The Sports Product Market

ECONOMICS OF SPORTS (ECON 325)
BEN VAN KAMMEN, PHD

What kind of good is sports?

- All goods can be classified according to the combination of 2 properties they have (or don't):
- Rivalry in consumption and
- Excludability.
-Sports defined how?
- Admission as spectator: excludable and non-rival, until SRO sells out at least.
- Broadcasts, "accounts and descriptions of this game": excludable in principle and non-rival.
- But difficult to enforce, practically non-excludable.
- Merchandise: excludable and rival, a private good.
-Tickets to most games and legal broadcasts of games are "natural monopolies" or "club goods" like toll roads or gated internet content.
- Most other forms are essentially public goods like fireworks displays or national defense.
- Hard to stop me from playing fantasy baseball using MLB's stats, even if they wanted to.
- Schwarz, Alan. 2004. The Numbers Game. St. Martin's, New York. 173-194.

Leagues and clubs

-Who is making the choices?

- Individual clubs.
- But some coordination with other clubs, restrictions by the league.
-Do the clubs do collectively what a planner in charge of the whole league would do?
- I.e., price to maximize overall profit, like an economic firm.*
- Also pay and allocate players to maximize overall profit.
-Do the sports clubs behave like firms, even with respect to maximizing their own profits?
- Even if their collective choices don't maximize overall league profit.

[^0]
Clubs' objectives

-Profit (" π "): Ferguson et al. (1991)
-Wins

- Subject to some kind of break even constraint.
- Maybe an "acceptable (\$) losses" constraint if owners get consumption value from their team's performance: Sloane (1971),
-A combination of profit and wins
-Fans' utility: Madden (2012)
-Zimbalist's (2003) literature review
- See references for papers that test

If clubs maximize profits on ticket sales

-They solve:

$$
\max \pi=p A-C
$$

Where p is price, A is attendance, and C is the club's total costs per game.
-As a monopolist facing a downward-sloping demand curve, A is a function of p.
-To maximize profit, the club solves the maximization problem with the first order condition:

$$
\frac{d \pi}{d p}=p \frac{d A}{d p}+A-\frac{d C}{d A} \frac{d A}{d p}=0
$$

-And this is even simpler if one assumes that the marginal cost of another fan is zero.

$$
\frac{d C}{d A}=0 \rightarrow p=-A \frac{d p}{d A}
$$

If clubs maximize profit on ticket sales

- Simplifying this results in a simple pricing rule:

$$
\frac{p}{p}=\frac{A}{p} \frac{d p}{d A} ; 1=|\varepsilon| ; \varepsilon \equiv \text { demand elasticity }
$$

- If the club is an elastic $(|\varepsilon|>1)$ part of the curve, it should cut prices and increase revenue through higher attendance.
- If it's on an inelastic $(|\varepsilon|<1)$ part, it should raise prices and increase revenue; not very many fans will be dissuaded.
- And stop changing prices when they get to the point where demand is unit elastic.
- Obviously if the capacity of the stadium is less than the optimum implied above, they would only cut price to the point of a sellout.

Implications

-The club does not price at marginal cost ($\$ 0 /$ person).

- Some fans who are willing to pay more than marginal cost would be denied tickets.
- Fixed costs, like player payroll, do not enter into the optimal ticket price.
-Although it impacts the club's decisions about hiring players, trying to maximize other things, like wins, should not affect the ticket pricing behavior.
- A better team would shift demand for tickets outward, but taking that new curve as given, the unit elasticity rule still applies.
- Opponents that attract more fans or games on weekends should have higher prices, if clubs price according to this rule.

Limitations

- Single price, no price discrimination.
-No differentiation of sections within the stadium ("homogenous" tickets).
- No other sources of revenue accounted for.
- In a simplistic way, this is easy to relax.

Broadcasting rights

-Significant revenue comes from excluding all but the buyer of the rights from broadcasting games.

- Again some teams' games have larger viewing audiences (and ticket-buying audiences).
- Teams could sell individually or the league could sell the rights collectively.
- The latter saves on transaction costs of repeated negotiation and gives the league more bargaining power, Falconieri, et al. (2004).
- Revenue sharing across teams is another motivation for, but is not unique to, collective selling.
- Weaker teams might free-ride because revenue depends only on league performance.

Investing in talent, given optimal pricing

-But where does the broadcast revenue go? Baseline case: clubs get, and try to maximize, their broadcast revenue.

- But differ in market size.
- Follow Falconieri, et al., here.

$$
R_{i}=A_{i}\left(\frac{t_{i}}{t_{i}+t_{-i}}\right)\left(1+\kappa_{i}\right) ; t_{i} \text { is team } i^{\prime} \text { s talent level. }
$$

-The big parenthesis is team i's strength and winning probability. Think of this as a shifter of the team's demand curve and the ability to choose a higher p^{*}.

- κ_{i} is the broadcast revenue multiplier, and it's bigger for larger market clubs.
- Talent, of course, is costly, and clubs have to pay to shift their demand curves out.

$$
C_{i}=c t_{i}+c_{i}^{0}
$$

Investing in talent, continued

-Clubs maximize profit by choosing how much talent to invest in:

$$
\pi_{i}=A_{i}\left(\frac{t_{i}}{t_{i}+t_{-i}}\right)\left(1+\kappa_{i}\right)-c t_{i}-c_{i}^{0} ; \frac{d \pi}{d t_{i}}=A_{i}\left(1+\kappa_{i}\right)\left[\frac{1}{t_{i}+t_{-i}}-\frac{t_{i}}{\left(t_{i}+t_{-i}\right)^{2}}\right]-c=0
$$

-Equilibrium would mean solving " n " (1 per club) of these conditions simultaneously for the vector, $\boldsymbol{t}=\left[t_{1}^{*} \ldots t_{n}^{*}\right]$ (Falconieri, et al., p. 842).

Investing in talent, continued

-"Despite all the simplifying assumptions built into the model, in general, we cannot solve this system explicitly" - the authors. So rather than banging your head against a wall, recognize that the square brackets can be expressed in terms of team i's relative strength (win probability):

$$
\left[\frac{1}{t_{i}+t_{-i}}-\frac{t_{i}}{\left(t_{i}+t_{-i}\right)^{2}}\right]=\frac{t_{-i}}{\left(t_{i}+t_{-i}\right)^{2}}=\frac{1-w_{i}}{t_{i}+t_{-i}} .
$$

- This simplifies down to $\left(1-w_{i}\right)$, if you normalize the total talent to 1 .
-so you could draw any club's marginal revenue function as a downward sloping line.

Investing in talent, equilibrium characterized

MR for a bigger market club is strictly higher than for a smaller club.

- Competition bids the price of talent up to the point $\left(c^{*}\right)$ at which all (or both, in the simplified 2 team league picture) clubs marginal revenues are equal.
- If any club's MR were to exceed c^{*}, it would either outbid other clubs or bid up c, thus not equilibrium.

In equilibrium the talents and winning \%s deviate from the balanced ($0.5 \forall i, j$) outcome.

(broadcast) Revenue sharing

This is where it gets fun.
The league can manipulate this equilibrium by dividing the revenue " v " from thecollective sale of broadcasting rights:

- Equally among all teams, or
- Based on performance.

Equal sharing just means replacing the private revenue with the club's share of collective revenue:

$$
R_{i}=A_{i}\left(\frac{t_{i}}{t_{i}+t_{-i}}\right)+\frac{v}{n}
$$

Equal sharing

Sharing of broadcast revenue takes the broadcast audience out of the clubs' MRs.

- This diminishes the advantage of the bigger club(s).
- But they still have a MR advantage via ticket sales.

You get closer but not all the way to perfect competitive balance.

- Unless there is a sufficiently large prize (Falconieri, et al., p. 845), on top of local ticket revenue, for winning.

Equal sharing, caveats

Investment in talent is lower because clubs cease to take into account their effects on " v ".

- The free rider effect.

In terms of total revenue, this could get offset by a bargaining power effect.

- The league is a monopolist now that could extract more of the surplus from the sale to broadcasters.

Also (though it is not modeled here) competitive balance may have a net positive effect on v.

- The league gets more popular overall because the games are closer/more uncertain.

Performance-based sharing

Equal sharing is a special case of this scenario, under which the league can designate a fraction of $v,(\theta)$, to go to clubs based on performance.

- Obvious to see why this would increase the incentive to invest in talent.

Revenue is:

$$
R_{i}=A_{i}(1+\theta v)\left(\frac{t_{i}}{t_{i}+t_{-i}}\right)+\frac{(1-\theta) v}{n}
$$

MR increases for both clubs and so does the equilibrium investment in talent.
Competitive balance in equilibrium is less clear.

Performance-based sharing, continued

This is where it's important to consider clubs' effects on the league broadcast revenue.

- If they completely ignore this, because their slice of the pie is so small ($1 / n$), competitive balance is the same as under equal sharing.
- Big and small market clubs proportionally increase their investments in talent, leaving the ratios unchanged.
- Or even if they do consider this, but in the identical way so: $\frac{d v}{d t_{i}}=\frac{d v}{d t_{j}} \forall i, j$.

But if big clubs have a (and recognize their) bigger effect on the "size of the pie," they invest proportionally more in talent (like private sale), and balance is worse.

- More will tune in to see a big club in the championship?

Performance-based sharing, continued

Or the opposite could be the case if big (small) clubs recognized their negative (positive) effect on balance and invested proportionally less (more).

- In 2016 people actually tune in to watch their team play the Kansas City Royals!
- Conversely fans are reluctant to watch their home team get whomped by the "Yankees" yet again.

This is called the rent-seeking effect by Falconieri, et al., the added incentive to win created by revenue sharing.

- It gets larger, the larger is the league's bargaining power effect. Assuming $\theta>0$.

Performance-based sharing is a substitute for a large prize ("z")

Falconieri et al. Sale of Television Rights in League Sports 845

Figurc 2. The optimal level of revenue sharing (θ^{*}) as a function of a.

Broadcast rights, empirical literature

Noll (2007): collective sale is a bad idea. It doesn't help balance, makes it more expensive to consumers.

- Peeters (2011) agrees. Even the rent-seeking effect helps stronger drawing teams in the UEFA.

Szymanski (2001): increases in revenue dispersion have not affected balance.
Vrooman (2009): autoregressive process estimation to infer competitive balance.

Demand for tickets

The population of potential attendees has diverse preferences for going to any given game. Formally this is represented by each person's (indexed by i) utility function:

$$
U_{i}=v_{i}-p ; v \equiv \text { person } i^{\prime} \text { s value placed on attending the game. }
$$

Each person will attend if $U>0 \rightarrow v_{i}>p$.
v is assumed to have a probability distribution in the population, e.g., uniform, normal, exponential, such that for any $v_{i}, \mathrm{~F}\left(v_{i}\right)=\operatorname{Pr}\left(v \leq v_{i}\right) \in[0,1]$ gives the share of people who value attendance less than or equal than person i does.

For a population of N people, when the club sets price p, the quantity that will demand tickets is:

$$
A=[1-F(p)] * N ; \text { since } \frac{\mathrm{dF}}{\mathrm{dp}}>0
$$

this quantity falls with p. As the Law of Demand would predict. Back.

Extension: non-ticket revenue is proportional to attendance.

If the proportionality is κ, profit is:

$$
\pi=(p+\kappa) * A(p)-C
$$

The maximum implies:

$$
A+(p+\kappa) \frac{d A}{d p} \rightarrow 1-\frac{\kappa}{p}=-\frac{1}{\varepsilon} ; \varepsilon^{*}=\frac{p}{p+\kappa}<1
$$

i.e., optimal ticket pricing in the inelastic region of the demand curve.

Back.

[^0]: * See Neale, Walter. 1964. "The Peculiar Economics of Professional Sports." The Quarterly Journal of Economics: Vol.78, No. 1, 1-14.

