a path of 3 edges
- G' contains no 4-cycles, so only stars are bicliques in G'
Proof of NP-Completeness of \(\text{bp} \) for general graphs

- Suppose we are given a graph \(G \) and need to find a vertex cover of size \(k \leq |V(G)| \)
- Transform \(G \) into \(G' \) by replacing every edge with a path of 3 edges
- \(G' \) contains no 4-cycles, so only stars are bicliques in \(G' \)
- This implies that \(\text{bp}(G') = \alpha(G') \), where \(\alpha(G') \) is the size of the minimal vertex cover of \(G' \)
Proof of NP-Completeness of bp for general graphs

- Suppose we are given a graph G and need to find a vertex cover of size $k \leq |V(G)|$
- Transform G into G' by replacing every edge with a path of 3 edges
- G' contains no 4-cycles, so only stars are bicliques in G'
- This implies that $bp(G') = \alpha(G')$, where $\alpha(G')$ is the size of the minimal vertex cover of G'
- Notice that $\alpha(G') = \alpha(G) + |E|$
Proof of NP-Completeness of \textbf{bp} for general graphs

- Suppose we are given a graph \(G \) and need to find a vertex cover of size \(k \leq |V(G)| \)
- Transform \(G \) into \(G' \) by replacing every edge with a path of 3 edges
- \(G' \) contains no 4-cycles, so only stars are bicliques in \(G' \)
- This implies that \(\text{bp} (G') = \alpha(G') \), where \(\alpha(G') \) is the size of the minimal vertex cover of \(G' \)
- Notice that \(\alpha(G') = \alpha(G) + |E| \)
- Thus, \(\text{bp} (G') = \alpha(G') = \alpha(G) + |E| \)
Proof of NP-Completeness of \(\text{bp} \) for general graphs

- Suppose we are given a graph \(G \) and need to find a vertex cover of size \(k \leq |V(G)| \)
- Transform \(G \) into \(G' \) by replacing every edge with a path of 3 edges
- \(G' \) contains no 4-cycles, so only stars are bicliques in \(G' \)
- This implies that \(\text{bp} (G') = \alpha(G') \), where \(\alpha(G') \) is the size of the minimal vertex cover of \(G' \)
- Notice that \(\alpha(G') = \alpha(G) + |E| \)
- Thus, \(\text{bp} (G') = \alpha(G') = \alpha(G) + |E| \)
- So \(\alpha(G) \leq k \) if and only if \(\text{bp} (G') \leq k + |E| \)
Approximating bp is Hard

- Since determining bp is NP-Hard, can we approximate?
Approximating \(bp \) is Hard

- Since determining \(bp \) is NP-Hard, can we approximate?
- Unfortunately, \(bp \) is also NP-Hard to approximate
 \([\text{Sim90, BMB}^+08, \text{CHHK14}]\)
Approximating bp is Hard

- Since determining bp is NP-Hard, can we approximate?
- Unfortunately, bp is also NP-Hard to approximate [Sim90, BMB$^+08$, CHHK14]
- Simon [Sim90] examined reductions which preserved approximability of hard problems
Approximating bp is Hard

- Since determining bp is NP-Hard, can we approximate?
- Unfortunately, bp is also NP-Hard to approximate
 \cite{Sim90, BMB08, CHHK14}
- Simon \cite{Sim90} examined reductions which preserved approximability of hard problems
 - Many times, near optimal solution in one problem reduces to a poor solution in another
Approximating bp is Hard

- Since determining bp is NP-Hard, can we approximate?
- Unfortunately, bp is also NP-Hard to approximate \cite{Sim90, BMB08, CHHK14}
- Simon \cite{Sim90} examined reductions which preserved approximability of hard problems
 - Many times, near optimal solution in one problem reduces to a poor solution in another
 - Gives proof that bp is NP-Hard to approximate by a continuous reduction from the vertex clique problem discussed earlier
Approximating bp is Hard

- Since determining bp is NP-Hard, can we approximate?
- Unfortunately, bp is also NP-Hard to approximate \cite{Sim90, BMB+08, CHHK14}
- Simon \cite{Sim90} examined reductions which preserved approximability of hard problems
 - Many times, near optimal solution in one problem reduces to a poor solution in another
 - Gives proof that bp is NP-Hard to approximate by a continuous reduction from the vertex clique problem discussed earlier
 - The proof is not very insightful, so it will be skipped in this talk
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for bp with approximation guarantee of $O\left(\frac{n_L}{\sqrt{\log(n_L)}}\right)$, where $|L| = n_L$ and the input graph is bipartite. For our purposes, assume $|L| = |R| = n$.
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for \(\text{bp} \) with approximation guarantee of \(O\left(\frac{n_L}{\sqrt{\log(n_L)}}\right) \), where \(|L| = n_L \) and the input graph is bipartite For our purposes, assume \(|L| = |R| = n \).

The approximation scheme is as follows
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for bp with approximation guarantee of $O\left(\frac{n_L}{\sqrt{\log(n_L)}}\right)$, where $|L| = n_L$ and the input graph is bipartite. For our purposes, assume $|L| = |R| = n$.

The approximation scheme is as follows

- Choose parameter r (to be fixed later) and partition L into n/r subsets of size r ($L_1, \ldots, L_{n/r}$)
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for \(\text{bp} \) with approximation guarantee of \(\mathcal{O} \left(\frac{n_L}{\sqrt{\log(n_L)}} \right) \), where \(|L| = n_L\) and the input graph is bipartite. For our purposes, assume \(|L| = |R| = n\).

The approximation scheme is as follows

- Choose parameter \(r \) (to be fixed later) and partition \(L \) into \(n/r \) subsets of size \(r \) \((L_1, \ldots, L_{n/r})\)
- For each \(L_i \), run an \(\alpha(r) \)-approximation algorithm to find a biclique cover in each subgraph induced by \(L_i \) (note each \(L_i \) is edge-disjoint)
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for \(\text{bp} \) with approximation guarantee of \(\mathcal{O}\left(\frac{n_L}{\sqrt{\log(n_L)}}\right) \), where \(|L| = n_L \) and the input graph is bipartite For our purposes, assume \(|L| = |R| = n \).

The approximation scheme is as follows

- Choose parameter \(r \) (to be fixed later) and partition \(L \) into \(n/r \) subsets of size \(r \) \((L_1, \ldots, L_{n/r})\)
- For each \(L_i \), run an \(\alpha(r) \)-approximation algorithm to find a biclique cover in each subgraph induced by \(L_i \) (note each \(L_i \) is edge-disjoint)
- Each biclique from each \(L_i \) are put together and from a biclique cover of the whole graph
Nearly Tight Approximability for bp

- Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for bp with approximation guarantee of $O\left(\frac{n_L}{\sqrt{\log(n_L)}}\right)$, where $|L| = n_L$ and the input graph is bipartite. For our purposes, assume $|L| = |R| = n$.

- The approximation scheme is as follows
 - Choose parameter r (to be fixed later) and partition L into n/r subsets of size r ($L_1, \ldots, L_{n/r}$)
 - For each L_i, run an $\alpha(r)$-approximation algorithm to find a biclique cover in each subgraph induced by L_i (note each L_i is edge-disjoint)
 - Each biclique from each L_i are put together and from a biclique cover of the whole graph
 - Note that since L_i were edge-disjoint, this is also a biclique partition
Chalermsook, Heydrich, Holm, and Karrenbauer [CHHK14] proves an approximation algorithm for bp with approximation guarantee of \(\mathcal{O}\left(\frac{n_L}{\sqrt{\log(n_L)}}\right) \), where \(|L| = n_L\) and the input graph is bipartite. For our purposes, assume \(|L| = |R| = n\).

The approximation scheme is as follows:

- Choose parameter \(r \) (to be fixed later) and partition \(L \) into \(n/r \) subsets of size \(r \) \((L_1, \ldots, L_{n/r})\).
- For each \(L_i \), run an \(\alpha(r) \)-approximation algorithm to find a biclique cover in each subgraph induced by \(L_i \) (note each \(L_i \) is edge-disjoint).
- Each biclique from each \(L_i \) are put together and from a biclique cover of the whole graph.
 - Note that since \(L_i \) were edge-disjoint, this is also a biclique partition.
Nearly Tight Approximability for bp

- This scheme gives approximation guarantee $\frac{n}{r} \alpha(r)$
Nearly Tight Approximability for bp

- This scheme gives approximation guarantee $\frac{n}{r} \alpha(r)$
- Choose the $\alpha(r)$-approximation scheme as follows:
Nearly Tight Approximability for bp

- This scheme gives approximation guarantee $\frac{n}{r} \alpha(r)$
- Choose the $\alpha(r)$-approximation scheme as follows:
 - Given L_i, run a brute force algorithm over all 2^r subsets and enumerate all r-tuples of each subset
Nearly Tight Approximability for \text{bp}

- This scheme gives approximation guarantee $\frac{n}{r} \alpha(r)$
- Choose the $\alpha(r)$-approximation scheme as follows:
 - Given L_i, run a brute force algorithm over all 2^r subsets and enumerate all r-tuples of each subset
 - Such a defined subset S and its intersection with the set $\{w : v \in S, w \text{ is a neighbor of } v\}$ induces a biclique
Nearly Tight Approximability for bp

- This scheme gives approximation guarantee $\frac{n}{r} \alpha(r)$
- Choose the $\alpha(r)$-approximation scheme as follows:
 - Given L_i, run a brute force algorithm over all 2^r subsets and enumerate all r-tuples of each subset
 - Such a defined subset S and its intersection with the set $\{w : v \in S, w \text{ is a neighbor of } v\}$ induces a biclique
 - Return the smallest tuple of vertex sets which covers all edges (ensure these bicliques are edge-disjoint for bp)
Nearly Tight Approximability for \(\text{bp}\)

- This scheme gives approximation guarantee \(\frac{n}{r} \alpha(r)\)
- Choose the \(\alpha(r)\)-approximation scheme as follows:
 - Given \(L_i\), run a brute force algorithm over all \(2^r\) subsets and enumerate all \(r\)-tuples of each subset
 - Such a defined subset \(S\) and its intersection with the set \(\{w : v \in S, w \text{ is a neighbor of } v\}\) induces a biclique
 - Return the smallest tuple of vertex sets which covers all edges (ensure these bicliques are edge-disjoint for \(\text{bp}\))
 - An optimal solution has at most \(r\) bicliques, so this returns an optimal solution (i.e., \(\alpha(r) = 1\))
This scheme gives approximation guarantee $\frac{n}{r}\alpha(r)$

Choose the $\alpha(r)$-approximation scheme as follows:

- Given L_i, run a brute force algorithm over all 2^r subsets and enumerate all r-tuples of each subset
- Such a defined subset S and its intersection with the set $\{w : v \in S, w \text{ is a neighbor of } v\}$ induces a biclique
- Return the smallest tuple of vertex sets which covers all edges (ensure these bicliques are edge-disjoint for bp)
- An optimal solution has at most r bicliques, so this returns an optimal solution (i.e., $\alpha(r) = 1$)
Nearly Tight Approximability for bp

- The running time of this algorithm is $O((2^r)^r)$
Nearly Tight Approximability for \(\text{bp} \)

- The running time of this algorithm is \(\mathcal{O}((2^r)^r) \)
- The guarantee of the scheme is \(\frac{n}{r} \alpha(r) = \frac{n}{r} \)
Nearly Tight Approximability for \text{bp}

- The running time of this algorithm is $O((2^r)^r)$
- The guarantee of the scheme is $\frac{n}{r}\alpha(r) = \frac{n}{r}$
- Choose $r = \sqrt{\log(n)}$ gives us a guarantee of $O \left(\frac{n}{\sqrt{\log(n)}} \right)$
- $r = \sqrt{\log(n)}$ gives us a polynomial runtime of $O \left(\frac{n}{r}2^r \right) = O(n^2)$
The running time of this algorithm is $O((2^r)^r)$

The guarantee of the scheme is $\frac{n}{r} \alpha(r) = \frac{n}{r}$

Choose $r = \sqrt{\log(n)}$ gives us a guarantee of $O\left(\frac{n}{\sqrt{\log(n)}}\right)$

$r = \sqrt{\log(n)}$ gives us a polynomial runtime of $O\left(\frac{n}{r} 2^{r^2}\right) = O(n^2)$

Chalermsook et al. also give an approximation with respect to the number of edges m, which has guarantee

$$O\left(\frac{m \log^2 \log m}{\log^3 m}\right)$$
Open Problems

- Does there exist a combinatorial proof for the Graham Pollak Theorem?
Open Problems

- Does there exist a combinatorial proof for the Graham Pollak Theorem?
 - One exists using the Pigeon Hole Principle, but uses structures with size on the order of n^n [Vis13]
Open Problems

Does there exist a combinatorial proof for the Graham Pollak Theorem?

- One exists using the Pigeon Hole Principle, but uses structures with size on the order of n^n [Vis13]
- Tait [Tai13] claims F.R.K. Chung confirms there exists a “better” combinatorial proof (cited via private communication)
Open Problems

- Does there exist a combinatorial proof for the Graham Pollak Theorem?
 - One exists using the Pigeon Hole Principle, but uses structures with size on the order of \(n^n \) \([Vis13]\)
 - Tait \([Tai13]\) claims F.R.K. Chung confirms there exists a “better” combinatorial proof (cited via private communication)
- What is \(bp_2(K_n) \)?
Open Problems

- Does there exist a combinatorial proof for the Graham Pollak Theorem?
 - One exists using the Pigeon Hole Principle, but uses structures with size on the order of n^n [Vis13]
 - Tait [Tai13] claims F.R.K. Chung confirms there exists a “better” combinatorial proof (cited via private communication)

- What is $bp_2(K_n)$?
 - Best known bounds are
 \[\sqrt{n-1} \leq bp_2(K_n) \leq \left\lfloor \sqrt{n} \right\rfloor + \left\lfloor \sqrt{n} \right\rfloor - 2 \] [Alo97, HS12]
Open Problems

- Does there exist a combinatorial proof for the Graham Pollak Theorem?
 - One exists using the Pigeon Hole Principle, but uses structures with size on the order of n^n [Vis13]
 - Tait [Tai13] claims F.R.K. Chung confirms there exists a “better” combinatorial proof (cited via private communication)

- What is $bp_2(K_n)$?
 - Best known bounds are
 \[\sqrt{n - 1} \leq bp_2(K_n) \leq \lfloor \sqrt{n} \rfloor + \lfloor \sqrt{n} \rfloor - 2 \] [Alo97, HS12]
 - Easy to ask: what is $bp_t(K_n)$ for constant t?
Open Problems

- Are there approximation algorithms with better guarantees?

Chalermsook et al. [CHHK14] give better guarantees if $\mathbf{NP} \not\subseteq \mathbf{BPTIME}(2^{\text{polylog} n})$ (Bounded Error Probabilistic Time).

How close is bp to Wyner's Common Information?

How good of an approximation is one to the other?

How close are bp and the biclique cover number (bc)?

Known that $\text{bc} \leq \text{bp}$

[Pin14] This relation may be quite loose:

\[\text{bp}(\mathcal{K}_n) \geq 2^{\text{bc}(\mathcal{K}_n)} - 1 - \frac{1}{2^{\text{bc}(\mathcal{K}_n)}} \] (note that $\text{bc}(\mathcal{K}_n) = \lceil \log n \rceil$)

\[\text{bp}(\mathcal{G}) \leq \frac{1}{16} \left(3^{\text{bc}(\mathcal{G})} - 1 \right) \]
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog } n}\right)$ (Bounded Error Probabilistic Time)
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog } n}\right)$ (Bounded Error Probabilistic Time)
- How close is bp to Wyner’s Common Information?
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog } n}\right)$ (Bounded Error Probabilistic Time)
- How close is bp to Wyner’s Common Information?
 - How good of an approximation is one to the other?
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME}(2^{\text{polylog } n})$ (Bounded Error Probabilistic Time)

- How close is bp to Wyner’s Common Information?
 - How good of an approximation is one to the other?

- How close are bp and the biclique cover number (bc)?
Are there approximation algorithms with better guarantees?
 ▶ Chalermsook et al. [CHHK14] give better guarantees if
 \(\text{NP} \not\subseteq \text{BPTIME}(2^{\text{polylog } n}) \) (Bounded Error Probabilistic Time)

How close is \(bp \) to Wyner’s Common Information?
 ▶ How good of an approximation is one to the other?

How close are \(bp \) and the \textit{biclique cover number} (\(bc \))?
 ▶ Known that \(bc \leq bp \)
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog} n}\right)$ (Bounded Error Probabilistic Time)
- How close is bp to Wyner’s Common Information?
 - How good of an approximation is one to the other?
- How close are bp and the *biclique cover number* (bc)?
 - Known that $\text{bc} \leq \text{bp}$
 - [Pin14] This relation may be quite loose:
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog } n}\right)$ (Bounded Error Probabilistic Time)

- How close is bp to Wyner’s Common Information?
 - How good of an approximation is one to the other?

- How close are bp and the biclique cover number (bc)?
 - Known that $\text{bc} \leq \text{bp}$
 - [Pin14] This relation may be quite loose:
 - $\star \; \text{bp} \left(K_n\right) \geq 2^{\text{bc} \left(K_n\right)} - 1 - 1$ (note that $\text{bc} \left(K_n\right) = \lceil \log n \rceil$)
Open Problems

- Are there approximation algorithms with better guarantees?
 - Chalermsook et al. [CHHK14] give better guarantees if $\text{NP} \not\subseteq \text{BPTIME} \left(2^{\text{polylog } n}\right)$ (Bounded Error Probabilistic Time)

- How close is bp to Wyner’s Common Information?
 - How good of an approximation is one to the other?

- How close are bp and the biclique cover number (bc)?
 - Known that $\text{bc} \leq \text{bp}$
 - [Pin14] This relation may be quite loose:
 - $\text{bp} \left(K_n \right) \geq 2^{\text{bc} \left(K_n \right)} - 1$ (note that $\text{bc} \left(K_n \right) = \lceil \log n \rceil$)
 - $\text{bp} \left(G \right) \leq \frac{1}{2} \left(3^{\text{bc} \left(G \right)} - 1 \right)$
Conclusions

- The biclique partition number is a fertile, rich area of research in mathematics with many connections to other fields.
- Determining bp and bc is an NP-Hard problem.
 - Even for bipartite graphs.
- bp and bc are NP-Hard to approximate as well.
 - Even for bipartite graphs.
- Still many open problems in relation to bp and bc.

[Alo97] Noga Alon.

Clustering and the biclique partition problem.
In *HICSS*, page 475, 2008.

[CHHK14] Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas Karrenbauer.

[Cio05] Sebastian M. Cioabă.
The np-completeness of some edge-partitioning problems.
Master’s thesis, Queen’s University, 2005.

[GH06] Hermann Gruber and Markus Holzer.

On the addressing problem for loop switching.

On embedding graphs in squashed cubes.

[HS12] Hao Huang and Benny Sudakov.
A counterexample to the alon-saks-seymour conjecture and related problems.

[NMWA78] Dana S. Nau, George Markowsky, Max A. Woodbury, and D. Bernard Amos.
A mathematical analysis of human leukocyte antigen serology.

[NW95] Noam Nisan and Avi Wigderson.
On rank vs. communication complexity.

[Orl77] James Orlin.
Contentment in graph theory: Covering graphs with cliques.
In Indagationes Mathematicae (Proceedings), 1977.

[Pec84] GW Peck.
A new proof of a theorem of graham and pollak.
Discrete mathematics, 49(3):327–328, 1984.

Biclique covers and partitions.
In Electronic Journal of Combinatorics, 2014.

The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear.

[Sim90] Hans Ulrich Simon.
On approximate solutions for combinatorial optimization problems.

[Tai13] Michael Tait.
My favorite application using eigenvalues: Eigenvalues and the graham-pollak theorem.

2013.

[Tve82] Helge Tverberg.
On the decomposition of kn into complete bipartite graphs.

[Vis08] Sundar Vishwanathan.
A polynomial space proof of the graham–pollak theorem.