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Introduction
This is a lecture about miscellaneous econom(etr)ics applications that don’t neatly fit in the 
product or labor market categories.

They apply economic theory to decision-making on the field/diamond/pitch/court.  Examples:
◦ Is there a “hot hand” in sports?
◦ In a baseball lineup, is there such a thing as “protection?”
◦ How do soccer players choose their strategies during penalty kicks?
◦ Why do football teams punt away their 4th Downs so often?
◦ Do they even “optimize their portfolios” of running and passing plays?  Or is there a passing premium?

All of these questions have had very legitimate economics research performed on them.
◦ Some of it challenges the sports industry and fans’ orthodox beliefs, too, so it’s up to the reader to 

judge whether the academics have missed something or that misconceptions simply “die hard.”



The myth of the “hot hand”
Statisticians, not just in the 
field of economics, had been 
accumulating evidence to 
debunk this commonly 
believed idea before the video 
game, “NBA Jam.”

If you grew up in the 90s, 
though, the game’s design, 
whereby making consecutive 
shots (“he’s heating up . . .”) 
built up momentum leading 
the ball to start on fire (“he’s 
on fire!”) and all your shots to 
go in, seemed plausible. 
◦ metaphorically.

Yes you could play as Bill Clinton in NBA Jam for Super Nintendo.



“The Law of small numbers”
A term Gilovich, Vallone & Tversky (1985) applied to the human tendency to insist that small 
samples of a random process exhibit the same characteristics as large samples.
◦ If you toss a fair coin 10 times it should come up 5 heads and 5 tails.  
◦ We get suspicious if heads comes up 6 or 7 times in a row, even though probabilistically runs like that 

are fairly likely in repeated sampling.

Streaks of made shots in basketball do not appear random to the observer, leading him to 
concoct the narrative of the “hot hand” to explain such a long streak.
◦ Aside:  these guys are Psychologists, not Economists, but there is a branch of Economics (“Behavioral”) 

that synthesizes insights like theirs into our field, e.g., the use of heuristics and mental “shortcuts” to 
make decisions when calculating expectations is too mentally burdensome.

◦ Consider taking ECON 471 if this appeals to you.

http://www.sciencedirect.com/science/article/pii/0010028585900106


Fooled by randomness
A corollary of the hot hand narrative is the idea that streaks and slumps are “due” to end:  after 
several made (missed) shots the hot hand has to “wear off” and the shooter goes back to 
normal.

But maybe he was never otherwise to begin with! 
◦ What if the hot hand is just randomness manifesting itself in a way that we are bad at detecting.

GVT test this by asking whether NBA players’ streaks of made (missed) shots are longer or more 
frequent than would be generated by random chance.
◦ E.g., tossing a coin with probabilities equal to the player’s lifetime FG%.

As an indication of the stakes, they did a survey of fans:  in which 84% agreed that “it is 
important to pass the ball to someone who has just made several shots in a row.”
◦ Is it?



GVT’s methods
Based on their survey, fans expect a player’s FG% on his next shot to rise 11 points above his 
career average if he has made the previous shot.

Using data on the Philadelphia 76ers (series of consecutive shots by each player) in 1980-81, the 
authors test whether:
◦ Pr(next shot make|last shot make)=Pr(next shot(s) make), i.e., independence,
◦ The number of streaks of ≥ 2 consecutive makes (misses) is higher than the binomial distribution would 

predict,
◦ Whether hot handed-ness manifests itself across games, instead of within them:  
𝐸𝐸 𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛 𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛 = 𝐸𝐸(𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛)?



GVT’s results
The 76ers shot 52% from the field that year.
◦ On shots that followed 3, 2, and 1 misses by the shooter they shot 56%, 53%, and 54% respectively.
◦ On shots that followed 3, 2, and 1 makes by the shooter they shot 46%, 50%, and 51% respectively.
◦ There was only one player (Daryl Dawkins) for whom shot making was statistically significantly based on 

past shooting, and it was negatively predictive.
◦ Most of them were just insignificantly different from zero, i.e., failing to reject independence.

If anything this indicates that you get “worse” after making consecutive shots.  “Cold hand?”



GVT’s results, continued
If you make after a make or vice versa, it counts as a “run.”  If you have fewer of these runs than 
the binomial distribution would predict, you are “streaky” at shooting.
◦ I.e., your makes and missed are all “bunched together.”

Daryl Dawkins is, again, the only player on the team that exhibits significantly different runs than 
is expected based on the binomial distribution—and he has more of them.
◦ An “anti-streak” shooter?
◦ As a team the 76ers had slightly more (not statistically significantly) runs than predicted by randomness.  



GVT’s results, continued
Finally they calculated the ratio,

𝑆𝑆𝐸𝐸 𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜
𝑆𝑆𝐸𝐸 𝑝𝑝𝑜𝑜𝑛𝑛𝑜𝑜𝑡𝑡𝑝𝑝𝑛𝑛𝑛𝑛𝑜𝑜 𝑡𝑡𝑛𝑛𝑔𝑔𝑡𝑡𝑜𝑜𝑛𝑛 𝐹𝐹𝐹𝐹𝐹

Where 𝑆𝑆𝐸𝐸 𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 = 1
81
∑𝑖𝑖=182 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖 − 𝐹𝐹𝐹𝐹𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠
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1
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And having a ratio greater than 1 means you had more variability and streakiness across games 
than would be predicted based on your season FG%.

No player on the 76ers exhibited this behavior that year.  Dawkins had a ratio significantly 
smaller than 1, though, to the surprise of no one at this point.



GVT’s results, caveats
Maybe it’s just the 76ers?
◦ Authors analyzed the Knicks and Nets, too, found only 1 player with positive “hot hand” dependence.

Shot selection:  streaks make you “greedy” and slumps make you “cautious.”

Defense:  same idea, they “clamp down” on a streak-er and “slack” on guarding a slump-er.

GVT analyzed Free Throw shooting by the 1980-81 and 1981-82 Boston Celtics and, again, found 
no dependence.
◦ And there’s no defense or choosing of where to shoot involved in free throws!

They also had Cornell’s men’s and women’s players shoot 100 shots per player in a gym and 
observed no statistical dependence in their shooting %s:  overall they shot 47% in the gym.
◦ Probability of making after 3, 2, 1 misses was 45%, 47%, and 47%, respectively.
◦ Probability of making after 3, 2, 1 makes was 49%, 49%, and 48%, respectively.



Hot hand, subsequent literature
Albright (1993) finds very little evidence of streakiness in MLB batting performance during 1987-
1990.
◦ Some individual players did exhibit (and anti-) streakiness, but for the league as a whole there was no 

evidence of persistence in batting performance.

Franc, et al. (2001) finds some momentum in Wimbledon tennis at the point level of 
observation.
◦ Winning the last point positively predicts winning the next.

Bar-Eli, et al. (2006) reviewed the literature during the intervening 20 years and conclude that 
there is still almost no evidence of a “hot hand” in sports.
◦ Bocskocsky, Ezekowitz & Stein (2014) control for shot selection and do find evidence of 1.2 to 2.4 “hot 

hand” effect on shooting %.  Also Green & Zwiebel (2017) Arthur & Matthews in MLB (2017).

http://www.jstor.org/stable/2291254
http://www.jstor.org/stable/2670288
http://dx.doi.org/10.1016/j.psychsport.2006.03.001
http://nymag.com/scienceofus/2016/08/how-researchers-discovered-the-basketball-hot-hand.html
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.2017.2804
https://fivethirtyeight.com/features/baseballs-hot-hand-is-real/


Sacred cows=yummy burgers?
Bradbury & Drinen (2008) analyze the effect of the on-deck hitter in baseball on the 
performance of the current hitter.
◦ In the business this is usually called “protection” in the lineup because the pitcher wants to face a high 

performing on-deck hitter with a minimum of runners on base.  Conversely the pitcher might “pitch 
around” a strong hitter if the player on deck (“protecting him”) is weak.

◦ Caveat:  pitchers may also dial the effort up (down) to the level of the current (or on-deck) hitter’s skill 
strategically to get deeper into games.

The question:  does “protection” exist?

The stakes:  since expected MRP is the basis of player salaries, do the parties take account of a 
player’s (non) protection externalities (“making others better/worse”), i.e., assuming they exist?

http://jse.sagepub.com/content/9/2/211.abstract


B&D methods
Use play-by-play data from MLB 1989-1992 to control for situational factors and observe 
whether the characteristics of the on-deck hitter affect the outcome of the current hitter’s at 
bat.
◦ Specifically the OPS=SLG+OBP of the on-deck hitter.
◦ Protection says “positively” about hits but “negatively” about bases on balls.
◦ Strategic effort says “negatively” about hits and bases on balls.



B&D results
The effect of the next hitter’s OPS on the outcome of the current at bat is:
◦ To decrease the likelihood of a base on balls (consistent with protection and strategic pitching effort),
◦ And to decrease the likelihood of all kinds of hits (consistent with strategic pitching effort),
◦ i.e., they try extra hard to get the players ahead of Bryce Harper out instead of pitching around them.
◦ The next guy after the on-deck (“in the hole”) has no effect on the outcome of the current at bat.

Does this justify penalizing strong players in contract negotiations?  Not really.
◦ The effect is small.  A full standard deviation increase in OPS decreases the batting average of the hitter 

ahead of me by only 0.003 points.

Positive “protection” externalities may exist but their effect is smaller than the strategic effort 
effect.
◦ Bradbury in a 2007 paper finds that pitchers are also compensated in a way that is independent of the 

contributions of the defense behind them.

Extension:  Joey Votto says protection comes from the hitter in front of you—not behind.

http://jse.sagepub.com/content/8/6/616.abstract
http://www.fangraphs.com/blogs/joey-votto-and-protection-up-front/


Game theory in it’s most literal 
application
Penalty kicks are the ultimate example of a simultaneous move game between two non-
cooperative players (Kicker and Goalie).

Chiappori, et al. (2002) model this as a theoretical game in which both players choose an action 
from the set {L, C, R} and the combination of those actions determines the payoff.
◦ I.e., the kick scores a goal with a certain probability.
◦ The kicker’s gain is the goalie’s loss.  A zero sum game.

Games (as you would learn more about in ECON 451) are usually presented in their normal form, 
i.e., a table of payoffs corresponding to intersections of the row player’s (K) actions and the 
column player’s (G) actions.

http://www.jstor.org/stable/3083302


Chiappori, et al., model
G

K L C R

L 𝑃𝑃𝐿𝐿 𝜋𝜋𝐿𝐿 𝜋𝜋𝐿𝐿
C 𝜇𝜇 0 𝜇𝜇
R 𝜋𝜋𝑅𝑅 𝜋𝜋𝑅𝑅 𝑃𝑃𝑅𝑅

Cells denote probability the goal is scored as a function of Kicker’s and Goalie’s actions.
The Kicker’s payoffs.  The Goalie’s are just (-1) times the Kicker’s.

0, 𝑃𝑃𝐿𝐿 and 𝑃𝑃𝑅𝑅 are the lowest probabilities:  when the Kicker goes the same way the Goalie dives, 
it is unlikely the shot goes in.
If the Goalie doesn’t guess correctly, the probability goes up (𝜋𝜋𝐿𝐿 > 𝑃𝑃𝐿𝐿) but not to Pr=1 because 
the Kicker could always hit it off the bar or miss completely.



Chiappori, et al., model, continued
G

K L C R

L 𝑃𝑃𝐿𝐿 𝜋𝜋𝐿𝐿 𝜋𝜋𝐿𝐿
C 𝜇𝜇 0 𝜇𝜇
R 𝜋𝜋𝑅𝑅 𝜋𝜋𝑅𝑅 𝑃𝑃𝑅𝑅

A couple more assumptions round out the set-up.
Given that the Goalie dives one way, kicking to the opposite corner is better than the Center.
And this advantage gets bigger when the Kicker can go to his “Natural” side.  Right-footed 
kickers tend to prefer going Left.  I.e., 𝜋𝜋𝐿𝐿 > 𝜋𝜋𝑅𝑅 > 𝜇𝜇.
This advantage extends to “shanks” and cases where the Goalie does guess correctly:  𝑃𝑃𝐿𝐿 > 𝑃𝑃𝑅𝑅
and 𝜋𝜋𝑅𝑅 − 𝑃𝑃𝑅𝑅 > 𝜋𝜋𝐿𝐿 − 𝑃𝑃𝐿𝐿.



Equilibrium in game theoretic models
The solution is based on the idea that, in equilibrium, neither player could improve his strategy 
through his own actions alone.
◦ A “simultaneous best response by all players.”

Called Nash Equilibrium, after Nobel Laureate, John Nash (1928-2015) who proved the existence 
of the equilibrium in a very general definition of games, as well as many other contributions.



Nash equilibrium
In simple games like the one to the right, the 
Nash Eq. can be found by identifying 
(underlying/circling) the individual best 
responses to the pure strategies of the other 
player.
◦ As if you knew what they were going to do 

ahead of time.

Then find the cell(s) with both players’ 
responses underlined.
◦ Unless there isn’t one.  Which is OK.

There is still a solution in mixed strategies.
◦ This (and the penalty kicks game) is an example 

of a class of games called “matching pennies,” 
after the most boring gambling game I’ve ever 
heard of.

Pitcher (throws)

Hitter (looks
for)

Fastball Change Up

Fastball 2,-2 -3, 2

Change Up -2, 3 3,-3



Back to the (soccer) pitch
This is why you don’t kick (dive) the same way every time.  It makes you predictable and your 
chance of scoring (preventing) goals goes down.

The Nash in this game consists of playing the 3 strategies each with a specific (“mixing”) 
probability.  
◦ The Kicker maximizes his expected return by choosing probabilities of going Left (“g”), Center (“j”), and 

Right (1-g-j).
◦ The Goalie maximizes his expected return by choosing probabilities of going Left (“h”), Center (“k”), and 

Right (1-h-k).

This means solving 4 first order conditions (which is left as an exercise), but the solution is to 
equate the scoring probability of all 3 strategies.
◦ E.g., for the Kicker’s L vs. R choice:

𝑡∗ ∗ 𝑃𝑃𝐿𝐿 + 𝑘𝑘∗ ∗ 𝜋𝜋𝐿𝐿 + 1 − 𝑡∗ − 𝑘𝑘∗ 𝜋𝜋𝐿𝐿 = 𝑡∗ ∗ 𝜋𝜋𝑅𝑅 + 𝑘𝑘∗ ∗ 𝜋𝜋𝑅𝑅 + 1 − 𝑡∗ − 𝑘𝑘∗ 𝑃𝑃𝑅𝑅.



Properties of the PK equilibrium
The Kicker chooses his natural side more often, but not as often as the Goalie dives to the 
Kicker’s natural side.

For a right-footed Kicker, the outcome {L, L} is more likely than either {L, R} or {R, L}, which are 
both more likely than {R,R}.

Some of these basic insights are confirmed by looking at data from French and Italian soccer 
leagues.

But the rest of the paper tries to grapple with the issue of small sample size inference, due to 
the fact that penalty kicks are fairly rare.
◦ You see very few repetitions of Kicker-Goalie interactions in any data set.



From Chiappori, et al. (2002), The 
American Economic Review, pp. 1146-48.



Zero sum games
“Matching pennies” has numerous applications in sports.

Among them is passing and running play selection in football.
◦ McGarrity & Linnen (2010) represents a clever confirmatory test that NFL teams play a mixed strategy 

when it comes to play calling.

In football, however, there is some evidence that the Nash Equilibrium condition is violated.

I.e., that the expected gain of the marginal running play is less than the expected gain of the 
marginal passing play.

http://www.jstor.org/stable/27751497


The “Equity Premium Puzzle”
The phenomenon in question is named after a more consequential one observed in Financial 
Economics.

Brought to our attention by Mehra & Prescott, in one of the great all-time Economics papers 
(1985), it inheres in the facts that:
◦ Stocks are riskier than bonds,
◦ Stocks should command a “risk premium” (higher returns than bonds) to convince risk averse agents to 

hold them,
◦ And stocks’ observed returns are much larger than bonds’—so much so that the people requiring this 

risk premium would be so risk averse that they’d never leave their houses out of fear.

http://www.sciencedirect.com/science/article/pii/0304393285900613


The “passing premium puzzle”
In this metaphor:
◦ Pass plays are stocks, and
◦ Run plays are bonds.

Alamar (2006) is football’s Mehra & 
Prescott, documenting a steady 
increase in passing efficiency over time 
that is un-matched by an increase in 
the frequency of passing.

http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fjqas.2006.2.4$002fjqas.2006.2.4.1051$002fjqas.2006.2.4.1051.pdf?t:ac=j$002fjqas.2006.2.4$002fjqas.2006.2.4.1051$002fjqas.2006.2.4.1051.xml


Play-by-play data
Alamar tests the observations in (league) aggregated data by looking at 4,738 individual plays 
taking place in 2005
◦ Run from roughly in the middle of the field, to allow room for plenty of yards to be gained or lost.

Since the choice comes down to risk, Alamar wisely compares the entire distributions of play 
outcomes, e.g., 
◦ 58.11% of running plays (called on 1st and 10) gain 3 yards or less, but
◦ Only 46.52% of passing plays went for 3 yards or less.



Passing-rushing comparison
So passing has a higher average return and a smaller probability of a bad outcome (small gain, 
loss).

Within the lower tail, the median “bad” run still gains 1 yard, whereas the median “bad” pass is 
an incompletion (0 yards),
◦ But this isn’t much consolation when you’re giving up an average of more than 5 yards on the “good” 

ones!

It’s not that they shouldn’t run at all, just less than they do now.



Defense “dives left?”
McGarrity & Linnen might argue that teams don’t alter their run-pass balance precisely because 
defenses do alter theirs.
◦ Running has an “externality” by setting up the pass.
◦ The only reason passing returns are still so high is because coaches run often enough to “keep the 

defense honest.”

Alamar’s results contest that, though.  The mean and variance of yards per passing play on 1st

and 10 is statistically no different from the mean and variance of passes on 3rd and long (≥ 7
yards to go).
◦ The latter case is a predictable passing down, when teams pass 88% of the time.
◦ If the high return came from defenses not playing the pass, wouldn’t the return go down on 3rd and 

long?



Passing premium, criticism
Brian Burke partly debunks Alamar’s
analysis, on the grounds that Alamar
did not account for QB sacks in his 
paper.
◦ This would shrink the return to passing 

(and the premium).
◦ The figure at right is from Burke’s 

article, showing a smaller but still 
positive passing premium.

◦ We also don’t know how/if Alamar
dealt with fumbles.

http://archive.advancedfootballanalytics.com/2008/01/passing-premium.html


Passing premium, conclusion
The passing premium, if real, is perhaps not the puzzle that equity premiums are.

I’d say it’s worth some additional scrutiny, and Burke’s articles would be an excellent place to 
start.
◦ Here, here, and here.

I predict the correct analysis proceeding from a play-by-play analysis of the effects of the 
proportions of pass and run plays on the probability of scoring a touchdown* on each drive.

* Or on expected net points (see next slide).

http://archive.advancedfootballanalytics.com/2010/01/run-pass-balance-historical-analysis.html
http://archive.advancedfootballanalytics.com/2009/11/offenses-run-too-often-on-1st-down.html
http://archive.advancedfootballanalytics.com/2009/12/run-pass-imbalance-on-2nd-and-3rd-downs.html


The state of the game
The next methods we will discuss originated in baseball, but here we apply them to football.

The idea is to calculate an expectation of how many runs (points) a team will score, conditional 
on the current state of the game.
◦ In baseball there are only 24 men-on-base, out combinations in an inning, so it’s a relatively controlled 

environment.
◦ Football has 4 downs and 100 yard lines and, even though 10 is quite common, many possibilities for 

the yards-to-go for a 1st down.  I.e., many more permutations.
◦ F.C. Lane devised the earliest run expectancy matrix in 1916 by randomly sampling a large number of 

pro at bats and observing the state and how many runs scored, on average, following that state.

http://www.baseball-reference.com/bullpen/F.C._Lane


Run expectancy matrix example
A modern version, from FanGraphs.com, appears below.

The usefulness lies in the comparison of states.  After a batter’s at bat is over, the state will have 
changed and his contribution to the inning can be quantified in terms of runs.
◦ E.g., a strikeout with the bases loaded and no one out decreases the run expectancy by

1.52 − 2.282 = −0.762 runs.

http://www.fangraphs.com/library/misc/re24/


". . . And the way we always knew what 
football coaches should've done"
If you could only apply this to football, you could evaluate the change in points expectancy after 
each play to quantify how much better or worse off the team is in the game.
◦ This change cannot plausibly be attributed to a single person’s (batter’s) contribution like in baseball.
◦ Although you could make a case for assigning it to the person who chose which play to run and trained 

the players to run it, i.e., the coach.

Certainly decisions like how to play a 4th down are owned by the head coach and these comprise 
the focus of the (2006) Economics paper by David Romer.
◦ How would the risky decision to “go for it” on 4th down compare to the conservative decision to punt?

http://www.simpsonsworld.com/video/306930755636?sb=sv&t=13:02
http://www.jstor.org/stable/10.1086/501171


What football coaches should’ve done
Given a points expectancy table (function?), the game state would most likely change in fairly 
predictable ways:
◦ You don’t have the ball anymore but it’s probably about 40 yards further from your end zone, or
◦ You’ve probabilistically turned the ball over on downs or still have it with a 1st and 10.

The assumption is that coaches try to maximize expected points, which is probably a good one 
for the majority of the 60 minutes.
◦ Let’s find out what would happen if they did.



Expected points in football
This is what a conditional expected 
points function would look like for 
football.
◦ Based on Romer’s estimates using 

about 11,000 plays from the 1998-2000 
seasons.

◦ All of the authors that do this use only 
the 1st and 3rd quarters to exclude 
“garbage time” or “killing the clock” 
plays.

Romer 2006.  “Do Firms Maximize?  Evidence from Professional Football.”  
Journal of Political Economy, p. 346.



Expected points, continued
Subsequently sports analysts, most notably Brian Burke, augmented Romer’s initial estimates by 
conditioning the game states on down and distance.
◦ And throwing more data at the estimates.
◦ And more fancy econometric methods.

A couple prominent examples include:
◦ Burke’s expected points functions for 1st, 2nd and 3rd downs, and
◦ Keith Goldner’s estimates, including a (long) table listing the expectancies for all observed down-

distance-yard-line combinations.

http://archive.advancedfootballanalytics.com/2009/12/expected-point-values.html
https://docs.google.com/spreadsheets/d/1aWwUTp8FlXBFHgEdwHtvx2n7Uws_mRdBDSND9yF0nwo/edit?usp=sharing


Romer’s findings (figures from page 349)
He first analyzes the value of kicking on 4th

down.  I.e., conditional on distance, if 
teams choose the better option between:
◦ Attempting a field goal using observed 

probabilities of success, and
◦ Punting, i.e., if you are out of field goal 

range.

The latter is obviously not a desirable 
option, and it decreases your expected 
points.
◦ It could still be the right choice, though, if 

the value of “going for it” is more negative.

Discontinuity where 
made FGs become 
likely and net punt 
yds. get small.

In here you have 
probability of a 
“coffin corner” punt 
or long made FG, so 
E(points)>0.



Romer’s findings, continued
This is what the value of kicking looks 
like net of the value of a failed 4th

down conversion attempt, and 
conditional on field position.
◦ If you know you’re not going to make it, 

you should punt!

Not a lot of value here because 
even failing on 4th down “pins the 
opponent deep.”



Romer’s findings, continued
But not all 4th down conversions fail!

If you can make a similar comparison of the value of attempting a 4th down conversion, net of 
the value of assured failure to do so . . .

You can compare this difference to the value of a kick (optimally chosen punt/FGA) and predict 
whether kicking or going for it has higher expected points.

Get ready to be:
◦ A) Excited or
◦ B) Offended.



From Romer, page 353 (my shading)

Kick>Go For It

Go For It>Kick

Dashed line connects 
yard line and yards-to-
go combinations 
where NFL coaches 
actually attempt 4th

down conversions as 
often as they kick.
A.k.a., “NFL coaches 
are wimps” line.



Jocks v. nerds (2006)
This is the finding that caused such a stir among the NFL orthodoxy.

Romer estimated that head coaches are way too conservative on 4th down.
◦ From many spots on the field, they should be attempting 4th down conversions twice or more times as 

long as the ones they do attempt,
◦ And the estimates say you should go for 4th down relatively often in your own half of the field, as long as 

the distance to the yellow line is short enough.  You almost never see coaches try this!*

But macho head football coaches love being given this advice by a UC Berkeley Economist.

Burke estimated his own version, which confirms Romer’s key conclusions, too.

*Google “high school football coach that never punts,” though, if you haven’t already read about Kevin 
Kelley in Stumbling on Wins or Scorecasting.

http://archive.advancedfootballanalytics.com/2009/09/4th-down-study-part-1.html


Summary
As explanation for the variance between prediction and observation, Romer entertains, e.g., risk 
aversion and momentum (that would be reversed by a failed 4th down).
◦ Coaches have either different preferences or additional knowledge that the model does not assume.

Burke adds to the list the Moneyball assessment that “conventional wisdom,” i.e., from the early 
low-scoring days of the NFL, is simply very persistent.
◦ And he adds nuance to the risk aversion idea, suggesting that coaches are “loss averse,” i.e., only risk 

averse about gains.
◦ This leads them, in an environment in which loss is likely, to prefer a small loss with near certainty to a 

gamble with diminishing marginal utility of gains and increasing marginal disutility of losses.

If you want to apply points expectations to other choices on the gridiron, Burke’s site published 
a lot of interesting content, prior to getting gobbled up by ESPN.

http://www.advancedfootballanalytics.com/


I know I said this wasn’t a fantasy football 
class . . . But . . .
If you just want to have some fun with it, http://www.pro-football-reference.com/ has play-by-
play data for individual games, so you can see how each play affected the probable outcome of 
the game.

Their data can be used to add up the effects of plays involving individual players on the expected 
points (winning %) in games he plays in.

Without getting too specific, this information might be an improvement over the “counting 
stats”* usually used in Fantasy leagues when it comes to isolating the contributions of individual 
players.

* Here I’m talking primarily about yards accumulated and being the one holding the ball when it crosses the 
goal line.

http://www.pro-football-reference.com/


Go Pack!
Their data for 
individual games can 
also be used to see 
how each play 
affected the 
probable outcome 
of the game.

Here’s a screenshot 
of one of my all-time 
favorite drives 
(right).
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